Knowledge (XXG)

Affine plane (incidence geometry)

Source 📝

115: 972:
Not much can be said about these codes at this level of generality, but if the incidence structure has some "regularity" the codes produced this way can be analyzed and information about the codes and the incidence structures can be gleaned from each other. When the incidence structure is a finite
326:
on the lines of the plane. Each of the three non-Desarguesian planes of order nine have collineation groups having two orbits on the lines, producing two non-isomorphic affine planes of order nine, depending on which orbit the line to be removed is selected from.
314:, the removal of different lines could result in non-isomorphic affine planes. For instance, there are exactly four projective planes of order nine, and seven affine planes of order nine. There is only one affine plane corresponding to the 1141:
can be defined in an analogous manner to the construction of affine planes from projective planes. It is also possible to provide a system of axioms for the higher-dimensional affine spaces which does not refer to the corresponding
379:. While in general it is often easier to work with projective planes, in this context the affine planes are preferred and several authors simply use the term translation plane to mean affine translation plane. 952: 191:
All known finite affine planes have orders that are prime or prime power integers. The smallest affine plane (of order 2) is obtained by removing a line and the three points on that line from the
215:
exists (however, the definition of order in these two cases is not the same). Thus, there is no affine plane of order 6 or order 10 since there are no projective planes of those orders. The
1189: 75:
Since no concepts other than those involving the relationship between points and lines are involved in the axioms, an affine plane is an object of study belonging to
981:
of the field does not divide the order of the plane, the code generated is the full space and does not carry any information. On the other hand,
1350: 216: 299:
by removing a line and all the points on it, and conversely any affine plane can be used to construct a projective plane by adding a
1539: 1521: 1499: 1481: 1454: 1407: 195:. A similar construction, starting from the projective plane of order 3, produces the affine plane of order 3 sometimes called the 278: 41:
Given any line and any point not on that line there is a unique line which contains the point and does not meet the given line. (
903: 1389: 799:
Given a translation net, it is not always possible to add parallel classes to the net to form an affine plane. However, if
1359: 1198: 1557: 1562: 355: 323: 977:. How much information the code carries about the affine plane depends in part on the choice of field. If the 80: 1368:, QMW Maths Notes, vol. 13, London: Queen Mary and Westfield College School of Mathematical Sciences, 1099:
and the minimum weight vectors are precisely the scalar multiples of the (incidence vectors of) lines of
1047:
and all the minimum weight vectors are constant multiples of vectors whose entries are either zero or one.
978: 558: 311: 99: 219:
provides further limitations on the order of a projective plane, and thus, the order of an affine plane.
255:
of lines. The lines in any parallel class form a partition the points of the affine plane. Each of the
64:
Given a point and a line, there is a unique line which contains the point and is parallel to the line.
69: 842: 832: 505: 400: 358: 196: 42: 1220: 819:
members can be extended and the translation net can be completed to an affine translation plane.
315: 76: 1535: 1517: 1495: 1477: 1450: 1403: 1385: 1346: 1212: 793: 304: 126:
If the number of points in an affine plane is finite, then if one line of the plane contains
1202: 1143: 1127: 828: 300: 296: 290: 206: 1426: 1373: 1369: 87: 626:
Parallelism (as defined in affine planes) is an equivalence relation on the set of lines.
1510: 48:
There exist four points such that no three are collinear (points not on a single line).
887:. Another related code that contains information about the incidence structure is the 1551: 251:
lines apiece under the equivalence relation of parallelism. These classes are called
103: 95: 57: 1138: 396: 319: 114: 91: 20: 90:
is an affine plane. There are many finite and infinite affine planes. As well as
864: 102:, not derived from coordinates in a division ring, satisfying these axioms. The 382:
An alternate view of affine translation planes can be obtained as follows: Let
192: 1216: 375:
and the affine plane obtained by removing the translation line is called an
262:
lines that pass through a single point lies in a different parallel class.
27: 1363: 1187:
Moulton, Forest Ray (1902), "A Simple Non-Desarguesian Plane Geometry",
514:
and whose lines are the cosets of components, that is, sets of the form
1224: 580:
is an automorphism group acting regularly on the points of this plane.
1207: 595:
An incidence structure more general than a finite affine plane is a
60:. Using this definition, Playfair's axiom above can be replaced by: 34:
is a system of points and lines that satisfy the following axioms:
796:, any subset of the parallel classes will form a translation net. 113: 641:
lines (so each parallel class of lines partitions the point set).
