Knowledge (XXG)

Algae DNA barcoding

Source đź“ť

567:
next-generation sequencing approach to river biomonitoring revealed a good potential in it. Many studies have shown that metabarcoding and HTS (high-throughput sequencing) can be utilized to estimate the quality status and diversity in freshwaters. As part of the Environment Agency, Kelly et al. has developed a DNA-based metabarcoding approach to assess diatom communities in rivers for the UK. Vasselon et al. compared morphological and HTS approaches for diatoms and found that HTS gave a reliable indication of quality status for most rivers in terms of Specific Polluosensitivity Index (SPI).  Vasselon et al. also applied DNA metabarcoding of diatoms communities to the monitoring network of rivers on the tropical Island Mayotte (French DOM-TOM).
458:
studies. One of the major limitation is the availability of reference barcodes for diatoms species. The reference database of bioindicator taxa is far from complete despite the constant efforts of numerous national barcoding initiatives a lot of species are still lacking barcode information. Furthermore, most existing metabarcoding data are only locally available and geographically scattered, which is hindering the development of globally useful tools. Visco et al. estimated that no more than 30% of European diatoms species are currently represented in reference databases. For example, there is an important lack for a number of species from the Fennoscandian communities (especially acidophilic diatoms, such as
552: 355: 521:
environmental samples with HTS. and discusses its use and limitations for diatom identification. This fragment includes the V4 subunit which is the largest and most complex of the highly variable regions within the 18S locus. They  highlighted  that this hypervariable region of the 18S gene have great potential for studying protist diversity at large scale but has limited efficiency to identification below species level or cryptic species.
446: 429:
complement or improve traditional methods. Stoeck et al. also showed that eDNA barcoding provides a more insight into diatom diversity or other protist communities and therefore could be used for ecological projection of global diversity. Other studies showed different results. For example, inventories obtained from the molecular-based method were closer to those obtained by the morphology-based method when abundant species are in focus.
220: 36: 466:
processes would be to compare the species list generated by different pipelines when using the same reference database. This has yet to be done for the variety of pipelines used in molecular assessment of diatom communities in Europe. Taxonomically validated databases, which includes accessible vouchers are also crucial for reliable taxa identification via NGS.
411:. It has been shown repeatedly that the molecular data gained by diatom eDNA metabarcoding quite faithfully reflect the morphology-based biotic diatom indices and therefore provide a similar assessment of ecosystem status. In the meantime, diatoms are routinely used for the assessment of ecological quality in other freshwater ecosystems. Together with aquatic 437:
stressors. Indirectly, the molecular methods can also help filling the gaps in knowledge of species ecology, by increasing the number of samples processed coupled with a decrease in processing time (cost-effectiveness), as well as by increasing the accuracy and precision of correlation between species/MOTUs occurrence and environmental factors.
534:
species with a success rate of 99.5%. Despite this amplification success, Zimmerman et al. criticised the use of ITS-2 due to intra-individual heterogeneity. It has been suggested that SSU or the rbcL (Mann et al., 2010) markers less heterogenous between individuals and therefore more beneficial when distinguishing between species.
1349:
Almeida, Salomé F.P.; Elias, Carmen; Ferreira, João; Tornés, Elisabet; Puccinelli, Camilla; Delmas, François; Dörflinger, Gerald; Urbanič, Gorazd; Marcheggiani, Stefania (2014). "Water quality assessment of rivers using diatom metrics across Mediterranean Europe: A methods intercalibration exercise".
610:
Several barcodes for chlorophytes have been proposed for DNA-based identification in order to bypass the problematics of the morphological one. Although the cytochrome oxidase I (COI, COX) coding gene (link) is a standard barcode for animals it proved to be unsatisfactory for chlorophytes because the
583:
Diatoms are used to as a diagnosis tool for drowning in forensic practices. The diatom test is based on the principle of diatom inhalation from water into the lungs and distribution and deposition around the body. DNA methods can be used to confirm if the cause of death was indeed drowning and locate
473:
The inference of abundance from metabarcoding data is considered as one of the most difficult issues in environmental use. The number of generated sequences by HTS does not directly correspond to the number of specimen or biomass and that different species can produce different amount of reads, (for
533:
Moniz and Kaczmarska investigated the amplification success of the SSU, COI, and ITS2 markers and found that the 300 – 400 bp ITS-2 + 5.8S fragment provided the highest success rate of amplification and good species resolution. This marker was subsequently used to separate morphologically defined
436:
and comparability across geographic regions, which is often difficult using morphological characters only. Moreover, DNA-based identification allows extending the range of potential bioindicators, including the inconspicuous taxonomic groups that could be highly sensitive or tolerant to particular
478:
has a small biovolume, and thus will generate less copies of the rbcL fragment (located in the chloroplast) than larger species. This correction factor, however, requires extensive calibration with each species own biovolume and has been tested only on a few species that far. Fluctuations of gene
465:
