Knowledge (XXG)

Acoustic metamaterial

Source 📝

1525:(due to impedance differences) through the materials that form the composite. Phononic crystals effectively reduce low-frequency noise, since their locally resonant systems act as spatial frequency filters. However, they have narrow band gaps, impose additional weight on the primary system, and work only at the adjusted frequency range. For widening band gaps, the unit cells must be large in size or contain dense materials. As a solution to the disadvantages mentioned above of phononic crystals, proposes a novel three-dimensional lightweight re-entrant meta-structure composed of a cross-shaped beam scatterer embedded in a host plate with holes based on the square lattice metamaterial. By combining the re-entry networks mechanism and the Floquet–Bloch theory, on the basis of cross-shaped beam theory and perforation mechanism, it was demonstrated that such a lightweight phononic structure can filter elastic waves across a broad frequency range (not just a specific narrow region) while simultaneously reducing structure weight to a significant degree. 1829:(instead of two) creates the low-frequency resonances to achieve double negativity. With monopolar resonance, the spheres expand, which produces a phase shift between the waves passing through rubber and water. This creates a negative response. The dipolar resonance creates a negative response such that the frequency of the center of mass of the spheres is out of phase with the wave vector of the sound wave (acoustic signal). If these negative responses are large enough to compensate the background fluid, one can have both negative effective bulk modulus and negative effective density. 805: 1987:. This causes sound waves to vary their speed from ring to ring. The sound waves propagate around the outer ring, guided by the channels in the circuits, which bend the waves to wrap them around the outer layers. This device has been described as an array of cavities which actually slow the speed of the propagating sound waves. An experimental cylinder was submerged in a tank, and made to disappear from sonar detection. Other objects of various shapes and densities were also hidden from sonar. 1323: 902: 2011:(CNOT) gate, a key component in quantum computing, have been demonstrated. By employing a nonlinear acoustic metamaterial, consisting of three elastically coupled waveguides, the team created classical qubit analogues called logical phi-bits. This approach allows for scalable, systematic, and predictable CNOT gate operations using a simple physical manipulation. This innovation brings promise to the field of quantum-like computing using acoustic metamaterials. 1542: 1550: 1534: 1187: 881:, and how to measure some other physical properties using sound. With acoustic metamaterials the direction of sound through the medium can be controlled by manipulating the acoustic refractive index. Therefore, the capabilities of traditional acoustic technologies are extended, for example, eventually being able to cloak certain objects from acoustic detection. 36: 969: 1952:
sheet of nonlinear acoustic material—one whose sound speed varies with air pressure. An example of such a material is a collection of grains or beads, which becomes stiffer as it is squeezed. The second component is a filter that allows the doubled frequency to pass through but reflects the original.
1174:
at the short-wavelength end, covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. In comparison, infrasonic frequencies range from 20 Hz down to 0.001 Hz, audible frequencies are 20 Hz to 20 kHz and the ultrasonic range is above 20 kHz.
1931:
have a negative dynamic modulus for ultrasound waves. A point source of 60.5 kHz sound was focused to a spot roughly the width of half a wavelength, and there is potential of improving the spatial resolution even further. Result were in agreement with the transmission line model, which derived
1449:
In order to speed up the calculation of the frequency band structure, the Reduced Bloch Mode Expansion (RBME) method can be used. The RBME applies "on top" of any of the primary expansion numerical methods mentioned above. For large unit cell models, the RBME method can reduce the time for computing
844:
Research employing acoustic metamaterials began in 2000 with the fabrication and demonstration of sonic crystals in a liquid. This was followed by transposing the behavior of the split-ring resonator to research in acoustic metamaterials. After this, double negative parameters (negative bulk modulus
1832:
Both the mass density and the reciprocal of the bulk modulus decrease in magnitude fast enough for the group velocity to become negative (double negativity). This gives rise to the desired results of negative refraction. The double negativity is a consequence of resonance and the resulting negative
1828:
This behavior is analogous to low-frequency resonances produced in SRRs (electromagnetic metamaterial). The wires and split rings create intrinsic electric dipolar and magnetic dipolar response. With this artificially constructed acoustic metamaterial of rubber spheres and water, only one structure
1326:
Copper split-ring resonators and wires mounted on interlocking sheets of fiberglass circuit board. A split-ring resonator consists of an inner square with a split on one side embedded in an outer square with a split on the other side. The split-ring resonators are on the front and right surfaces of
1982:
A laboratory metamaterial device that is applicable to ultrasound waves was demonstrated in 2011 for frequencies from 40 to 80 kHz. The metamaterial acoustic cloak was designed to hide objects submerged in water, bending and twists sound waves. The cloaking mechanism consists of 16 concentric
1824:
is speed of the acoustic signal. The effective bulk modulus and density near the static limit are positive as predicted. The monopolar resonance creates a negative bulk modulus above the normalized frequency at about 0.035 while the dipolar resonance creates a negative density above the normalized
1796:
As an example, acoustic double negativity is theoretically demonstrated with a composite of soft, silicone rubber spheres suspended in water. In soft rubber, sound travels much slower than through the water. The high velocity contrast of sound speeds between the rubber spheres and the water allows
928:
per unit volume and is expressed in grams per cubic centimeter (g/cm). In all three classic states of matter—gas, liquid, or solid—the density varies with a change in temperature or pressure, with gases being the most susceptible to those changes. The spectrum of densities is wide-ranging: from 10
1852:
Negative bulk modulus is achieved through monopolar resonances of the BWS series. Negative mass density is achieved with dipolar resonances of the gold sphere series. Rather than rubber spheres in liquid, this is a solid based material. This is also as yet a realization of simultaneously negative
1951:
was introduced in 2009, which converts sound to a different frequency and blocks backward flow of the original frequency. This device could provide more flexibility for designing ultrasonic sources like those used in medical imaging. The proposed structure combines two components: The first is a
1781:
Even for composite materials, the effective bulk modulus and density should be normally bounded by the values of the constituents, i.e., the derivation of lower and upper bounds for the elastic moduli of the medium. The expectation for positive bulk modulus and positive density is intrinsic. For
840:
produced the basic elements of metamaterials in the late 1990s. His materials were combined, with negative index materials first realized in 2000, broadening the possible optical and material responses. Research in acoustic metamaterials has the same goal of broader material responses with sound
1354:
which operate in a certain frequency range. Elements which interact and resonate in their respective localized area are embedded throughout the material. In acoustic metamaterials, locally resonant elements would be the interaction of a single 1-cm rubber sphere with the surrounding liquid. The
812:
is large-scale example of a phononic crystal: it consists of a periodic array of cylinders in air (the 'metamaterial' or 'crystal structure') and its dimensions and pattern is designed such that sound waves at a frequency of 1670 Hz are strongly attenuated. It became the first evidence for the
1867:
Double C resonators (DCRs) are rings cut in half, which can be arranged in multiple cell configurations, similarly to the SRRS. Each cell consists of a large rigid disk and two thin ligaments, and acts as a tiny oscillator connected by springs. One spring anchors the oscillator, and the other
1310:
The amplitudes of the sound waves entering the surface were compared with the sound waves at the center of the structure. The oscillations of the coated spheres absorbed sonic energy, which created the frequency gap; the sound energy was absorbed exponentially as the thickness of the material
1359:
and band-gap frequencies can be controlled by choosing the size, types of materials, and the integration of microscopic structures which control the modulation of the frequencies. These materials are then able to shield acoustic signals and attenuate the effects of anti-plane shear waves. By
1002:
The simplest realization of an acoustic metamaterial would constitute the propagation of a pressure wave through a slab with a periodically modified refractive index in one dimension. In that case, the behavior of the wave through the slab or 'stack' can be predicted and analyzed using
1919:
presented the design and test results of an ultrasonic metamaterial lens for focusing 60 kHz (~2 cm wavelength) sound waves under water. The lens was made of sub-wavelength elements, potentially more compact than phononic lenses operating in the same frequency range.
1307:. Transmission was measured as a function of frequency from 250 to 1600 Hz for a four-layer sonic crystal. A two-centimeter slab absorbed sound that normally would require a much thicker material, at 400 Hz. A drop in amplitude was observed at 400 and 1100 Hz. 1296:, which exhibit spectral gaps two orders of magnitude smaller than the wavelength of sound. The spectral gaps prevent the transmission of waves at prescribed frequencies. The frequency can be tuned to desired parameters by varying the size and geometry. 1778:. This requires negativity in bulk modulus and density. Natural materials do not have a negative density or a negative bulk modulus, but, negative values are mathematically possible, and can be demonstrated when dispersing soft rubber in a liquid. 1887:. The DCR design produced a suitable band with a negative slope in a range of frequencies. This band was obtained by hybridizing the modes of a DCR with the modes of thin stiff bars. Calculations have shown that at these frequencies: 1577:
structures that exhibit effective negative permittivity and negative permeability for some frequency ranges. In contrast, it is difficult to build composite acoustic materials with built-in resonances such that the two effective
1520:
The position of the band gap in frequency space for a phononic crystal is controlled by the size and arrangement of the elements comprising the crystal. The width of the band gap is generally related to the difference in the
1974:
are needed. Making such a metamaterial for a sound means modifying the acoustic analogues to permittivity and permeability in light waves, which are the material's mass density and its elastic constant. Researchers from
777:, but also extremely small-scale phenomena like atoms. The latter is possible due to band gap engineering: acoustic metamaterials can be designed such that they exhibit band gaps for phonons, similar to the existence of 1418:
and mass). One of their main properties is the possibility of having a phononic band gap. A phononic crystal with phononic band gap prevents phonons of selected ranges of frequencies from being transmitted through the
1782:
example, dispersing spherical solid particles in a fluid result in the ratio governed by the specific gravity when interacting with the long acoustic wavelength (sound). Mathematically, it can be proven that β
1512:
through that medium. Likewise, when the advancing wave-front meets a low impedance medium it will slow down. This concept can be exploited with periodic arrangements of impedance-mismatched elements to affect
892:
Properties of acoustic metamaterials usually arise from structure rather than composition, with techniques such as the controlled fabrication of small inhomogeneities to enact effective macroscopic behavior.