281:. Only the incidence relations are needed for this construction. 973:
affine plane, the codes belong to a class of codes known as
947:{\displaystyle \operatorname {Hull} (C)=C\cap C^{\perp },} 371:. A projective plane with a translation line is called a 265:
The parallel class structure of an affine plane of order
361:
on the points of the affine plane obtained by removing
650:
parallel classes of lines. Each point lies on exactly
906: 1490:
Lindner, Charles C.; Rodger, Christopher A. (1997),
307:
where an equivalence class of parallel lines meets.
19:
For the algebraic definition of the same space, see
741:, any two of which intersect only in {0} (called a 1509: 946: 1190:Transactions of the American Mathematical Society 38:Any two distinct points lie on a unique line. 8: 1534:, San Francisco: W.H. Freeman and Company, 1248: 1162: 735:-dimensional subspaces of the vector space 705:mutually orthogonal Latin squares of order 1174: 1308: 1296: 1284: 1272: 1260: 1236: 1206: 935: 905: 805:is an infinite field, any partial spread 295:An affine plane can be obtained from any 52:In an affine plane, two lines are called 1324: 1155: 436:that partition the non-zero vectors of 16:Axiomatically defined geometrical space 1021:, then the minimum weight of the code 674:is precisely an affine plane of order 635:points, and every parallel class has 7: 1447:Projective Geometry: An Introduction 1341:Assmus, E.F. Jr.; Key, J.D. (1992), 1320: 1120:the geometric code generated is the 656:lines, one from each parallel class. 557:is an affine plane and the group of 1449:, Oxford: Oxford University Press, 1420:, Berlin: Deutscher Verlag d. Wiss. 349:if the group of elations with axis 1418:Grundlagen der Elementarmathematik 271:may be used to construct a set of 232:lines of an affine plane of order 14: 1474:Introduction to Finite Geometries 279:mutually orthogonal latin squares 72:on the lines of an affine plane. 1530:Stevenson, Frederick W. (1972), 508:whose points are the vectors of 303:, each of whose points is that 285:Relation with projective planes 106:is an example of one of these. 1398:Hughes, D.; Piper, F. (1973), 1345:, Cambridge University Press, 919: 913: 322:of that projective plane acts 1: 1199:American Mathematical Society 1073:is a field of characteristic 1003:is a field of characteristic 542:is a component of the spread 474:are distinct components then 83:satisfying Playfair's axiom. 1476:, Amsterdam: North-Holland, 1323:, p. 138, but see also 1061:is an affine plane of order 991:is an affine plane of order 1516:, Berlin: Springer Verlag, 1382:Geometry: Euclid and Beyond 1365:Projective and Polar Spaces 698:is equivalent to a set of 310:If the projective plane is 199:. An affine plane of order 145:each point is contained in 1579: 963:is the orthogonal code to 792:. Starting with an affine 430:-dimensional subspaces of 288: 217:Bruck–Ryser–Chowla theorem 79:. They are non-degenerate 18: 1467:, Berlin: Springer Verlag 1463:Dembowski, Peter (1968), 715:Example: translation nets 331:Affine translation planes 1508:Lüneburg, Heinz (1980), 1425:Moorhouse, Eric (2007), 377:affine translation plane 318:of order nine since the 205:exists if and only if a 119:Affine plane of order 3 1380:Hartshorne, R. (2000), 1343:Designs and their Codes 1249:Hughes & Piper 1973 1197:(2), Providence, R.I.: 1163:Hughes & Piper 1973 827:Given the "line/point" 719:For an arbitrary field 629:Every line has exactly 245:equivalence classes of 100:non-Desarguesian planes 98:), there are also many 948: 867:that we can denote by 755:, form the lines of a 749:, and their cosets in 341:in a projective plane 123: 1472:Kárteszi, F. (1976), 1309:Assmus & Key 1992 1297:Assmus & Key 1992 1285:Assmus & Key 1992 949: 897:which is defined as: 452:of the spread and if 188:of the affine plane. 