Another well-known limitation of barcoding for taxonomic identification is the clustering method used before the taxonomic assignation: It often leads to massive loss of genetic information and the only reliable way to assess the effects of different clustering and different taxonomic assignation
529:
The rbcl gene is used for taxonomy studies (Trobajo et al. 2009) which  benefits include that rarely any intragenomic variation and they are very easily aligned and compared. An open-access reference library, called R-Syst::diatom includes data for two barcodes (18S and rbcL). It is freely
415:
they are considered as the best indicators of disturbance related to physical, chemical or biological conditions of watercourses. Numerous studies are using benthic diatoms for biomonitoring. Because no ideal diatom DNA barcode was found, it has been proposed that different markers are used for
566:
Over the recent years, researchers have developed and standardised the tools for the metabarcoding and sequencing of diatoms, to complement the traditional assessment using microscopy, opening up a new avenue of biomonitoring for aquatic systems.  Using benthic diatoms through a method of
547:
Diatoms are routinely used as part of a suite of biomonitoring tools which must be monitored as part of the European Water Framework Directive. Diatoms are used as an indicator of ecosystem health in freshwaters because they are ubiquitous, directly affected by the changes in physico-chemical
457:
Currently there is no consensus concerning methods for DNA preservation and isolation, the choice of DNA barcodes and PCR primers, nor agreement concerning the parameters of MOTU clustering and their taxonomic assignment. Sampling and molecular steps need to be standardize through development
428:
Molecular methods based on the NGS technology almost always leads to a higher number of identified taxa whose presence could subsequently be verified by light microscopy. Results of this study provides evidence that eDNA barcoding of diatoms is suitable for water quality assessment and could
606:
possess an ancients and taxonomically very diverse lineage (Fang et al. 2014), including terrestrial plants too. Even though more than 14 000 species have been described based on structural and ultrastructural criteria (Hall et al. 2010) their morphological identification is often limited.
520:
The 18S gene region has been widely used as a marker in other protist groups and Jahn et al. were the first to test the 18S gene region for diatoms barcoding. Zimmerman et al. proposed a 390–410 bp long fragment of the 1800 bp long 18S rRNA gene locus as a barcode marker for the analysis of
622:—a morphological rather than taxonomic grouping—can be very challenging to identify because of their simple morphology, phenotypic plasticity and alternate lifecycle stages. Thus, algal systematics and identification have come to rely heavily on genetic/molecular tools such as 487:
Barcoding marker usually combine hypervariable regions of the genome (to allow the distinction between species) with very conserved region (to insure a specificity to the target organism). Several DNA markers, belonging to the nuclear, mitochondrial, and chloroplast genomes
395:. Using the V4 hypervariable region of the ribosomal small subunit DNA (SSU rDNA), DNA-based identification was found to be more efficient then the classical morphology based approach. Other conserved regions in the genomes which are frequently used as marker genes are 2837:
Valero, Myriam; KĂĽpper, Frithjof C.; Tsiamis, Konstantinos; Couceiro, LucĂ­a; Peters, Akira F. (2015). "Barcoding of Cryptic Stages of Marine Brown Algae Isolated from Incubated Substratum Reveals High Diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1".
574:
DNA barcoding and metabarcoding can be used to establish molecular metrics and indices, which potentially provide conclusions broadly similar to those of the traditional approaches about the ecological and environmental status of aquatic ecosystems.
584:
the origin of drowning. Diatom DNA metabarcoding, provides the opportunity to quickly analyse the diatom community present within a body and locate the origin of drowning and investigate if a body may have been moved from one place to another.
1952:
Evans, Katharine M.; Wortley, Alexandra H.; Mann, David G. (2007). "An Assessment of Potential Diatom "Barcode" Genes (cox1, rbcL, 18S and ITS rDNA) and their Effectiveness in Determining Relationships in Sellaphora (Bacillariophyta)".
469:
Additionally, primer bias is often found to be a major source of variation in barcoding and PCR primers efficiency can differ between diatoms species, i.e. some primers lead to a preferential amplification of one taxon over another.
1673:
Visco, Joana Amorim; Apothéloz-Perret-Gentil, Laure; Cordonier, Arielle; Esling, Philippe; Pillet, Loïc; Pawlowski, Jan (2015-07-07). "Environmental Monitoring: Inferring the Diatom Index from Next-Generation Sequencing Data".
2349: 1130:
Kermarrec, Lenaïg; Franc, Alain; Rimet, Frédéric; Chaumeil, Philippe; Frigerio, Jean-Marc; Humbert, Jean-François; Bouchez, Agnès (2014). "A next-generation sequencing approach to river biomonitoring using benthic diatoms".
2305:
Kermarrec, L.; Franc, A.; Rimet, F.; Chaumeil, P.; Humbert, J. F.; Bouchez, A. (2013). "Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: a test for freshwater diatoms".
1264:
Apothéloz-Perret-Gentil, Laure; Cordonier, Arielle; Straub, François; Iseli, Jennifer; Esling, Philippe; Pawlowski, Jan (2017). "Taxonomy-free molecular diatom index for high-throughput eDNA biomonitoring".
2416:
Vasselon, Valentin; Rimet, Frédéric; Tapolczai, Kálmán; Bouchez, Agnès (2017). "Assessing ecological status with diatoms DNA metabarcoding: Scaling-up on a WFD monitoring network (Mayotte island, France)".
424:
Applying the DNA barcoding concept to diatoms promises great potential to resolve the problem of inaccurate species identification and thus facilitate analyses of the biodiversity of environmental samples.