4209: 1970:
homes, advanced concert halls, or stealth warships. The idea of acoustic cloaking is simply to deviate the sounds waves around the object that has to be cloaked, but realizing has been difficult since
1339:
of artificially created SRRs, paralleled an analysis of sonic crystals. The band gap properties of SRRs were related to sonic crystal band gap properties. Inherent in this inquiry is a description of
1883:
A phononic band gap occurs in association with the resonance of the split cylinder ring. There is a phononic band gap within a range of normalized frequencies. This is when the inclusion moves as a
1672: 1935:
This lens could improve acoustic imaging techniques, since the spatial resolution of the conventional methods is restricted by the incident ultrasound wavelength. This is due to the quickly fading
1776: 1744: 948:
For acoustic materials and acoustic metamaterials, both bulk modulus and density are component parameters, which define their refractive index. The acoustic refractive index is similar to the
1402:
This method can be used to tune band gaps inherent in the material, and to create new low-frequency band gaps. It is also applicable for designing low-frequency phononic crystal waveguides.
1383:
and the bulk modulus β parameters, which are analogous to permittivity and permeability, respectively. The sonic (or phononic) metamaterials are sonic crystals. These crystals have a solid
1108: 207: 972:
Comparison of 1D, 2D and 3D phononic crystal structures where the metamaterial exhibits a periodic variation of sound speed in 1, 2 and 3 dimensions (from left to right, respectively).
1927:
that oscillate at certain frequencies. Similar to a network of inductors and capacitors in an electromagnetic metamaterial, the arrangement of Helmholtz cavities designed by Zhang
2100: 54: 984:), the phononic crystal comprises pressure waves (phonons) propagating through a material with a periodically modified acoustic refractive index, resulting in a modified 3785: 859:) were produced by this type of medium. Then a group of researchers presented the design and test results of an ultrasonic metamaterial lens for focusing 60 kHz. 4214: 1797:
for the transmission of very low monopolar and dipolar frequencies. This is an analogue to analytical solution for the scattering of electromagnetic radiation, or
1142:
In electromagnetic metamaterials negative permittivity can be found in natural materials. However, negative permeability has to be intentionally created in the
756: 4040: 3071:
Shelby, R. A.; Smith, D. R.; Nemat-Nasser, S. C.; Schultz, S. (2001). "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial".
1880:
and shear modulus Îź. Although linear elasticity is considered, the problem is mainly defined by shear waves directed at angles to the plane of the cylinders.
1213:
are negligible. Because of the bonding between them, the displacement of one or more atoms from their equilibrium positions gives rise to a set of vibration
1808:
Hence, there is a narrow range of normalized frequencies 0.035 < ωa/(2πc) < 0.04 where the bulk modulus and negative density are both negative. Here
980:: instead of electromagnetic waves (photons) propagating through a material with a periodically modified optical refractive index (resulting in a modified 3243:
Ravanbod, Mohammad (2023). "Innovative Lightweight Re-Entrant Cross-like Beam Phononic Crystal with Perforated Host for Broadband Vibration Attenuation".
1375:. Methods which can be applied to two-dimensional stopband and band gap control with either photonic or sonic structures have been developed. Similar to 139:. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic 1299:
The fabricated material consisted of high-density solid lead balls as the core, one centimeter in size and coated with a 2.5-mm layer of rubber
797:. Important branches of physics and technology that rely heavily on acoustic metamaterials are negative refractive index material research, and 1849:
array of bubble-contained-water spheres (BWSs) and another relatively shifted fcc array of rubber-coated-gold spheres (RGSs) in special epoxy.
1561:
moving from top to bottom. Right: the same wave after a central section underwent a phase shift, for example, by passing through metamaterial
4196: 3327: 3300: 3171: 2830: 2800: 2773: 2275: 1841:
In 2007 a metamaterial was reported which simultaneously possesses a negative bulk modulus and negative mass density. This metamaterial is a
3487:(synopsis for "Acoustic Diode: Rectification of Acoustic Energy Flux in One-Dimensional Systems" by Bin Liang, Bo Yuan, and Jian-chun Cheng) 1335:(SRR) became the object of acoustic metamaterial research. An analysis of the frequency band gap characteristics, derived from the inherent 3741: 3709: 3677: 3457: 2649: 3572:
Ding, Yiqun; Liu, Zhengyou; Qiu, Chunyin; Shi, Jing (2007). "Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density".
2385:
Zhengyou Liu, Liu; Xixiang Zhang; Yiwei Mao; Y. Y. Zhu; Zhiyu Yang; C. T. Chan; Ping Sheng (2000). "Locally Resonant Sonic Materials".
1932:
the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies.
749: 72: 1399:
curves. Movchan and Guenneau analyzed and presented low-frequency band gaps and localized wave interactions of the coated spheres.
2007:
Researchers have demonstrated a quantum-like computing method using acoustic metamaterials. Recently operations similar to the
2858: 1303:. These were arranged in an 8 × 8 × 8 cube crystal lattice structure. The balls were cemented into the cubic structure with an 1019: 1004: 1268:
in atoms. However, unlike atoms and natural materials, the properties of metamaterials can be fine-tuned (for example through
3122: 1613: 722: 3769: 1872:
of capacitance, C, and inductance, L, and resonant frequency √1/(LC). The speed of sound in the matrix is expressed as c = √
423: 260: 3040: 1966:
An acoustic cloak is a hypothetical device that would make objects impervious to sound waves. This could be used to build
794: 1979:, China in a 2007 paper reported a metamaterial which simultaneously possessed a negative bulk modulus and mass density. 2046: 1752: 1340: 742: 463: 349: 136: 4039:
Fang, Nicholas; Xi, Dongjuan; Xu, Jianyi; Ambati, Muralidhar; Srituravanich, Werayut; Sun, Cheng; Zhang, Xiang (2006).
1720: 418: 2765:
Physics of Negative Refraction and Negative Index Materials: Optical and Electronic Aspects and Diversified Approaches
1435: 1379:
and electromagnetic metamaterial fabrication, a sonic metamaterial is embedded with localized sources of mass density
1276:. They also have a variety of engineering applications, for example they are widely used as a mechanical component in 1008: 327: 210: 4087: 1322: 2645: 2129: 1073: 1260:. Phononic crystals can be engineered to exhibit band gaps for phonons, similar to the existence of band gaps for 1703:. With constant density and bulk modulus as constituents of the medium, the refractive index is expressed as n = 1261: 1007:. This method is ubiquitous in optics, where it is used for the description of light waves propagating through a 957: 782: 334: 163: 2313:
Shelby, R. A.; Smith, D. R.; Schultz, S. (2001). "Experimental verification of a negative index of refraction".
1236:
between atoms. Any wavelength shorter than this can be mapped onto a long wavelength, due to effects similar to
1154:
of an artificially fabricated transmission medium, and such negative values are an anomalous response. Negative
1971: 1443: 1311:
increased. The key result was the negative elastic constant created from resonant frequencies of the material.
823: 629: 624: 239: 3944:"Implementation of Deutsch and Deutsch–Jozsa-like algorithms involving classical entanglement of elastic bits" 2504: 413: 406: 3346:
Ding, Yiqun; et al. (2007). "Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density".
1045:, is similar to electromagnetic metamaterials. The double negative parameters are a result of low-frequency 884:
The first successful industrial applications of acoustic metamaterials were tested for aircraft insulation.
692: 687: 356: 4239: 4008: 2330: 2175:
D.T., Emerson (December 1997). "The work of Jagadis Chandra Bose: 100 years of millimeter-wave research".
2095: 2051: 992: 991:
In addition to the parallel concepts of refractive index and crystal structure, electromagnetic waves and
862: 804: 244: 1360:
extrapolating these properties to larger scales it could be possible to create seismic wave filters (see
3392:
Zhang, Shu; Leilei Yin; Nicholas Fang (2009). "Focusing Ultrasound with Acoustic Metamaterial Network".
2215: 2114: 2081: 2076: 2061: 2041: 2036: 2026: 1961: 1700: 1562: 1439: 667: 285: 3871:"Demonstration of a two-bit controlled-NOT quantum-like gate using classical acoustic qubit-analogues" 4166: 4117: 4055: 4017: 3955: 3882: 3814: 3634: 3581: 3530: 3411: 3355: 3252: 3209: 3130: 3080: 3046: 2926: 2873: 2727: 2579: 2519: 2444: 2394: 2322: 2227: 2184: 2066: 1846: 1842: 1813: 1470: 1415: 1411: 1332: 1050: 798: 505: 322: 302: 290: 234: 4098:
Zhang, Shu; Xia, Chunguang; Fang, Nicholas (2011). "Broadband Acoustic Cloak for Ultrasound Waves".
3190:
M.I. Hussein (2009). "Reduced Bloch mode expansion for periodic media band structure calculations".