117: 56:if they are equal or 904: 164:there is a total of 110:Finite affine planes 70:equivalence relation 1445:Casse, Rey (2006), 1402:, Springer-Verlag, 833:incidence structure 610:. This consists of 506:incidence structure 197:Hesse configuration 136:each line contains 1558:Incidence geometry 1512:Translation Planes 1428:Incidence Geometry 944: 745:). The members of 320:collineation group 316:Desarguesian plane 161:points in all, and 124: 121:9 points, 12 lines 77:incidence geometry 68:Parallelism is an 1563:Planes (geometry) 1532:Projective Planes 1465:Finite Geometries 1416:Lenz, H. (1961), 1400:Projective Planes 1360:Cameron, Peter J. 1352:978-0-521-41361-9 851:the row space of 794:translation plane 759:on the points of 622:lines such that: 442:. The members of 373:translation plane 305:point at infinity 94:over fields (and 1570: 1544: 1526: 1515: 1504: 1486: 1468: 1459: 1434: 1433: 1421: 1412: 1394: 1376: 1355: 1328: 1318: 1312: 1306: 1300: 1294: 1288: 1282: 1276: 1275:, pp. 21–22 1270: 1264: 1258: 1252: 1246: 1240: 1234: 1228: 1227: 1210: 1184: 1178: 1172: 1166: 1160: 1144:projective space 1128:Reed-Muller Code 1125: 1119: 1104: 1098: 1078: 1072: 1066: 1060: 1046: 1040: 1020: 1014: 1008: 1002: 996: 990: 968: 962: 953: 951: 950: 945: 940: 939: 896: 886: 862: 856: 850: 840: 829:incidence matrix 818: 816: 809:with fewer than 808: 804: 791: 789: 781: 775: 770: 764: 754: 748: 740: 734: 728: 724: 710: 704: 697: 688: 679: 673: 667: 655: 649: 640: 634: 621: 615: 609: 600: 590: 585:Generalization: 579: 573: 556: 547: 541: 535: 529: 523: 513: 503: 497: 473: 462: 447: 441: 435: 429: 423: 417: 407: 394: 387: 370: 366: 354: 347:translation line 344: 340: 312:non-Desarguesian 301:line at infinity 297:projective plane 291:Projective plane 277: 270: 261: 253:parallel classes 250: 244: 237: 231: 214: 207:projective plane 204: 183: 173: 160: 151: 141: 131: 43:Playfair's axiom 1578: 1577: 1573: 1572: 1571: 1569: 1568: 1567: 1548: 1547: 1542: 1529: 1524: 1507: 1502: 1489: 1484: 1471: 1462: 1457: 1444: 1441: 1439:Further reading 1431: 1424: 1415: 1410: 1397: 1392: 1379: 1358: 1353: 1340: 1337: 1332: 1331: 1319: 1315: 1307: 1303: 1295: 1291: 1283: 1279: 1271: 1267: 1259: 1255: 1247: 1243: 1235: 1231: 1208:10.2307/1986419 1186: 1185: 1181: 1175:Hartshorne 2000 1173: 1169: 1161: 1157: 1152: 1136: 1121: 1110: 1100: 1092: 1080: 1074: 1068: 1062: 1056: 1042: 1034: 1022: 1016: 1010: 1004: 998: 992: 986: 975:geometric codes 964: 958: 931: 902: 901: 892: 880: 868: 858: 852: 846: 836: 825: 823:Geometric codes 812: 810: 806: 800: 785: 783: 777: 768: 766: 760: 757:translation net 750: 746: 736: 730: 726: 720: 717: 706: 699: 693: 684: 675: 669: 661: 651: 645: 636: 630: 617: 611: 605: 596: 593: 586: 575: 561: 552: 543: 537: 531: 530:is a vector of 525: 515: 509: 499: 492: 483: 475: 472: 464: 461: 453: 448:are called the 443: 437: 431: 425: 419: 413: 403: 389: 383: 368: 367:from the plane 362: 350: 342: 336: 333: 293: 287: 272: 266: 256: 246: 239: 233: 223: 210: 200: 179: 165: 156: 146: 137: 