416:
different purposes. Indeed, the highly variable cox1, ITS and 28S genes were considered more suitable for taxonomic studies, while more conserved 18S and rbcL genes seem more appropriate for biomonitoring.
570:
Rimet et al. also explored the possibility of using HTS for assessing diatom diversity and showed that diversity indices from both HTS and microscopic analysis were well correlated although not perfect.
592:
Diatom metabarcoding may help delimit cryptic species that are difficult to identify using microscopy and help complete reference databases by comparing morphological assemblages to metabarcoding data.
1446:
Martin, Gonzalo; Reyes Fernandez, Maria de los (2012-05-16), Voudouris, Kostas (ed.), "Diatoms as Indicators of Water Quality and Ecological Status: Sampling, Analysis and Some Ecological Remarks",
648:
group, meaning that within the group they do not all share a recent common ancestor, making it challenging to find a gene that is conserved among all but variable enough for species identification.
1078:
Zimmermann, Jonas; Glöckner, Gernot; Jahn, Regine; Enke, Neela; Gemeinholzer, Birgit (2015). "Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies".
2758:
Harper, J.T.; Saunders, G.W. (2001). "The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta)".
1827:
Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D. (2017).
2447:
Rimet, Frédéric; Vasselon, Valentin; A.-Keszte, Barbara; Bouchez, Agnès (2018). "Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes".
611:
gene contains several introns in this algae group (Turmel et al. 2002). Nuclear marker genes have been used for chlorophytes are SSU rDNA, LSU rDNA, rDNA ITS (Leliaert et al. 2014).
2884:
Saunders, Gary W.; McDevit, Daniel C. (2012), Kress, W. John; Erickson, David L. (eds.), "Methods for DNA Barcoding Photosynthetic Protists Emphasizing the Macroalgae and Diatoms",
474:
example, due to differences in the chloroplast size with the rbcL marker). Vasselon et al. recently created a biovolume correction factor when using the rbcL marker. For example,
630:
gene is a common used barcode for phylogenetic studies on macroalgae. However, the SSU rDNA is a highly conserved region and typically lack resolution for species identification.
368:
which is used for ecological quality assessment of rivers and streams because of the specific response of diatoms to particular ecologic conditions. As species identification via
2061:
Utz, Laura R. P.; Eizirik, Eduardo (2007). "Molecular Phylogenetics of Subclass Peritrichia (Ciliophora: Oligohymenophorea) Based on Expanded Analyses of 18S rRNA Sequences".
530:
accessible through a website. Kermmarec et al. also successfully used the rbcL gene for ecological assessment of diatoms. The rbcL marker is also easily aligned and compared.
1010:
Stevenson, R. Jan; Pan, Yangdong; van Dam, Herman (2010), Smol, John P.; Stoermer, Eugene F. (eds.), "Assessing environmental conditions in rivers and streams with diatoms",
1221:
Zimmermann, Jonas; Jahn, Regine; Gemeinholzer, Birgit (2011). "Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols".
1892:
Vasselon, Valentin; Bouchez, Agnès; Rimet, Frédéric; Jacquet, Stéphan; Trobajo, Rosa; Corniquel, Méline; Tapolczai, Kálmán; Domaizon, Isabelle (2018). Mahon, Andrew (ed.).
1625:
Pawlowski, Jan; Kelly-Quinn, Mary; Altermatt, Florian; Apothéloz-Perret-Gentil, Laure; Beja, Pedro; Boggero, Angela; Borja, Angel; Bouchez, Agnès; Cordier, Tristan (2018).
462:). It has also been shown that taxonomic identification with DNA barcoding is not accurate above species level, to discriminate varieties for example (reference missing). 2545:
Seo, Yasuhisa; Ichida, Daisuke; Sato, Shingo; Kuroki, Kohji; Kishida, Tetsuko (2014). "An Improved Method for the Diatom Test Utilizing DNA Binding Ability of Silica".
978:
Lobo, Eduardo A.; Heinrich, Carla Giselda; Schuch, Marilia; Wetzel, Carlos Eduardo; Ector, Luc (2016), Necchi JR, Orlando (ed.), "Diatoms as Bioindicators in Rivers",
633:
Over the past 2 decades certain standards for DNA barcoding with the aim of species identification have been developed for each of the main groups of macroalgae. The
2706:
Leliaert, Frederik; Verbruggen, Heroen; Vanormelingen, Pieter; Steen, Frederique; LĂłpez-Bautista, Juan M.; Zuccarello, Giuseppe C.; De Clerck, Olivier (2014-04-03).
1557:
Stoeck, Thorsten; Behnke, Anke; Christen, Richard; Amaral-Zettler, Linda; Rodriguez-Mora, Maria J; Chistoserdov, Andrei; Orsi, William; Edgcomb, Virginia P (2009).
644:
The barcodes typically differ between the 3 main groups of macroalgae (red, green and brown) because their evolutionary heritage is very diverse. Macroalgae is a
2242:
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy
1177:
Hamsher, Sarah E.; Evans, Katharine M.; Mann, David G.; Poulíčková, Aloisie; Saunders, Gary W. (2011). "Barcoding Diatoms: Exploring Alternatives to COI-5P".