2335: 769:
Acoustic metamaterials are used to model and research extremely large-scale acoustic phenomena like
2560:
Thomas, Jessica; Yin, Leilei; Fang, Nicholas (2009-05-15). "Metamaterial brings sound into focus".
2218:(1898-01-01). "On the Rotation of Plane of Polarisation of Electric Waves by a Twisted Structure". 2021: 2008: 1984: 1924: 1583: 1490: 1420: 1396: 1344: 1336: 1162:(negative modulus), and accelerates to the left when being pushed to the right (negative density). 1143: 1067:, is an equation for refractive index as sound waves interact with acoustic metamaterials (below): 707: 555: 448: 154: 3615:
Zhang, Shu; Chunguang Xia; Nicholas Fang (2011). "Broadband Acoustic Cloak for Ultrasound Waves".
2292: 1565:
of different thickness than the other parts. (The illustration on the right ignores the effect of
901: 4234: 4141: 4107: 4079: 3981: 3924: 3658: 3624: 3554: 3520: 3435: 3401: 3268: 3225: 3199: 3096: 2958: 2914: 2603: 2569: 2356: 2243: 1996: 1793:
are definitely positive for natural materials. The exception occurs at low resonant frequencies.
1707:/ β. In order to develop a propagating plane wave through the material, it is necessary for both 1497: 1392: 1273: 878: 870: 790: 789:
in atoms. That has also made the phononic crystal an increasingly widely researched component in
727: 361: 317: 312: 1857: 1427: 3749: 3717: 3685: 1178:
While electromagnetic waves can travel in vacuum, acoustic wave propagation requires a medium.
913:
is a measure of a substance's resistance to uniform compression. It is defined as the ratio of
4192: 4133: 4071: 3973: 3916: 3898: 3848: 3830: 3650: 3597: 3546: 3427: 3371: 3323: 3296: 3167: 2999: 2950: 2942: 2826: 2796: 2769: 2763: 2712: 2657: 2595: 2535: 2462: 2410: 2348: 2271: 1688: 1579: 1505: 1501: 344: 295: 118: 3290: 1221:
of the wave is given by the displacements of the atoms from their equilibrium positions. The
4174: 4125: 4063: 4025: 3963: 3906: 3890: 3838: 3822: 3642: 3589: 3538: 3456:
Adler, Robert; Acoustic metamaterials., Negative refraction. Earthquake protection. (2008).
3419: 3363: 3260: 3217: 3088: 2989: 2934: 2881: 2820: 2790: 2735: 2587: 2527: 2452: 2402: 2340: 2235: 2192: 2139: 2056: 1976: 1853:
bulk modulus and mass density in a solid based material, which is an important distinction.
1541: 1458: 1269: 1159: 1124: 1042: 977: 949: 942: 682: 657: 570: 545: 540: 495: 1936: 1715: 1549: 1486: 833: 809: 672: 596: 510: 441: 375: 277: 4179: 4154: 4030: 4003: 2711:
Guenneau, SĂŠbastien; Alexander Movchan; Gunnar PĂŠtursson; S. Anantha Ramakrishna (2007).
1983:
rings in a cylindrical configuration, each ring having acoustic circuits and a different
560: 430: 4219: 4170: 4121: 4059: 4021: 3959: 3886: 3818: 3638: 3585: 3534: 3415: 3359: 3256: 3213: 3084: 2930: 2877: 2731: 2583: 2523: 2448: 2398: 2326: 2231: 2188: 1900:
a flat slab of the metamaterial can image a source across the slab like a Veselago lens,
1217:
propagating through the lattice. One such wave is shown in the figure to the right. The
976:
Acoustic metamaterials or phononic crystals can be understood as the acoustic analog of
3911: 3870: 3843: 3802: 2119: 1903:
the image formed by the flat slab has considerable sub-wavelength image resolution, and
1522: 1509: 1431: 1351: 1265: 1206: 1030: 985: 981: 938: 786: 677: 535: 500: 401: 307: 2994: 2977: 1894:
the phase vector in the medium possesses real and imaginary parts with opposite signs,
1533: 1314:
Projected applications of sonic crystals are seismic wave reflection and ultrasonics.
17: 4228: 3985: 3928: 3272: 3229: 3100: 2740: 2158:
Gorishnyy, Taras, Martin Maldovan, Chaitanya Ullal, and Edwin Thomas. "Sound ideas."
2134: 1277: 1198: 1150:
nor negative β are found in naturally occurring materials; they are derived from the
1033:, the effective mass density and bulk modulus may become negative. This results in a 1015: 996: 866: 717: 550: 98: 4145: 4083: 3789:
Air Force Inst. of Tech Wright-Patterson AFB OH School of Engineering and Management
3662: 3558: 3511:
Li, Baowen; Wang, L; Casati, G (2004). "Thermal Diode: Rectification of Heat Flux".
3439: 2889: 2607: 2247: 1272:). For that reason, they constitute a potential testbed for fundamental physics and 945:, which is a density divided by the density of a reference material, such as water. 4129: 3968: 3943: 3646: 3423: 2962: 2591: 2360: 2031: 1478: 1454: 1372: 1361: 1248:
Applications of acoustic metamaterial research include seismic wave reflection and
1170:
The electromagnetic spectrum extends from low frequencies used for modern radio to
934: 930: 829: 770: 702: 697: 662: 394: 129: 122: 3869:
Runge, Keith; Hasan, M. Arif; Levine, Joshua A.; Deymier, Pierre A. (2022-08-18).
3770:"Phononic Metamaterials for Thermal Management: An Atomistic Computational Study." 3593: 3542: 3367: 3134: 2406: 2202: 1194: 121:). Sound wave control is accomplished through manipulating parameters such as the 3317: 2265: 3050: 2457: 2432: 2124: 1967: 1747: 1566: 1514: 1350:
The correlation in band gap capabilities includes locally resonant elements and
1327:
the square grid and the single vertical wires are on the back and left surfaces.
1128: 837: 712: 615: 3894: 3826: 3264: 3121:
Gorishnyy, Taras; Martin Maldovan; Chaitanya Ullal; Edwin Thomas (2005-12-01).
2885: 2531: 2681: 1884: 1869: 1802: 1798: 1594: 1558: 1466: 1253: 1222: 1202: 774: 634: 530: 3977: 3902: 3834: 3003: 2946: 2433:"Composite Medium with Simultaneously Negative Permeability and Permittivity" 933:, 1.00 g/cm for water, to 1.2×10 g/cm for air. Other relevant parameters are 3748:(Online). 2011 U.S. News & World Report. January 7, 2011. Archived from 3483: 2344: 2071: 1999:
in solids, acoustic metamaterials may be designed to control heat transfer.
1574: 1554: 1368: 1249: 1218: 1171: 1158:
or β means that at certain frequencies the medium expands when experiencing
1046: 606: 601: 435: 140: 4189:
Acoustic metamaterials: negative refraction, imaging, lensing and cloaking.
4137: 4075: 3920: 3852: 3716:. University of Illinois (Urbana-Champaign). April 21, 2009. Archived from 3654: 3601: 3550: 3431: 3375: 3221: 2954: 2938: 2599: 2539: 2466: 2414: 2352: 2239: 1906:
a double corner of the metamaterial can act as an open resonator for sound.
1193:
In a rigid lattice structure, atoms exert force on each other, maintaining
1135:*Îľ) are possible for wave propagation as the negative or positive state of 968: 3319:
Basics of fluid mechanics and introduction to computational fluid dynamics
2431:
Smith, D. R.; Padilla, WJ; Vier, DC; Nemat-Nasser, SC; Schultz, S (2000).
2163: 1714:
When the negative parameters are achieved, the mathematical result of the
1186: 3525: 1434:). Several numerical methods are available for this problem, such as the 1388: 1376: 1356: 1300: 1237: 1151: 914: 778: 585: 490: 470: 456: 1465:
in the same way that an elastic wave would propagate along a lattice of
828:
Acoustic metamaterials have developed from the research and findings in
2621: 1837:
Metamaterial with simultaneously negative bulk modulus and mass density
1508:
meets a material with very high impedance it will tend to increase its
1482: 1293: 1210: 921: 339: 3092: 3025: 2201:
A facility of the NSF provides added material to the original paper -
2196: 1593:
and bulk modulus β are position dependent. Using the formulation of a
4067: 3803:"Experimental classical entanglement in a 16 acoustic qubit-analogue" 1257: 953: 480: 110: 102: 1504:
elements comprising the crystal and the surrounding medium. When an
1891:
a beam of sound negatively refracts across a slab of such a medium,
4112: 3629: 3406: 3204: 2574: 1948: 1548: 1540: 1532: 1474: 1430:
is applied on a single unit cell in the reciprocal lattice space (
1304: 967: 900: 874: 384: 114: 1897:
the medium is well impedance-matched with the surrounding medium,
1384: 1347:
for sonic crystals, as a macroscopically homogeneous substance.
1214: 1131:). Hence within the last equation, Veselago-type solutions (n = 925: 3942:
Deymier, Pierre A.; Runge, Keith; Hasan, M. Arif (2022-08-01).
3801:
Hasan, M. Arif; Runge, Keith; Deymier, Pierre A. (2021-12-20).
2622:"New Acoustic Insulation Metamaterial Technology for Aerospace" 2203:
The Work of Jagadis Chandra Bose: 100 Years of MM-Wave Research
1923:
The lens consists of a network of fluid-filled cavities called
2913:
Lee, Jae-Hwang; Singer, Jonathan P.; Thomas, Edwin L. (2012).