127: 122: 120: 112: 88:Euclidean plane 24: 17: 12: 11: 5: 1576: 1574: 1566: 1565: 1560: 1550: 1549: 1546: 1545: 1540: 1527: 1522: 1505: 1500: 1487: 1482: 1469: 1460: 1455: 1440: 1437: 1436: 1435: 1422: 1413: 1408: 1395: 1390: 1377: 1356: 1351: 1336: 1333: 1330: 1329: 1313: 1301: 1289: 1277: 1273:Moorhouse 2007 1265: 1261:Moorhouse 2007 1253: 1241: 1237:Moorhouse 2007 1229: 1179: 1167: 1154: 1153: 1151: 1148: 1135: 1132: 1107: 1106: 1088: 1051:Furthermore, 1049: 1048: 1030: 979:characteristic 955: 954: 943: 938: 934: 930: 927: 924: 921: 918: 915: 912: 909: 876: 831:of any finite 824: 821: 782:-net of order 743:partial spread 716: 713: 668:-net of order 658: 657: 642: 627: 592: 583: 582: 581: 488: 479: 468: 457: 332: 329: 289:Main article: 286: 283: 184:is called the 176: 175: 162: 153: 143: 118: 111: 108: 96:division rings 66: 65: 50: 49: 46: 39: 15: 13: 10: 9: 6: 4: 3: 2: 1575: 1564: 1561: 1559: 1556: 1555: 1553: 1543: 1541:0-7167-0443-9 1537: 1533: 1528: 1525: 1523:0-387-09614-0 1519: 1514: 1513: 1506: 1503: 1501:0-8493-3986-3 1497: 1494:, CRC Press, 1493: 1492:Design Theory 1488: 1485: 1483:0-7204-2832-7 1479: 1475: 1470: 1466: 1461: 1458: 1456:0-19-929886-6 1452: 1448: 1443: 1442: 1438: 1430: 1429: 1423: 1419: 1414: 1411: 1409:0-387-90044-6 1405: 1401: 1396: 1393: 1387: 1383: 1378: 1375: 1371: 1367: 1366: 1361: 1357: 1354: 1348: 1344: 1339: 1338: 1334: 1326: 1322: 1317: 1314: 1311:, p. 211 1310: 1305: 1302: 1299:, p. 208 1298: 1293: 1290: 1286: 1281: 1278: 1274: 1269: 1266: 1262: 1257: 1254: 1251:, p. 100 1250: 1245: 1242: 1238: 1233: 1230: 1226: 1222: 1218: 1214: 1209: 1204: 1200: 1196: 1192: 1191: 1183: 1180: 1176: 1171: 1168: 1164: 1159: 1156: 1149: 1147: 1145: 1140: 1139:Affine spaces 1134:Affine spaces 1133: 1131: 1129: 1124: 1117: 1113: 1103: 1096: 1091: 1087: 1083: 1077: 1071: 1065: 1059: 1054: 1053: 1052: 1045: 1038: 1033: 1029: 1025: 1019: 1013: 1007: 1001: 995: 989: 984: 983: 982: 980: 976: 970: 967: 961: 941: 936: 932: 928: 925: 922: 916: 910: 907: 900: 899: 898: 895: 890: 884: 879: 875: 871: 866: 861: 855: 849: 844: 839: 834: 830: 822: 820: 815: 803: 797: 795: 788: 780: 774: 763: 758: 753: 744: 739: 733: 723: 714: 712: 709: 702: 696: 692: 687: 681: 678: 672: 665: 654: 648: 643: 639: 633: 628: 625: 624: 623: 620: 614: 608: 604: 599: 589: 584: 578: 574:for a vector 572: 568: 564: 560: 555: 551: 550: 549: 546: 540: 534: 528: 522: 518: 512: 507: 502: 496: 491: 487: 482: 478: 471: 467: 460: 456: 451: 446: 440: 434: 428: 422: 416: 411: 406: 402: 398: 395:-dimensional 393: 386: 380: 378: 374: 365: 360: 357: 353: 348: 339: 330: 328: 325: 321: 317: 313: 308: 306: 302: 298: 292: 284: 282: 280: 275: 269: 263: 259: 254: 249: 242: 236: 230: 226: 220: 218: 213: 208: 203: 198: 194: 189: 187: 182: 172: 168: 163: 159: 154: 149: 144: 140: 135: 134: 133: 132:points then: 130: 116: 109: 107: 105: 104:Moulton plane 101: 97: 93: 92:affine planes 89: 86:The familiar 84: 82: 81:linear spaces 78: 73: 71: 63: 62: 61: 59: 55: 47: 44: 40: 37: 36: 35: 33: 29: 22: 1531: 1511: 1491: 1473: 1464: 1446: 1427: 1417: 1399: 1384:, Springer, 1381: 1364: 1342: 1325:Cameron 1991 1316: 1304: 1292: 1287:, p. 43 1280: 1268: 1263:, p. 13 1256: 1244: 1239:, p. 11 1232: 1194: 1188: 1182: 1177:, p. 71 1170: 1165:, p. 82 1158: 1137: 1122: 1115: 1111: 1108: 1101: 1094: 1089: 1085: 1081: 1075: 1069: 1063: 1057: 1050: 1043: 1036: 1031: 1027: 1023: 1017: 1011: 1005: 999: 993: 987: 974: 971: 