548:
parameters and show a better relationship with environmental variables than other taxa e.g. invertebrates, giving a better overall picture of water quality.
1792:
Shaw, Jennifer L. A.; Weyrich, Laura; Cooper, Alan (2017). "Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginner's guide".
637:
I (COI) gene is commonly used as a barcode for red and brown algae, while tufA (plastid elongation factor), rbcL (rubisco large subunit) and ITS (
251: 87: 2818:
Saunders, Gary W.; Kucera, Hana (2010). "An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae".
2490:
Hering, Daniel; Borja, Angel; Jones, J.Iwan; Pont, Didier; Boets, Pieter; Bouchez, Agnes; Bruce, Kat; Drakare, Stina; Hänfling, Bernd (2018).
118: 1725:
Zimmermann, Jonas; Abarca, Nelida; Enk, Neela; Skibbe, Oliver; Kusber, Wolf-Henning; Jahn, Regine (2014-09-29). Schierwater, Bernd (ed.).
2779:"On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol" 376:(HTS) DNA metabarcoding enables taxonomic assignment and therefore identification for the complete sample regarding the group specific 205: 1627:"The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems" 2901: 2492:"Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive" 2225: 2135: 1894:"Avoiding quantification bias in metabarcoding: Application of a cell biovolume correction factor in diatom molecular biomonitoring" 1465: 1059: 1027: 995: 343:
One of the main challenges of identifying diatoms is that it is often collected as a mixture of diatoms from several species. DNA
958: 200: 195: 2989: 634: 493: 400: 479:
copy number for other markers, such as the 18S marker, does not seem to be species specific, but have not been tested yet.
2368:"Application of high-throughput sequencing (HTS) metabarcoding to diatom biomonitoring: Do DNA extraction methods matter?" 1509:"Application of high-throughput sequencing (HTS) metabarcoding to diatom biomonitoring: Do DNA extraction methods matter?" 2999: 638: 497: 404: 189: 1626: 377: 373: 175: 381: 325: 244: 159: 1480:
Rimet, Frédéric; Bouchez, Agnès (2012). "Biomonitoring river diatoms: Implications of taxonomic resolution".
2994: 943: 64: 3004: 351:(also called eDNA) which is DNA extracted straight from the environment such as in soil or water samples. 237: 224: 2648:"Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications" 1727:"Taxonomic Reference Libraries for Environmental Barcoding: A Best Practice Example from Diatom Research" 1389:
Lavoie, Isabelle; Campeau, Stéphane; Darchambeau, François; Cabana, Gilbert; Dillon, Peter J. (2008).
551: 2933: 2719: 2503: 1991:
Moniz, MĂłnica B.J.; Kaczmarska, Irena (2010). "Barcoding of Diatoms: Nuclear Encoded ITS Revisited".
1908: 1840: 1738: 1683: 1637: 1402: 1355: 433: 369: 74: 69: 2026:
Scicluna, Stephanie M.; Tawari, Blessing; Clark, C. Graham (2006). "DNA Barcoding of Blastocystis".
1829:"Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity" 1559:"Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities" 2153:"An overview of the secondary structure of the V4 region of eukaryotic small-subunit ribosomal RNA" 145: 445: 354: 2965: 2863: 2800: 2625: 2570: 2527: 2472: 2398: 2367: 2331: 2287: 2094: 1934: 1539: 1508: 1290: 1246: 1156: 1103: 953: 556: 501: 333: 170: 154: 134: 92: 2366:
Vasselon, Valentin; Domaizon, Isabelle; Rimet, Frédéric; Kahlert, Maria; Bouchez, Agnès (2017).
2113: 1507:
Vasselon, Valentin; Domaizon, Isabelle; Rimet, Frédéric; Kahlert, Maria; Bouchez, Agnès (2017).
1893: 2957: 2949: 2907: 2897: 2855: 2737: 2685: 2667: 2617: 2609: 2562: 2519: 2464: 2390: 2323: 2279: 2221: 2190: 2172: 2131: 2086: 2078: 2043: 2008: 1970: 1874: 1856: 1809: 1774: 1756: 1707: 1699: 1655: 1598: 1580: 1531: 1461: 1428: 1371: 1331: 1282: 1238: 1194: 1148: 1095: 1055: 1023: 991: 509: 450: 408: 392: 365: 348: 184: 112: 35: 2941: 2889: 2847: 2790: 2727: 2675: 2659: 2601: 2554: 2511: 2456: 2426: 2382: 2315: 2271: 2213: 2180: 2164: 2121: 2070: 2035: 2000: 1962: 1924: 1916: 1864: 1848: 1801: 1764: 1746: 1691: 1645: 1588: 1570: 1523: 1489: 1451: 1418: 1410: 1363: 1321: 1274: 1230: 1186: 1140: 1087: 1047: 1015: 983: 283: 1308:
Pawlowski, J.; Lejzerowicz, F.; Apotheloz-Perret-Gentil, L.; Visco, J.; Esling, P. (2016).