1462: 1426:
To obtain the frequency band structure of a phononic crystal,
917:
increase needed to cause a given relative decrease in volume.
520: 106: 29: 4155:"An acoustic metafluid: realizing a broadband acoustic cloak" 3678:"New metamaterial could render submarines invisible to sonar" 2626:
New Acoustic Insulation Metamaterial Technology for Aerospace
1185: 3742:"Newly Developed Cloak Hides Underwater Objects From Sonar" 2713:"Acoustic metamaterials for sound focusing and confinement" 1699:
being the propagation speed of acoustic signal through the
1113:
The inherent parameters of the medium are the mass density
1139:
and β determine the forward or backward wave propagation.
97:
is a material designed to control, direct, and manipulate
3451: 3449: 1812:
is the lattice constant if the spheres are arranged in a
3786:"Investigation of Thermal Management and Metamaterials." 3458:"Acoustic 'superlens' could mean finer ultrasound scans" 2976:
Lu, Ming-Hui; Feng, Liang; Chen, Yan-Feng (2009-12-01).
1573:
Electromagnetic (isotropic) metamaterials have built-in
3341: 3339: 1667:{\displaystyle {\vec {k}}={\frac {\ |n|\omega }{c}}.\,} 1123:. Chirality, or handedness, determines the polarity of 813:
existence of phononic band gaps in periodic structures.
50: 2825:. World Scientific Publishing Company. pp. 3–11. 2768:. New York: Springer-Verlag. p. 183 (Chapter 8). 1756: 1724: 1496:
A key factor for acoustic band gap engineering is the
1395:
due to the coated spheres which result in almost flat
1292:
paved the way to acoustic metamaterials through sonic
1014:
Further information on acoustic wave propagation:
3157: 3155: 3153: 3151: 3116: 3114: 3112: 3110: 2259: 2257: 1755: 1723: 1616: 1450:
the band structure by up to two orders of magnitude.
1076: 1020:
Transfer-matrix method (optics) § Acoustic waves
836:
in 1967, but not realized until some 33 years later.
166: 3387: 3385: 2814: 2812: 2789:
Lavis, David Anthony; George Macdonald Bell (1999).
2177:
IEEE Transactions on Microwave Theory and Techniques
1939:
which carry the sub-wavelength features of objects.
1410:
Phononic crystals are synthetic materials formed by
3035: 3033: 2706: 2704: 2702: 2555: 2553: 2551: 2549: 2267:
Metamaterials: physics and engineering explorations
2264:Nader, Engheta; Richard W. Ziolkowski (June 2006). 2101:
Metamaterials: Physics and Engineering Explorations
1582:are negative within the capability or range of the 1391:coating. The sonic crystals had built-in localized 45:
may be too technical for most readers to understand
3714:Information for Mechanical Science and Engineering 2792:Statistical Mechanics Of Lattice Systems. Volume 2 2656:. The research group of D.R. Smith. Archived from 2498: 2496: 2003:Quantum-like computing with acoustic metamaterials 1771:{\displaystyle \scriptstyle {\overrightarrow {k}}} 1770: 1738: 1666: 1414:of the acoustic properties of the material (i.e., 1102: 905:Bulk modulus - illustration of uniform compression 201: 3710:"Acoustic cloaking could hide objects from sonar" 2688:. Grolier. Vol. Online. Scholastic Inc. 2009 2676: 2674: 2494: 2492: 2490: 2488: 2486: 2484: 2482: 2480: 2478: 2476: 1739:{\displaystyle \scriptstyle {\overleftarrow {s}}} 4041:"Ultrasonic metamaterials with negative modulus" 2915:"Micro-/Nanostructured Mechanical Metamaterials" 2757: 2755: 2753: 2751: 1318:Split-ring resonators for acoustic metamaterials 1232:wavelength, given by the equilibrium separation 1025:Negative refractive index acoustic metamaterials 924:(or just "density") of a material is defined as 2819:Brulin, Olof; Richard Kin Tchang Hsieh (1982). 2380: 2378: 2376: 2374: 2372: 2370: 3185: 3183: 2978:"Phononic crystals and acoustic metamaterials" 832:. A novel material was originally proposed by 4004:"Focus on Cloaking and Transformation Optics" 3316:Petrila, Titus; Damian Trif (December 2004). 1991:Phononic metamaterials for thermal management 1569:whose effect increases over large distances). 1493:are more complicated than this simple model. 1453:The basis of phononic crystals dates back to 1103:{\displaystyle n^{2}={\frac {\rho }{\beta }}} 937:which is mass over a (two-dimensional) area, 750: 8: 1868:connects to the mass. It is analogous to an 1367:Arrayed metamaterials can create filters or 3284: 3282: 2859:"Split-ring resonators and localized modes" 2795:. New York: Springer-Verlag. pp. 1–4. 202:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 27:Material designed to manipulate sound waves 2300:U Penn Dept. Of Elec. And Sys. Engineering 1146:. For acoustic materials neither negative 757: 743: 590: 380: 223: 145: 4178: 4111: 4029: 3967: 3910: 3842: 3628: 3524: 3405: 3203: 2993: 2739: 2650:"What are Electromagnetic Metamaterials?" 2573: 2456: 2334: 1757: 1754: 1725: 1722: 1711:and β to be either positive or negative. 1663: 1646: 1638: 1632: 1618: 1617: 1615: 1090: 1081: 1075: 995:are both mathematically described by the 179: 165: 73:Learn how and when to remove this message 57:, without removing the technical details. 3292:Tap water as a hydraulic pressure medium 2762:Krowne, Clifford M.; Yong Zhang (2007). 1321: 941:- mass over a one-dimensional line, and 803: 4002:Leonhardt, Ulf; Smith, David R (2008). 3016:Eichenfield, M., Chan, J., Camacho, R. 2505:"Double-negative acoustic metamaterial" 2164:https://physicsworld.com/a/sound-ideas/ 2151: 1197:. Most of these atomic forces, such as 1166:Electromagnetic field vs acoustic field 614: 569: 519: 479: 383: 252: 226: 153: 2852: 2850: 2848: 2846: 2844: 2842: 2426: 2424: 3864: 3862: 3042:Sonic crystals make the sound barrier 1799:electromagnetic plane wave scattering 1529:Double-negative acoustic metamaterial 1049:. In combination with a well-defined 55:make it understandable to non-experts 7: 2857:Movchan, A. B.; S. Guenneau (2004). 1746:is in the opposite direction of the 4215:Negative refractive index materials 3026:https://doi.org/10.1038/nature08524 3192:Proceedings of the Royal Society A 25: 3676:Nelson, Bryn (January 19, 2011). 3322:. Springer-Verlag New York, LLC. 2270:. Wiley & Sons. pp. xv. 808:The artwork "Órgano" by sculptor 4153:Pendry, J B; Li, Jensen (2008). 3484:"One-way Mirror for Sound Waves" 2220:Proceedings of the Royal Society 1387:core and a softer, more elastic 1252:control technologies related to 1117:, bulk modulus β, and chirality 34: 2654:Novel Electromagnetic Materials 2503:Li, Jensen; C. T. Chan (2004). 1995:As phonons are responsible for 1911:Acoustic metamaterial superlens 4180:10.1088/1367-2630/10/11/115032 4130:10.1103/PhysRevLett.106.024301 4031:10.1088/1367-2630/10/11/115019 3969:10.1016/j.wavemoti.2022.102977 3647:10.1103/PhysRevLett.106.024301 3424:10.1103/PhysRevLett.102.194301 3289:Trostmann, Erik (2000-11-17). 2592:10.1103/PhysRevLett.102.194301 1647: 1639: 1623: 1457:who imagined that sound waves 1205:, are of electric nature. The 1144:artificial transmission medium 952:, but it concerns pressure or 1: 3775:vol. 49, no. 1 February 2011. 