965: 959: 956: 893: 888: 882: 877: 873: 869: 859: 853: 847: 837: 826: 813: 801: 798: 786: 778: 772: 761: 756: 751: 742: 737: 731: 729:be a set of 721: 718: 707: 700: 694: 691:net of order 690: 685: 682: 676: 670: 663: 659: 652: 646: 637: 631: 618: 612: 606: 603:net of order 602: 597: 594: 587: 576: 570: 566: 562: 559:translations 553: 544: 538: 532: 526: 520: 516: 510: 500: 494: 489: 485: 480: 476: 469: 465: 458: 454: 449: 444: 438: 432: 426: 420: 414: 409: 404: 397:vector space 391: 384: 381: 376: 372: 363: 359:transitively 351: 346: 337: 334: 324:transitively 309: 294: 273: 267: 264: 257: 252: 247: 240: 234: 228: 224: 221: 211: 201: 190: 185: 180: 177: 170: 166: 157: 147: 138: 128: 125: 85: 74: 67: 53: 51: 32:affine plane 31: 25: 21:Affine space 1327:, chapter 3 1201:: 192–195, 865:linear code 616:points and 178:The number 1552:Categories 1391:0387986502 1335:References 841:, and any 776:this is a 644:There are 450:components 238:fall into 193:Fano plane 155:there are 1321:Lenz 1961 1217:0002-9947 937:⊥ 929:∩ 911:⁡ 771:| = 418:is a set 209:of order 1362:(1991), 1114:= AG(2, 1015:divides 1009:, where 548:. Then: 58:disjoint 54:parallel 28:geometry 1374:1153019 1225:1986419 1084:= Hull( 1079:, then 1026:= Hull( 504:be the 399:over a 335:A line 142:points, 1538:  1520:  1498:  1480:  1453:  1406:  1388:  1372:  1349:  1223:  1215:  957:where 817:| 811:| 790:| 784:| 767:| 725:, let 524:where 498:. Let 410:spread 174:lines. 152:lines, 1432:(PDF) 1221:JSTOR 1150:Notes 1126:-ary 1109:When 863:is a 857:over 843:field 765:. If 591:-nets 401:field 388:be a 345:is a 186:order 30:, an 1536:ISBN 1518:ISBN 1496:ISBN 1478:ISBN 1451:ISBN 1404:ISBN 1386:ISBN 1347:ISBN 1213:ISSN 1067:and 997:and 908:Hull 889:Hull 666:+ 1) 536:and 463:and 408:. A 356:acts 222:The 1203:doi 1055:If 1041:is 985:If 891:of 703:− 2 660:An 424:of 412:of 276:− 1 260:+ 1 243:+ 1 150:+ 1 26:In 1554:: 1370:MR 1219:, 1211:, 1193:, 1146:. 1130:. 1097:)) 1039:)) 969:. 872:= 845:, 835:, 711:. 683:A 680:. 619:nk 569:+ 565:→ 519:+ 493:= 484:⊕ 227:+ 169:+ 1205:: 1195:3 1123:q 1118:) 1116:q 1112:π 1105:. 1102:π 1095:π 1093:( 1090:F 1086:C 1082:C 1076:p 1070:F 1064:p 1058:π 1044:n 1037:π 1035:( 1032:F 1028:C 1024:B 1018:n 1012:p 1006:p 1000:F 994:n 988:π 966:C 960:C 942:, 933:C 926:C 923:= 920:) 917:C 914:( 894:C 885:) 883:M 881:( 878:F 874:C 870:C 860:F 854:M 848:F 838:M 814:F 807:Σ 802:F 787:F 779:k 773:k 769:Σ 762:F 752:F 747:Σ 738:F 732:n 727:Σ 722:F 708:n 701:k 695:n 689:- 686:k 677:n 671:n 664:n 662:( 653:k 647:k 638:n 632:n 613:n 607:n 601:- 598:k 588:k 577:w 571:w 567:x 563:x 554:A 545:S 539:U 533:V 527:v 521:U 517:v 511:V 501:A 495:V 490:j 486:V 481:i 477:V 470:j 466:V 459:i 455:V 445:S 439:V 433:V 427:n 421:S 415:V 405:F 392:n 390:2 385:V 369:Π 364:l 352:l 343:Π 338:l 274:n 268:n 258:n 248:n 241:n 235:n 229:n 225:n 212:n 202:n 181:n 171:n 167:n 158:n 148:n 139:n 129:n 45:) 23:.

Index

Affine space
geometry
Playfair's axiom
disjoint
equivalence relation
incidence geometry
linear spaces
Euclidean plane
affine planes
division rings
non-Desarguesian planes
Moulton plane

Fano plane
Hesse configuration
projective plane
Bruck–Ryser–Chowla theorem
mutually orthogonal latin squares
Projective plane
projective plane
line at infinity
point at infinity
non-Desarguesian
Desarguesian plane
collineation group
transitively
acts
transitively
vector space
field

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.