1051: 2937: 2723: 2507: 1912: 1844: 1742: 1687: 1641: 1406: 1359: 2680: 2647: 1869: 1828: 1769: 1726: 1593: 1558: 287: 2491: 2185: 2152: 2983: 2795: 2778: 2074: 1414: 1294: 948: 623: 505: 344: 304: 275: 266: 46: 42: 27: 2969: 2867: 2804: 2629: 2402: 2291: 2098: 1938: 1650: 1543: 1367: 1250: 1160: 1107: 512:...), have been designed and successfully used for diatoms identification with NGS. 2574: 2531: 2476: 2335: 645: 641:) are commonly used for green algae. These barcodes are typically 600-700 bp long. 412: 129: 2430: 1493: 2893: 2851: 2732: 2707: 2515: 2039: 2004: 1966: 1751: 1190: 1019: 987: 2217: 939:
Detailed information on DNA barcoding of different organisms can be found here:
603: 388: 286:
heterogeneous group, meaning that the application of a single universal barcode/
2888:, Methods in Molecular Biology, vol. 858, Humana Press, pp. 207–222, 2240: 1391:"Are diatoms good integrators of temporal variability in stream water quality?" 1326: 1309: 2460: 2275: 1234: 619: 329: 2953: 2859: 2741: 2671: 2613: 2589: 2468: 2394: 2283: 2262:
Rimet, Frédéric (2012-03-01). "Recent views on river pollution and diatoms".
2176: 2082: 1860: 1813: 1760: 1703: 1584: 1535: 1432: 1242: 1152: 1042:
Taberlet, Pierre; Bonin, Aurélie; Zinger, Lucie; Coissac, Eric (2018-03-22).
2945: 2605: 2558: 2319: 1929: 1920: 1278: 1091: 347:
is the process of identifying the individual species from a mixed sample of
2961: 2911: 2689: 2663: 2621: 2566: 2523: 2327: 2168: 2090: 2047: 2012: 1974: 1878: 1852: 1778: 1711: 1659: 1602: 1575: 1375: 1335: 1286: 1198: 1099: 2194: 1390: 2126: 627: 1310:"Protist metabarcoding and environmental biomonitoring: Time for change" 489: 396: 313: 2652:
Philosophical Transactions of the Royal Society B: Biological Sciences
1695: 1423: 2114:"Diatoms and DNA barcoding: a pilot study on an environmental sample" 337: 309: 1805: 2386: 1527: 1144: 1456: 550: 444: 372:
is relatively difficult and requires a lot of time and expertise,
353: 279: 270: 16:
Technique used for species identification and phylogenetic studies
321: 317: 2924:
Baldauf, S. L. (2003-06-13). "The Deep Roots of Eukaryotes".
2120:. Botanic Garden and Botanical Museum Berlin-Dahlem: 63–68. 2118:
Proceedings of the 1st Central European Diatom Meeting 2007
2208:
Wilde, Erik (1999), "Hypertext Transfer Protocol (HTTP)",
1014:(2 ed.), Cambridge University Press, pp. 57–85, 1073: 1071: 2879: 2877: 982:, Springer International Publishing, pp. 245–271, 2641: 2639: 1448:
Ecological Water Quality - Water Treatment and Reuse
294:
are applied for this aim in different algal groups.
2442: 2440: 1986: 1984: 391:have already been developed, mainly targeting the 2151:Nickrent, Daniel L.; Sargent, Malcolm L. (1991). 543:Genetic tool for biomonitoring and bioassessment 274:is commonly used for species identification and 2212:, Springer Berlin Heidelberg, pp. 53–135, 2777:McDevit, Daniel C.; Saunders, Gary W. (2009). 308:is a method for taxonomical identification of 703:Phycoerythrin, elongation factor, LSU rDNA 290:for species delimitation is unfeasible, thus 245: 8: 252: 238: 18: 2794: 2731: 2708:"DNA-based species delimitation in algae" 2679: 2184: 2125: 1928: 1868: 1768: 1750: 1649: 1592: 1574: 1455: 1422: 1325: 1046:. Vol. 1. Oxford University Press. 655: 432:DNA metabarcoding can also increase the 970: 908:Nuclear rDNA ITS, nucleomorph rDNA ITS 103: 55: 26: 2063:The Journal of Eukaryotic Microbiology 1676:Environmental Science & Technology 2753: 2751: 2701: 2699: 1620: 1618: 1616: 1614: 1612: 860:SSU rDNA, LSU rDNA, rDNA, rDNA ITS 836:SSU rDNA, LSU rDNA, rDNA, rDNA ITS 397:ribulose-1-5-bisphosphate carboxylase 7: 2590:"A DNA mini-barcode for land plants" 1216: 1214: 1212: 1210: 1208: 1172: 1170: 1125: 1123: 1121: 1119: 1117: 2449:Organisms Diversity & Evolution 1223:Organisms Diversity & Evolution 291: 1052:10.1093/oso/9780198767220.001.0001 340:followed by taxonomic assignment. 