3594:10.1103/PhysRevLett.99.093904 3543:10.1103/PhysRevLett.93.184301 3368:10.1103/PhysRevLett.99.093904 2995:10.1016/S1369-7021(09)70315-3 2822:Mechanics of micropolar media 2407:10.1126/science.289.5485.1734 2291:Engheta, Nader (2004-04-29). 1477:constant is identical to the 1469:connected by springs with an 1371:of either electromagnetic or 1288:In 2000, the research of Liu 897:Bulk modulus and mass density 4187:Richard V. Craster, et al.: 3049:. 2000-09-07. Archived from 2047:Negative index metamaterials 1845:structure consisting of one 1485:. With phononic crystals of 865:is typically concerned with 3493:. American Physical Society 2458:10.1103/PhysRevLett.84.4184 1801:, by spherical particles - 1489:with differing modulus the 1009:distributed Bragg reflector 793:and experiments that probe 4256: 4191:Springer, Dordrecht 2013, 3895:10.1038/s41598-022-18314-5 3827:10.1038/s41598-021-03789-5 3773:Chinese Journal of Physics 3482:Monroe, Don (2009-08-25). 3265:10.1007/s00339-022-06339-6 3020:Optomechanical crystals . 2886:10.1103/PhysRevB.70.125116 2741:10.1088/1367-2630/9/11/399 2532:10.1103/PhysRevE.70.055602 1959: 1855: 1436:planewave expansion method 1182:Mechanics of lattice waves 1013: 821: 3295:. CRC Press. p. 36. 1825:frequency at about 0.04. 1820:is angular frequency and 1244:Research and applications 1053:during wave propagation; 1035:negative refractive index 2108:Metamaterials scientists 1972:mechanical metamaterials 1444:finite difference method 1264:and to the existence of 824:History of metamaterials 261:Clausius–Duhem (entropy) 211:Fick's laws of diffusion 4100:Physical Review Letters 3574:Physical Review Letters 3513:Physical Review Letters 3162:G.P Srivastava (1990). 3073:Applied Physics Letters 2437:Physical Review Letters 2345:10.1126/science.1058847 2162:18, no. 12 (2005): 24. 1833:refraction properties. 799:(quantum) optomechanics 419:Navier–Stokes equations 357:Material failure theory 4159:New Journal of Physics 4009:New Journal of Physics 3222:10.1098/rspa.2008.0471 3164:The Physics of Phonons 2939:10.1002/adma.201201644 2720:New Journal of Physics 2686:Encyclopedia Americana 2302:. Lecture. p. 99. 2240:10.1098/rspl.1898.0019 2096:Metamaterials Handbook 2052:Photonic metamaterials 1772: 1740: 1668: 1570: 1546: 1538: 1328: 1190: 1104: 1041:, which can result in 973: 950:concept used in optics 906: 863:Acoustical engineering 814: 203: 18:Acoustic metamaterials 3491:Physical Review Focus 2216:Bose, Jagadis Chunder 2115:Richard W. Ziolkowski 2082:Transformation optics 2077:Tunable metamaterials 2062:Seismic metamaterials 2042:Metamaterial antennas 2037:Metamaterial absorber 2027:Metamaterial cloaking 1962:Metamaterial cloaking 1856:Further information: 1773: 1741: 1669: 1552: 1544: 1536: 1440:finite element method 1362:Seismic metamaterials 1341:mechanical properties 1333:split-ring resonators 1325: 1189: 1105: 971: 958:electromagnetic waves 904: 852:and negative density 807: 414:Bernoulli's principle 407:Archimedes' principle 204: 87:acoustic metamaterial 3752:on February 17, 2011 3131:Institute of Physics 3047:Institute of Physics 2067:Split-ring resonator 1925:Helmholtz resonators 1753: 1721: 1614: 1597:the wave vector is: 1506:advancing wave-front 1274:quantum technologies 1152:resonant frequencies 1074: 791:quantum technologies 506:Cohesion (chemistry) 328:Infinitesimal strain 164: 4171:2008NJPh...10k5032P 4122:2011PhRvL.106b4301Z 4060:2006NatMa...5..452F 4022:2008NJPh...10k5019L 3960:2022WaMot.11302977D 3887:2022NatSR..1214066R 3819:2021NatSR..1124248H 3746:U.S. News - Science 3691:on January 22, 2011 3639:2011PhRvL.106b4301Z 3586:2007PhRvL..99i3904D 3535:2004PhRvL..93r4301L 3416:2009PhRvL.102s4301Z 3360:2007PhRvL..99i3904D 3257:2023ApPhA.129..102R 3214:2009RSPSA.465.2825H 3198:(2109): 2825–2848. 3085:2001ApPhL..78..489S 3024:462, 78–82 (2009). 2931:2012AdM....24.4782L 2878:2004PhRvB..70l5116M 2732:2007NJPh....9..399G 2584:2009PhRvL.102s4301Z 2524:2004PhRvE..70e5602L 2449:2000PhRvL..84.4184S 2399:2000Sci...289.1734L 2393:(5485): 1734–1736. 2327:2001Sci...292...77S 2232:1898RSPS...63..146C 2189:1997ITMTT..45.2267E 2022:Acoustic dispersion 1985:index of refraction 1863:Double C resonators 1814:face-centered cubic 1584:transmission medium 1345:continuum mechanics 1337:limiting properties 1262:electrons in solids 1209:, and the force of 783:electrons in solids 424:Poiseuille equation 155:Continuum mechanics 149:Part of a series on 3875:Scientific Reports 3807:Scientific Reports 3723:on August 27, 2009 3462:New Scientist Tech 2919:Advanced Materials 2726:(399): 1367–2630. 1997:thermal conduction 1915:In 2009 Shu Zhang 1768: 1767: 1736: 1735: 1701:homogeneous medium 1664: 1580:response functions 1571: 1547: 1545:Out-of-phase waves 1539: 1412:periodic variation 1329: 1191: 1100: 1039:Flat slab focusing 974: 907: 879:sound reproduction 871:medical ultrasound 815: 630:Magnetorheological 625:Electrorheological 362:Fracture mechanics 199: 4220:Acoustic cloaking 4210:Phononic crystals 4197:978-94-007-4812-5 4093:on June 23, 2010. 3784:Roman, Calvin T. 3329:978-0-387-23837-1 3302:978-0-8247-0505-3 3245:Applied Physics A 3173:978-0-85274-153-5 3093:10.1063/1.1343489 2925:(36): 4782–4810. 2832:978-9971-950-02-6 2802:978-3-540-64436-1 2775:978-3-540-72131-4 2277:978-0-471-76102-0 2197:10.1109/22.643830 1956:Acoustic cloaking 1937:evanescent fields 1765: 1733: 1689:angular frequency 1658: 1637: 1626: 1589:The mass density 1500:mismatch between 1473:constant E. This 1406:Phononic crystals 1266:electron orbitals 1258:precision sensing 1098: 1005:transfer matrices 978:photonic crystals 964:Theoretical model 909:The bulk modulus 795:quantum mechanics 787:electron orbitals 767: 766: 642: 641: 576: 575: 345:Contact mechanics 268: 267: 197: 83: 82: 75: 16:(Redirected from 4247: 4184: 4182: 4149: 4115: 4094: 4092: 4086:. Archived from 4068:10.1038/nmat1644 4048:Nature Materials 4045: 4035: 4033: 3990: 3989: 3971: 3939: 3933: 3932: 3914: 3866: 3857: 3856: 3846: 3798: 3792: 3782: 3776: 3767: 3761: 3760: 3758: 3757: 3738: 3732: 3731: 3729: 3728: 3722: 3706: 3700: 3699: 3697: 3696: 3690: 3684:. Archived from 3673: 3667: 3666: 3632: 3612: 3606: 3605: 3569: 3563: 3562: 3528: 3526:cond-mat/0407093 3508: 3502: 3501: 3499: 3498: 3488: 3479: 3473: 3472: 3470: 3469: 3453: 3444: 3443: 3409: 3389: 3380: 3379: 3343: 3334: 3333: 3313: 3307: 3306: 3286: 3277: 3276: 3240: 3234: 3233: 3207: 3187: 3178: 3177: 3159: 3146: 3145: 3143: 3142: 3133:. Archived from 3127:Physicsworld.com 3118: 3105: 3104: 3068: 3062: 3061: 3059: 3058: 3037: 3028: 3014: 3008: 3007: 2997: 2973: 2967: 2966: 2910: 2904: 2903: 2901: 2900: 2894: 2888:. Archived from 2863: 2854: 2837: 2836: 2816: 2807: 2806: 2786: 2780: 2779: 2759: 2746: 2745: 2743: 2717: 2708: 2697: 2696: 2694: 2693: 2678: 2669: 2668: 2666: 2665: 2660:on July 20, 2009 2642: 2636: 2635: 2633: 2632: 2618: 2612: 2611: 2577: 2557: 2544: 2543: 2509: 2500: 2471: 2470: 2460: 2428: 2419: 2418: 2382: 2365: 2364: 2338: 2310: 2304: 2303: 2297: 2288: 2282: 2281: 2261: 2252: 2251: 2212: 2206: 2200: 2172: 2166: 2156: 2140:Vladimir Shalaev 2057:Photonic crystal 1977:Wuhan University 1876:/Îź with density 1777: 1775: 1774: 1769: 1766: 1758: 1745: 1743: 1742: 1737: 1734: 1726: 1673: 1671: 1670: 1665: 1659: 1654: 1650: 1642: 1635: 1633: 1628: 1627: 1619: 1517:in the crystal. 1343:and problems of 1270:microfabrication 1230:minimum possible 1125:wave propagation 1109: 1107: 1106: 1101: 1099: 1091: 1086: 1085: 1043:super resolution 943:relative density 888:Basic principles 759: 752: 745: 591: 556:Gay-Lussac's law 546:Combined gas law 496:Capillary action 381: 224: 208: 206: 205: 200: 198: 196: 188: 180: 146: 119:crystal lattices 95:phononic crystal 78: 71: 67: 64: 58: 38: 37: 30: 21: 4255: 4254: 4250: 4249: 4248: 4246: 4245: 4244: 4225: 4224: 4206: 4152: 4097: 4090: 4043: 4038: 4001: 3998: 3996:Further reading 3993: 3941: 3940: 3936: 3868: 3867: 3860: 3800: 3799: 3795: 3783: 3779: 3768: 3764: 3755: 3753: 3740: 3739: 3735: 3726: 3724: 3720: 3708: 3707: 3703: 3694: 3692: 3688: 3675: 3674: 3670: 3617:Phys. Rev. Lett 3614: 3613: 3609: 3571: 3570: 3566: 3510: 3509: 3505: 3496: 3494: 3486: 3481: 3480: 3476: 3467: 3465: 3455: 3454: 3447: 3394:Phys. Rev. Lett 3391: 3390: 3383: 3348:Phys. Rev. Lett 3345: 3344: 3337: 3330: 3315: 3314: 3310: 3303: 3288: 3287: 3280: 3242: 3241: 3237: 3189: 3188: 3181: 3174: 3161: 3160: 3149: 3140: 3138: 3120: 3119: 3108: 3070: 3069: 3065: 3056: 3054: 3039: 3038: 3031: 3015: 3011: 2982:Materials Today 2975: 2974: 2970: 2912: 2911: 2907: 2898: 2896: 2892: 2861: 2856: 2855: 2840: 2833: 2818: 2817: 2810: 2803: 2788: 2787: 2783: 2776: 2761: 2760: 2749: 2715: 2710: 2709: 2700: 2691: 2689: 2680: 2679: 2672: 2663: 2661: 2646:Smith, David R. 2644: 2643: 2639: 2630: 2628: 2620: 2619: 2615: 2559: 2558: 2547: 2507: 2502: 2501: 2474: 2430: 2429: 2422: 2384: 2383: 2368: 2336:10.1.1.119.1617 2321:(5514): 77–79. 2312: 2311: 2307: 2295: 2293:"Metamaterials" 2290: 2289: 2285: 2278: 2263: 2262: 2255: 2214: 2213: 2209: 2174: 2173: 2169: 2157: 2153: 2149: 2144: 2105: 2086: 2017: 2005: 1993: 1964: 1958: 1945: 1913: 1865: 1860: 1858:Poisson's ratio 1839: 1816:(fcc) lattice; 1792: 1785: 1751: 1750: 1719: 1718: 1716:Poynting vector 1691:represented by 1634: 1612: 1611: 1563:inhomogeneities 1531: 1428:Bloch's theorem 1408: 1320: 1286: 1246: 1184: 1172:gamma radiation 1168: 1077: 1072: 1071: 1031:frequency bands 1027: 1022: 966: 899: 890: 858: 851: 834:Victor Veselago 826: 820: 810:Eusebio Sempere 763: 734: 733: 732: 652: 644: 643: 597:Viscoelasticity 588: 578: 577: 565: 515: 511:Surface tension 475: 378: 376:Fluid mechanics 368: 367: 366: 280: 278:Solid mechanics 270: 269: 221: 213: 189: 181: 162: 161: 79: 68: 62: 59: 51:help improve it 48: 39: 35: 28: 23: 22: 15: 12: 11: 5: 4253: 4251: 4243: 4242: 4237: 4227: 4226: 4223: 4222: 4217: 4212: 4205: 4204:External links 4202: 4201: 4200: 4185: 4165:(11): 115032. 4150: 4095: 4036: 4016:(11): 115019. 3997: 3994: 3992: 3991: 3934: 3858: 3793: 3777: 3762: 3733: 3701: 3682:Defense Update 3668: 3607: 3564: 3519:(18): 184301. 3503: 3474: 3445: 3400:(19): 194301. 3381: 3335: 3328: 3308: 3301: 3278: 3235: 3179: 3172: 3147: 3106: 3063: 3029: 3009: 2968: 2905: 2872:(12): 125116. 2838: 2831: 2808: 2801: 2781: 2774: 2747: 2698: 2670: 2648:(2006-06-10). 2637: 2613: 2568:(19): 194301. 2545: 2472: 2443:(18): 4184–7. 2420: 2366: 2305: 2283: 2276: 2253: 2226:(1): 146–152. 2207: 2167: 2150: 2148: 2145: 2143: 2142: 2137: 2132: 2130:David R. Smith 2127: 2122: 2120:Pierre Deymier 2117: 2111: 2104: 2103: 2098: 2092: 2085: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 2018: 2016: 2013: 2009:Controlled-NOT 2004: 2001: 1992: 1989: 1960:Main article: 1957: 1954: 1944: 1943:Acoustic diode 1941: 1912: 1909: 1908: 1907: 1904: 1901: 1898: 1895: 1892: 1864: 1861: 1838: 1835: 1790: 1783: 1764: 1761: 1732: 1729: 1685: 1684: 1683: 1682: 1681: 1680: 1679: 1678: 1677: 1676: 1675: 1674: 1662: 1657: 1653: 1649: 1645: 1641: 1631: 1625: 1622: 1537:In-phase waves 1530: 1527: 1523:speed of sound 1515:acoustic waves 1510:phase velocity 1432:Brillouin zone 1407: 1404: 1355:values of the 1352:elastic moduli 1319: 1316: 1285: 1284:Sonic crystals 1282: 1278:optomechanical 1245: 1242: 1207:magnetic force 1183: 1180: 1167: 1164: 1111: 1110: 1097: 1094: 1089: 1084: 1080: 1026: 1023: 993:acoustic waves 986:speed of sound 982:speed of light 965: 962: 939:linear density 898: 895: 889: 886: 856: 849: 822:Main article: 819: 816: 765: 764: 762: 761: 754: 747: 739: 736: 735: 731: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 654: 653: 650: 649: 646: 645: 640: 639: 638: 637: 632: 627: 619: 618: 612: 611: 610: 609: 604: 599: 589: 584: 583: 580: 579: 574: 573: 567: 566: 564: 563: 558: 553: 548: 543: 538: 533: 527: 524: 523: 517: 516: 514: 513: 508: 503: 501:Chromatography 498: 493: 487: 484: 483: 477: 476: 474: 473: 454: 453: 452: 433: 421: 416: 404: 391: 388: 387: 379: 374: 373: 370: 369: 365: 364: 359: 354: 353: 352: 342: 337: 332: 331: 330: 325: 315: 310: 305: 300: 299: 298: 288: 282: 281: 276: 275: 272: 271: 266: 265: 264: 263: 255: 254: 250: 249: 248: 247: 242: 237: 229: 228: 222: 219: 218: 215: 214: 209: 195: 192: 187: 184: 178: 175: 172: 169: 158: 157: 151: 150: 81: 80: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4252: 4241: 4240:Metamaterials 4238: 4236: 4233: 4232: 4230: 4221: 4218: 4216: 4213: 4211: 4208: 4207: 4203: 4198: 4194: 4190: 4186: 4181: 4176: 4172: 4168: 4164: 4160: 4156: 4151: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4119: 4114: 4109: 4106:(2): 024301. 4105: 4101: 4096: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4053: 4049: 4042: 4037: 4032: 4027: 4023: 4019: 4015: 4011: 4010: 4005: 4000: 3999: 3995: 3987: 3983: 3979: 3975: 3970: 3965: 3961: 3957: 3953: 3949: 3945: 3938: 3935: 3930: 3926: 3922: 3918: 3913: 3908: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3876: 3872: 3865: 3863: 3859: 3854: 3850: 3845: 3840: 3836: 3832: 3828: 3824: 3820: 3816: 3812: 3808: 3804: 3797: 3794: 3791:, March 2010. 3790: 3787: 3781: 3778: 3774: 3771: 3766: 3763: 3751: 3747: 3743: 3737: 3734: 3719: 3715: 3711: 3705: 3702: 3687: 3683: 3679: 3672: 3669: 3664: 3660: 3656: 3652: 3648: 3644: 3640: 3636: 3631: 3626: 3623:(2): 024301. 3622: 3618: 3611: 3608: 3603: 3599: 3595: 3591: 3587: 3583: 3580:(9): 093904. 3579: 3575: 3568: 3565: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3532: 3527: 3522: 3518: 3514: 3507: 3504: 3492: 3485: 3478: 3475: 3463: 3459: 3452: 3450: 3446: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3413: 3408: 3403: 3399: 3395: 3388: 3386: 3382: 3377: 3373: 3369: 3365: 3361: 3357: 3354:(9): 093904. 3353: 3349: 3342: 3340: 3336: 3331: 3325: 3321: 3320: 3312: 3309: 3304: 3298: 3294: 3293: 3285: 3283: 3279: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3239: 3236: 3231: 3227: 3223: 3219: 3215: 3211: 3206: 3201: 3197: 3193: 3186: 3184: 3180: 3175: 3169: 3166:. CRC Press. 