206:Consortium for the Barcode of Life 14: 364:A newly applied method is diatom 2796:10.1111/j.1440-1835.2009.00530.x 2075:10.1111/j.1550-7408.2007.00260.x 1901:Methods in Ecology and Evolution 1634:Science of the Total Environment 1415:10.1111/j.1365-2427.2007.01935.x 1352:Science of the Total Environment 1314:European Journal of Protistology 959:DNA barcoding in diet assessment 752:Chrysophytes and Synurophytes 219: 218: 34: 2646:Saunders, Gary W (2005-10-29). 2588:Little, Damon P. (2013-11-29). 1651:10.1016/j.scitotenv.2018.05.002 1368:10.1016/j.scitotenv.2013.11.144 796:SSU rDNA, LSU rDNA, rDNA ITS 779:SSU rDNA, LSU rDNA, rDNA ITS 683:SSU rDNA, LSU rDNA, rDNA ITS 1794:Marine and Freshwater Research 588:Cryptic species and databasing 1: 2712:European Journal of Phycology 2431:10.1016/j.ecolind.2017.06.024 1494:10.1016/j.ecolind.2011.09.014 316:level. It is conducted using 2894:10.1007/978-1-61779-591-6_10 2852:10.7872/crya.v36.iss1.2015.3 2733:10.1080/09670262.2014.904524 2547:Journal of Forensic Sciences 2516:10.1016/j.watres.2018.03.003 2245:, vol. OJ L, 2000-12-22 2040:10.1016/j.protis.2005.12.001 2005:10.1016/j.protis.2009.07.001 1967:10.1016/j.protis.2007.04.001 1752:10.1371/journal.pone.0108793 1191:10.1016/j.protis.2010.09.005 1020:10.1017/cbo9780511763175.005 988:10.1007/978-3-319-31984-1_11 635:cytochrome c oxidase subunit 380:chosen for the previous DNA 2594:Molecular Ecology Resources 2308:Molecular Ecology Resources 2218:10.1007/978-3-642-95855-7_4 1267:Molecular Ecology Resources 1080:Molecular Ecology Resources 3021: 2760:Cahiers de Biologie Marine 1327:10.1016/j.ejop.2016.02.003 639:internal transcribe spacer 476:Achnanthidium minutissimum 374:high-throughput sequencing 292:different markers/barcodes 176:High throughput sequencing 2461:10.1007/s13127-018-0359-5 2276:10.1007/s10750-011-0949-0 1235:10.1007/s13127-011-0050-6 661: 559:in biological assessment 113:Environmental DNA (eDNA) 2946:10.1126/science.1085544 2606:10.1111/1755-0998.12194 2559:10.1111/1556-4029.12390 2320:10.1111/1755-0998.12105 2112:Jahn, R. (2007-12-11). 1921:10.1111/2041-210X.12960 1279:10.1111/1755-0998.12668 1092:10.1111/1755-0998.12336 944:Microbial DNA barcoding 387:Until now, several DNA 2990:Authentication methods 2840:Cryptogamie, Algologie 2664:10.1098/rstb.2005.1719 2157:Nucleic Acids Research 1853:10.1126/sciadv.1700419 1636:. 637–638: 1295–1310. 1576:10.1186/1741-7007-7-72 563: 454: 361: 2820:Cryptogamie Algologie 2783:Phycological Research 2419:Ecological Indicators 1482:Ecological Indicators 925:SSU rDNA, LSU rDNA 920:SSU rDNA, LSU rDNA 816:LSU rDNA, rDNA ITS 755:SSU rDNA, rDNA ITS 561:of aquatic ecosystems 554: 483:Diatom target regions 448: 357: 2169:10.1093/nar/19.2.227 2127:10.3372/cediatom.113 1354:. 476–477: 768–776. 905:Chlorarachniophytes 719:L, Rubisco spacer 434:taxonomic resolution 401:cytochrome oxidase I 359:Diatom DNA barcoding 2938:2003Sci...300.1703B 2932:(5626): 1703–1706. 2724:2014EJPhy..49..179L 2658:(1462): 1879–1888. 2508:2018WatRe.138..192H 1913:2018MEcEv...9.1060V 1845:2017SciA....3E0419E 1743:2014PLoSO...9j8793Z 1688:2015EnST...49.7597V 1642:2018ScTEn.637.1295P 1407:2008FrBio..53..827L 1360:2014ScTEn.476..768A 146:Metatranscriptomics 22:Part of a series on 3000:Taxonomy (biology) 2375:Freshwater Science 1516:Freshwater Science 1395:Freshwater Biology 1133:Freshwater Science 954:Fish DNA barcoding 747:L, Rubisco spacer 659:Taxonomic group 564: 557:eDNA metabarcoding 516:18S and V4 subunit 455: 362: 171:Shotgun sequencing 88:macroinvertebrates 1696:10.1021/es506158m 1682:(13): 7597–7605. 