3165: 3158: 3156: 3154: 3152: 3148: 3137:on 2012-04-03 3136: 3132: 3128: 3124: 3123:"Sound ideas" 3117: 3115: 3113: 3111: 3107: 3102: 3098: 3094: 3090: 3086: 3082: 3078: 3074: 3067: 3064: 3053:on 2010-03-15 3052: 3048: 3044: 3043: 3036: 3034: 3030: 3027: 3023: 3019: 3013: 3010: 3005: 3001: 2996: 2991: 2988:(12): 34–42. 2987: 2983: 2979: 2972: 2969: 2964: 2960: 2956: 2952: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2909: 2906: 2895:on 2016-02-22 2891: 2887: 2883: 2879: 2875: 2871: 2867: 2860: 2853: 2851: 2849: 2847: 2845: 2843: 2839: 2834: 2828: 2824: 2823: 2815: 2813: 2809: 2804: 2798: 2794: 2793: 2785: 2782: 2777: 2771: 2767: 2766: 2758: 2756: 2754: 2752: 2748: 2742: 2737: 2733: 2729: 2725: 2721: 2714: 2707: 2705: 2703: 2699: 2687: 2683: 2677: 2675: 2671: 2659: 2655: 2651: 2647: 2641: 2638: 2627: 2623: 2617: 2614: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2576: 2571: 2567: 2563: 2556: 2554: 2552: 2550: 2546: 2541: 2537: 2533: 2529: 2525: 2521: 2518:(5): 055602. 2517: 2513: 2506: 2499: 2497: 2495: 2493: 2491: 2489: 2487: 2485: 2483: 2481: 2479: 2477: 2473: 2468: 2464: 2459: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2425: 2421: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2381: 2379: 2377: 2375: 2373: 2371: 2367: 2362: 2358: 2354: 2350: 2346: 2342: 2337: 2332: 2328: 2324: 2320: 2316: 2309: 2306: 2301: 2294: 2287: 2284: 2279: 2273: 2269: 2268: 2260: 2258: 2254: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2211: 2208: 2204: 2198: 2194: 2190: 2186: 2182: 2178: 2171: 2168: 2165: 2161: 2160:Physics World 2155: 2152: 2146: 2141: 2138: 2136: 2135:Nader Engheta 2133: 2131: 2128: 2126: 2123: 2121: 2118: 2116: 2113: 2112: 2110: 2109: 2102: 2099: 2097: 2094: 2093: 2091: 2090: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2019: 2014: 2012: 2010: 2002: 2000: 1998: 1990: 1988: 1986: 1980: 1978: 1973: 1969: 1963: 1955: 1953: 1950: 1942: 1940: 1938: 1933: 1930: 1926: 1921: 1918: 1910: 1905: 1902: 1899: 1896: 1893: 1890: 1889: 1888: 1886: 1881: 1879: 1875: 1871: 1862: 1859: 1854: 1850: 1848: 1844: 1836: 1834: 1830: 1826: 1823: 1819: 1815: 1811: 1806: 1804: 1800: 1794: 1789: 1779: 1762: 1759: 1749: 1730: 1727: 1717: 1712: 1710: 1706: 1702: 1698: 1694: 1690: 1660: 1655: 1651: 1643: 1629: 1620: 1610: 1609: 1608: 1607: 1606: 1605: 1604: 1603: 1602: 1601: 1600: 1599: 1598: 1596: 1592: 1587: 1585: 1581: 1576: 1568: 1564: 1560: 1556: 1551: 1543: 1535: 1528: 1526: 1524: 1518: 1516: 1511: 1507: 1503: 1499: 1494: 1492: 1488: 1484: 1480: 1476: 1472: 1471:elastic force 1468: 1464: 1460: 1456: 1451: 1447: 1445: 1441: 1437: 1433: 1429: 1424: 1422: 1417: 1413: 1405: 1403: 1400: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1373:elastic waves 1370: 1365: 1363: 1358: 1353: 1348: 1346: 1342: 1338: 1334: 1324: 1317: 1315: 1312: 1308: 1306: 1302: 1297: 1295: 1291: 1283: 1281: 1279: 1275: 1271: 1267: 1263: 1259: 1256:, as well as 1255: 1251: 1243: 1241: 1239: 1235: 1231: 1226: 1225:Îť is marked. 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1188: 1181: 1179: 1176: 1173: 1165: 1163: 1161: 1157: 1153: 1149: 1145: 1140: 1138: 1134: 1130: 1126: 1122: 1121: 1116: 1095: 1092: 1087: 1082: 1078: 1070: 1069: 1068: 1066: 1062: 1058: 1057: 1052: 1048: 1044: 1040: 1036: 1032: 1024: 1021: 1017: 1016:Acoustic wave 1012: 1010: 1006: 1000: 998: 997:wave equation 994: 989: 987: 983: 979: 970: 963: 961: 959: 956:, instead of 955: 951: 946: 944: 940: 936: 932: 931:neutron stars 927: 923: 918: 916: 912: 903: 896: 894: 887: 885: 882: 880: 876: 872: 868: 867:noise control 864: 860: 855: 848: 842: 839: 835: 831: 830:metamaterials 825: 817: 811: 806: 802: 800: 796: 792: 788: 784: 780: 776: 772: 771:seismic waves 760: 755: 753: 748: 746: 741: 740: 738: 737: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 655: 648: 647: 636: 633: 631: 628: 626: 623: 622: 621: 620: 617: 613: 608: 605: 603: 600: 598: 595: 594: 593: 592: 587: 582: 581: 572: 568: 562: 559: 557: 554: 552: 549: 547: 544: 542: 541:Charles's law 539: 537: 534: 532: 529: 528: 526: 525: 522: 518: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 488: 486: 485: 482: 478: 472: 469: 465: 462: 458: 455: 450: 449:non-Newtonian 447: 443: 439: 438: 437: 434: 432: 429: 425: 422: 420: 417: 415: 412: 408: 405: 403: 400: 396: 393: 392: 390: 389: 386: 382: 377: 372: 371: 363: 360: 358: 355: 351: 348: 347: 346: 343: 341: 338: 336: 335:Compatibility 333: 329: 326: 324: 323:Finite strain 321: 320: 319: 316: 314: 311: 309: 306: 304: 301: 297: 294: 293: 292: 289: 287: 284: 283: 279: 274: 273: 262: 259: 258: 257: 256: 251: 246: 243: 241: 238: 236: 233: 232: 231: 230: 227:Conservations 225: 217: 216: 212: 193: 190: 185: 182: 176: 173: 170: 167: 160: 159: 156: 152: 148: 147: 144: 142: 138: 134: 131: 127: 124: 120: 116: 112: 108: 104: 100: 96: 92: 91:sonic crystal 88: 77: 74: 66: 56: 52: 46: 43:This article 41: 32: 31: 19: 4188: 4162: 4158: 4103: 4099: 4088:the original 4054:(6): 452–6. 4051: 4047: 4013: 4007: 3951: 3947: 3937: 3881:(1): 14066. 3878: 3874: 3813:(1): 24248. 3810: 3806: 3796: 3788: 3780: 3772: 3765: 3754:. Retrieved 3750:the original 3745: 3736: 3725:. Retrieved 3718:the original 3713: 3704: 3693:. Retrieved 3686:the original 3681: 3671: 3620: 3616: 3610: 3577: 3573: 3567: 3516: 3512: 3506: 3495:. Retrieved 3490: 3477: 3466:. Retrieved 3461: 3397: 3393: 3351: 3347: 3318: 3311: 3291: 3248: 3244: 3238: 3195: 3191: 3163: 3139:. Retrieved 3135:the original 3126: 3076: 3072: 3066: 3055:. Retrieved 3051:the original 3041: 3021: 3017: 3012: 2985: 2981: 2971: 2922: 2918: 2908: 2897:. Retrieved 2890:the original 2869: 2866:Phys. Rev. B 2865: 2821: 2791: 2784: 2764: 2723: 2719: 2690:. Retrieved 2685: 2662:. Retrieved 2658:the original 2653: 2640: 2629:. Retrieved 2625: 2616: 2565: 2561: 2515: 2512:Phys. Rev. E 2511: 2440: 2436: 2390: 2386: 2318: 2314: 2308: 2299: 2286: 2266: 2223: 2219: 2210: 2183:(12): 2267. 2180: 2176: 2170: 2159: 2154: 2107: 2106: 2088: 2087: 2032:Metamaterial 2006: 1994: 1981: 1965: 1947:An acoustic 1946: 1934: 1928: 1922: 1916: 1914: 1882: 1877: 1873: 1870:LC resonator 1866: 1851: 1840: 1831: 1827: 1821: 1817: 1809: 1807: 1795: 1787: 1780: 1713: 1708: 1704: 1696: 1692: 1686: 1590: 1588: 1572: 1519: 1495: 1491:calculations 1467:point masses 1455:Isaac Newton 1452: 1448: 1425: 1409: 1401: 1380: 1366: 1349: 1330: 1313: 1309: 1298: 1289: 1287: 1247: 1233: 1229: 1227: 1192: 1177: 1169: 1155: 1147: 1141: 1136: 1132: 1119: 1118: 1114: 1112: 1064: 1060: 1055: 1054: 1051:polarization 1038: 1034: 1028: 1001: 990: 975: 947: 935:area density 922:mass density 919: 910: 908: 891: 883: 861: 853: 846: 843: 827: 768: 616:Smart fluids 561:Graham's law 467: 460: 445: 431:Pascal's law 427: 410: 398: 253:Inequalities 132: 125: 123:bulk modulus 94: 90: 86: 84: 69: 60: 44: 3948:Wave Motion 3464:. p. 1 2125:John Pendry 1968:sound proof 1843:zinc blende 1748:wave vector 1567:diffraction 1254:earthquakes 1228:There is a 1203:ionic bonds 1195:equilibrium 1160:compression 1129:wave vector 1029:In certain 954:shear waves 838:John Pendry 775:earthquakes 635:Ferrofluids 536:Boyle's law 308:Hooke's law 286:Deformation 99:sound waves 4229:Categories 3954:: 102977. 