1044:Environmental DNA 929: 928: 828:PsbA, 23S rDNA 793:Bacillariophytes 788:Rubisco spacer 451:Diatom morphology 366:DNA metabarcoding 349:environmental DNA 334:conserved regions 262: 261: 185:Extracellular RNA 119:environmental RNA 3012: 2974: 2973: 2921: 2915: 2914: 2881: 2872: 2871: 2834: 2828: 2827: 2815: 2809: 2808: 2798: 2774: 2768: 2767: 2755: 2746: 2745: 2735: 2703: 2694: 2693: 2683: 2643: 2634: 2633: 2585: 2579: 2578: 2542: 2536: 2535: 2487: 2481: 2480: 2444: 2435: 2434: 2413: 2407: 2406: 2372: 2363: 2357: 2356: 2354: 2346: 2340: 2339: 2302: 2296: 2295: 2259: 2253: 2252: 2251: 2250: 2237: 2231: 2230: 2205: 2199: 2198: 2188: 2148: 2142: 2141: 2129: 2109: 2103: 2102: 2058: 2052: 2051: 2023: 2017: 2016: 1988: 1979: 1978: 1949: 1943: 1942: 1932: 1930:20.500.12327/161 1907:(4): 1060–1069. 1898: 1889: 1883: 1882: 1872: 1839:(10): e1700419. 1833:Science Advances 1824: 1818: 1817: 1789: 1783: 1782: 1772: 1754: 1722: 1716: 1715: 1670: 1664: 1663: 1653: 1631: 1622: 1607: 1606: 1596: 1578: 1554: 1548: 1547: 1513: 1504: 1498: 1497: 1477: 1471: 1470: 1459: 1443: 1437: 1436: 1426: 1386: 1380: 1379: 1346: 1340: 1339: 1329: 1305: 1299: 1298: 1273:(6): 1231–1242. 1261: 1255: 1254: 1218: 1203: 1202: 1174: 1165: 1164: 1127: 1112: 1111: 1075: 1066: 1065: 1039: 1033: 1032: 1007: 1001: 1000: 975: 656: 599:Other Microalgae 284:phylogenetically 254: 247: 240: 227: 222: 221: 38: 19: 3020: 3019: 3015: 3014: 3013: 3011: 3010: 3009: 2980: 2979: 2978: 2977: 2923: 2922: 2918: 2904: 2883: 2882: 2875: 2836: 2835: 2831: 2817: 2816: 2812: 2776: 2775: 2771: 2757: 2756: 2749: 2705: 2704: 2697: 2645: 2644: 2637: 2587: 2586: 2582: 2544: 2543: 2539: 2489: 2488: 2484: 2446: 2445: 2438: 2415: 2414: 2410: 2370: 2365: 2364: 2360: 2352: 2348: 2347: 2343: 2304: 2303: 2299: 2261: 2260: 2256: 2248: 2246: 2239: 2238: 2234: 2228: 2207: 2206: 2202: 2150: 2149: 2145: 2138: 2111: 2110: 2106: 2060: 2059: 2055: 2025: 2024: 2020: 1990: 1989: 1982: 1951: 1950: 1946: 1896: 1891: 1890: 1886: 1826: 1825: 1821: 1806:10.1071/MF15361 1791: 1790: 1786: 1724: 1723: 1719: 1672: 1671: 1667: 1629: 1624: 1623: 1610: 1556: 1555: 1551: 1511: 1506: 1505: 1501: 1479: 1478: 1474: 1468: 1445: 1444: 1440: 1388: 1387: 1383: 1348: 1347: 1343: 1320:(Pt A): 12–25. 1307: 1306: 1302: 1263: 1262: 1258: 1220: 1219: 1206: 1176: 1175: 1168: 1129: 1128: 1115: 1077: 1076: 1069: 1062: 1041: 1040: 1036: 1030: 1009: 1008: 1004: 998: 977: 976: 972: 967: 937: 654: 617: 601: 590: 581: 562: 560: 545: 540: 527: 518: 485: 453: 443: 422: 360: 300: 264: 258: 217: 210: 201:Diet assessment 192: 180: 166: 150: 141: 125: 115: 99: 51: 49: 41: 17: 12: 11: 5: 3018: 3016: 3008: 3007: 3002: 2997: 2995:Bioinformatics 2992: 2982: 2981: 2976: 2975: 2916: 2902: 2873: 2829: 2810: 2789:(2): 131–141. 2769: 2747: 2718:(2): 179–196. 2695: 2635: 2600:(3): 437–446. 2580: 2553:(3): 779–784. 2537: 2496:Water Research 2482: 2436: 2408: 2387:10.1086/690649 2381:(1): 162–177. 2358: 2341: 2314:(4): 607–619. 2297: 2254: 2232: 2226: 2200: 2163:(2): 227–235. 2143: 2136: 2104: 2069:(3): 303–305. 2053: 2018: 1980: 1961:(3): 349–364. 1944: 1884: 1819: 1784: 1737:(9): e108793. 1717: 1665: 1608: 1549: 1528:10.1086/690649 1522:(1): 162–177. 1499: 1472: 1466: 1438: 1401:(4): 827–841. 1381: 1341: 1300: 1256: 1229:(3): 173–192. 1204: 1185:(3): 405–422. 1166: 1145:10.1086/675079 1139:(1): 349–363. 1113: 1086:(3): 526–542. 1067: 1060: 1034: 1028: 1002: 996: 969: 968: 966: 963: 962: 961: 956: 951: 946: 936: 933: 931:Adapted from 927: 926: 923: 921: 918: 917:Euglenophytes 914: 913: 911: 909: 906: 902: 901: 887: 885: 882: 878: 877: 867: 861: 858: 857:Raphidophytes 854: 853: 847: 837: 834: 830: 829: 826: 817: 814: 810: 809: 803: 797: 794: 790: 789: 786: 780: 777: 773: 772: 762: 756: 753: 749: 748: 738: 728: 725: 721: 720: 714: 704: 701: 697: 696: 686: 684: 681: 677: 676: 675:chloroplastid 673: 672:mitochondrial 670: 667: 664: 663: 660: 653: 652:Target regions 650: 616: 613: 600: 597: 589: 586: 580: 577: 555: 544: 541: 539: 536: 526: 523: 517: 514: 484: 481: 460:Eunotia incisa 449: 442: 439: 421: 418: 358: 336:in the diatom 299: 296: 260: 259: 257: 256: 249: 242: 234: 231: 230: 229: 228: 212: 211: 209: 208: 203: 198: 193: 187: 181: 179: 178: 173: 167: 165: 164: 163: 162: 151: 149: 148: 142: 140: 139: 138: 137: 126: 124: 123: 122: 121: 109: 106: 105: 101: 100: 98: 97: 96: 95: 90: 82: 77: 72: 67: 61: 58: 57: 53: 52: 39: 31: 30: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 3017: 3006: 3005:DNA barcoding 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2987: 2985: 2971: 2967: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2920: 2917: 2913: 2909: 2905: 2903:9781617795909 2899: 2895: 2891: 2887: 2880: 2878: 2874: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2833: 2830: 2825: 2821: 2814: 2811: 2806: 2802: 2797: 2792: 2788: 2784: 2780: 2773: 2770: 2766:(1/2): 25–38. 