3756:2011-06-01 3727:2011-02-01 3695:2011-01-31 3497:2009-08-28 3468:2009-08-12 3251:(2): 102. 3141:2009-11-05 3079:(4): 489. 3057:2009-08-25 2899:2009-08-27 2692:2009-09-06 2664:2009-08-19 2631:2017-09-25 2147:References 1885:rigid body 1803:dielectric 1595:plane wave 1559:plane wave 1553:Left: the 1459:propagated 1442:, and the 1416:elasticity 1397:dispersion 1393:resonances 1369:polarizers 1223:wavelength 1047:resonances 688:Gay-Lussac 651:Scientists 551:Fick's law 531:Atmosphere 350:frictional 303:Plasticity 291:Elasticity 4235:Acoustics 4113:1009.3310 3986:249855608 3978:0165-2125 3929:251671308 3903:2045-2322 3835:2045-2322 3630:1009.3310 3407:0903.5101 3273:255905589 3230:118354608 3205:0807.2612 3101:123008005 3004:1369-7021 2947:1521-4095 2682:"Density" 2575:0903.5101 2331:CiteSeerX 2072:Superlens 1805:spheres. 1763:→ 1731:← 1652:ω 1624:→ 1555:real part 1498:impedance 1487:materials 1280:systems. 1250:vibration 1219:amplitude 1096:β 1093:ρ 929:g/cm for 779:band gaps 728:Truesdell 658:Bernoulli 607:Rheometer 602:Rheometry 442:Newtonian 436:Viscosity 186:φ 174:− 141:resonator 137:chirality 63:July 2020 4146:13748310 4138:21405230 4084:11216648 4076:16648856 3921:35982078 3853:34931009 3721:(Online) 3689:(Online) 3663:13748310 3655:21405230 3602:17931008 3559:31726163 3551:15525165 3440:38399874 3432:19518957 3376:17931008 2955:22899377 2608:38399874 2600:19518957 2540:15600684 2467:10990641 2415:10976063 2353:11292865 2248:89292757 2015:See also 1575:resonant 1502:periodic 1483:material 1461:through 1421:material 1389:silicone 1377:photonic 1357:stopband 1331:In 2004 1301:silicone 1294:crystals 1238:aliasing 1199:covalent 915:pressure 586:Rheology 491:Adhesion 471:Pressure 457:Buoyancy 402:Dynamics 240:Momentum 4167:Bibcode 4118:Bibcode 4056:Bibcode 4018:Bibcode 3956:Bibcode 3912:9388580 3883:Bibcode 3844:8688442 3815:Bibcode 3635:Bibcode 3582:Bibcode 3531:Bibcode 3412:Bibcode 3356:Bibcode 3253:Bibcode 3210:Bibcode 3081:Bibcode 2963:5219519 2927:Bibcode 2874:Bibcode 2728:Bibcode 2580:Bibcode 2562:Physics 2520:Bibcode 2445:Bibcode 2395:Bibcode 2387:Science 2361:9321456 2323:Bibcode 2315:Science 2228:Bibcode 2185:Bibcode 1481:of the 1479:modulus 1211:gravity 841:waves. 818:History 673:Charles 481:Liquids 395:Statics 340:Bending 130:density 111:liquids 103:phonons 49:Please 4195:  4144:  4136:  4082:  4074:  3984:  3976:  3927:  3919:  3909:  3901:  3851:  3841:  3833:  3661:  3653:  3600:  3557:  3549:  3438:  3430:  3374:  3326:  3299:  3271:  3228:  3170:  3099:  3022:Nature 3018:et al. 3002:  2961:  2953:  2945:  2829:  2799:  2772:  2606:  2598:  2538:  2465:  2413:  2359:  2351:  2333:  2274:  2246:  1929:et al. 1917:et al. 1695:, and 1636:  1438:, the 1290:et al. 723:Stokes 718:Pascal 708:Navier 703:Newton 693:Graham 668:Cauchy 571:Plasma 466:  464:Mixing 459:  444:  426:  409:  397:  385:Fluids 318:Strain 313:Stress 296:linear 245:Energy 135:, and 115:solids 113:, and 4142:S2CID 4108:arXiv 4091:(PDF) 4080:S2CID 4044:(PDF) 3982:S2CID 3925:S2CID 3659:S2CID 3625:arXiv 3555:S2CID 3521:arXiv 3436:S2CID 3402:arXiv 3269:S2CID 3226:S2CID 3200:arXiv 3097:S2CID 2959:S2CID 2893:(PDF) 2862:(PDF) 2716:(PDF) 2604:S2CID 2570:arXiv 2508:(PDF) 2357:S2CID 2296:(PDF) 2244:S2CID 2089:Books 1949:diode 1687:With 1557:of a 1475:force 1305:epoxy 1215:waves 875:sonar 698:Hooke 678:Euler 663:Boyle 521:Gases 107:gases 93:, or 4193:ISBN 4134:PMID 4072:PMID 3974:ISSN 3917:PMID 3899:ISSN 3849:PMID 3831:ISSN 3651:PMID 3598:PMID 3547:PMID 3428:PMID 3372:PMID 3324:ISBN 3297:ISBN 3168:ISBN 3000:ISSN 2951:PMID 2943:ISSN 2827:ISBN 2797:ISBN 2770:ISBN 2596:PMID 2536:PMID 2463:PMID 2411:PMID 2349:PMID 2272:ISBN 1786:and 1385:lead 1018:and 926:mass 920:The 781:for 773:and 713:Noll 683:Fick 235:Mass 220:Laws 4175:doi 4126:doi 4104:106 4064:doi 4026:doi 3964:doi 3952:113 3907:PMC 3891:doi 3839:PMC 3823:doi 3643:doi 3621:106 3590:doi 3539:doi 3420:doi 3398:102 3364:doi 3261:doi 3249:129 3218:doi 3196:465 3089:doi 2990:doi 2935:doi 2882:doi 2736:doi 2588:doi 2566:102 2528:doi 2453:doi 2403:doi 2391:289 2341:doi 2319:292 2236:doi 2193:doi 1847:fcc 1791:eff 1784:eff 1463:air 1364:). 1201:or 1059:= | 1011:. 857:eff 850:eff 785:or 105:in 101:or 85:An 53:to 4231:: 4173:. 4163:10 4161:. 4157:. 4140:. 4132:. 4124:. 4116:. 4102:. 4078:. 4070:. 4062:. 4050:. 4046:. 4024:. 4014:10 4012:. 4006:. 3980:. 3972:. 3962:. 3950:. 3946:. 3923:. 3915:. 3905:. 3897:. 3889:. 3879:12 3877:. 3873:. 3861:^ 3847:. 3837:. 3829:. 3821:. 3811:11 3809:. 3805:. 3744:. 3712:. 3680:. 3657:. 3649:. 3641:. 3633:. 3619:. 3596:. 3588:. 3578:99 3576:. 3553:. 3545:. 3537:. 3529:. 3517:93 3515:. 3489:. 3460:. 3448:^ 3434:. 3426:. 3418:. 3410:. 3396:. 3384:^ 3370:. 3362:. 3352:99 3350:. 3338:^ 3281:^ 3267:. 3259:. 3247:. 3224:. 3216:. 3208:. 3194:. 3182:^ 3150:^ 3129:. 3125:. 3109:^ 3095:. 3087:. 3077:78 3075:. 3045:. 3032:^ 2998:. 2986:12 2984:. 2980:. 2957:. 2949:. 2941:. 2933:. 2923:24 2921:. 2917:. 2880:. 2870:70 2868:. 2864:. 2841:^ 2811:^ 2750:^ 2734:. 2722:. 2718:. 2701:^ 2684:. 2673:^ 2652:. 2624:. 2602:. 2594:. 2586:. 2578:. 2564:. 2548:^ 2534:. 2526:. 2516:70 2514:. 2510:. 2475:^ 2461:. 2451:. 2441:84 2439:. 2435:. 2423:^ 2409:. 2401:. 2389:. 2369:^ 2355:. 2347:. 2339:. 2329:. 2317:. 2298:. 2256:^ 2242:. 2234:. 2224:63 2222:. 2191:. 2181:45 2179:. 1586:. 1446:. 1423:. 1240:. 1037:. 999:. 988:. 960:. 877:, 873:, 869:, 801:. 143:. 128:, 109:, 89:, 4199:. 4183:. 4177:: 4169:: 4148:. 4128:: 4120:: 4110:: 4066:: 4058:: 4052:5 4034:. 4028:: 4020:: 3988:. 3966:: 3958:: 3931:. 3893:: 3885:: 3855:. 3825:: 3817:: 3759:. 3730:. 3698:. 3665:. 3645:: 3637:: 3627:: 3604:. 3592:: 3584:: 3561:. 3541:: 3533:: 3523:: 3500:. 3471:. 3442:. 3422:: 3414:: 3404:: 3378:. 3366:: 3358:: 3332:. 3305:. 3275:. 3263:: 3255:: 3232:. 3220:: 3212:: 3202:: 3176:. 3144:. 3103:. 3091:: 3083:: 3060:. 3006:. 2992:: 2965:. 2937:: 2929:: 2902:. 2884:: 2876:: 2835:. 2805:. 2778:. 2744:. 2738:: 2730:: 2724:9 2695:. 2667:. 2634:. 2610:. 2590:: 2582:: 2572:: 2542:. 2530:: 2522:: 2469:. 2455:: 2447:: 2417:. 2405:: 2397:: 2363:. 2343:: 2325:: 2280:. 2250:. 2238:: 2230:: 2205:. 2199:. 2195:: 2187:: 1878:ρ 1874:ρ 1822:c 1818:ω 1810:a 1788:ρ 1760:k 1728:s 1709:ρ 1705:ρ 1697:c 1693:ω 1661:. 1656:c 1648:| 1644:n 1640:| 1630:= 1621:k 1591:ρ 1381:ρ 1234:a 1156:ρ 1148:ρ 1137:ρ 1133:u 1127:( 1120:k 1115:ρ 1088:= 1083:2 1079:n 1065:ω 1063:| 1061:n 1056:k 911:β 854:ρ 847:β 758:e 751:t 744:v 468:¡ 461:¡ 451:) 446:¡ 440:( 428:¡ 411:¡ 399:¡ 194:x 191:d 183:d 177:D 171:= 168:J 133:ρ 126:β 117:( 76:) 70:( 65:) 61:( 47:. 20:)

Index

Acoustic metamaterials
help improve it
make it understandable to non-experts
Learn how and when to remove this message
sound waves
phonons
gases
liquids
solids
crystal lattices
bulk modulus
density
chirality
resonator
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