2765: 2761: 2754: 2752: 2748: 2743: 2739: 2734: 2729: 2725: 2721: 2717: 2713: 2709: 2702: 2700: 2696: 2691: 2687: 2682: 2677: 2673: 2669: 2665: 2661: 2657: 2653: 2649: 2642: 2640: 2636: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2584: 2581: 2576: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2541: 2538: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2483: 2478: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2443: 2441: 2437: 2432: 2428: 2424: 2420: 2412: 2409: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2376: 2369: 2362: 2359: 2351: 2350:"Kelly et al" 2345: 2342: 2337: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2301: 2298: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2264:Hydrobiologia 2258: 2255: 2244: 2243: 2236: 2233: 2229: 2227:9783642958571 2223: 2219: 2215: 2211: 2204: 2201: 2196: 2192: 2187: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2147: 2144: 2139: 2137:9783921800638 2133: 2128: 2123: 2119: 2115: 2108: 2105: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2057: 2054: 2049: 2045: 2041: 2037: 2033: 2029: 2022: 2019: 2014: 2010: 2006: 2002: 1998: 1994: 1987: 1985: 1981: 1976: 1972: 1968: 1964: 1960: 1956: 1948: 1945: 1940: 1936: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1895: 1888: 1885: 1880: 1876: 1871: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1823: 1820: 1815: 1811: 1807: 1803: 1799: 1795: 1788: 1785: 1780: 1776: 1771: 1766: 1762: 1758: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1669: 1666: 1661: 1657: 1652: 1647: 1643: 1639: 1635: 1628: 1621: 1619: 1617: 1615: 1613: 1609: 1604: 1600: 1595: 1590: 1586: 1582: 1577: 1572: 1568: 1564: 1560: 1553: 1550: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1510: 1503: 1500: 1495: 1491: 1487: 1483: 1476: 1473: 1469: 1467:9789535105084 1463: 1458: 1457:10.5772/33831 1453: 1449: 1442: 1439: 1434: 1430: 1425: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1385: 1382: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1345: 1342: 1337: 1333: 1328: 1323: 1319: 1315: 1311: 1304: 1301: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1260: 1257: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1217: 1215: 1213: 1211: 1209: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1173: 1171: 1167: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1126: 1124: 1122: 1120: 1118: 1114: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1074: 1072: 1068: 1063: 1061:9780198767220 1057: 1053: 1049: 1045: 1038: 1035: 1031: 1029:9780511763175 1025: 1021: 1017: 1013: 1006: 1003: 999: 997:9783319319834 993: 989: 985: 981: 974: 971: 964: 960: 957: 955: 952: 950: 949:DNA barcoding 947: 945: 942: 941: 940: 934: 932: 924: 922: 919: 916: 915: 912: 910: 907: 904: 903: 899: 895: 891: 888: 886: 883: 881:Xanthophytes 880: 879: 875: 871: 868: 865: 862: 859: 856: 855: 851: 848: 845: 841: 838: 835: 832: 831: 827: 825: 821: 818: 815: 812: 811: 807: 804: 801: 798: 795: 792: 791: 787: 784: 781: 778: 776:Cryptophytes 775: 774: 770: 766: 763: 760: 757: 754: 751: 750: 746: 742: 739: 736: 732: 729: 726: 723: 722: 718: 715: 712: 708: 705: 702: 699: 698: 694: 690: 687: 685: 682: 680:Chlorophytes 679: 678: 674: 671: 668: 666: 665: 658: 657: 651: 649: 647: 642: 640: 636: 631: 629: 625: 624:DNA barcoding 621: 614: 612: 608: 605: 598: 596: 595: 587: 585: 578: 576: 572: 568: 558: 553: 549: 542: 537: 535: 531: 524: 522: 515: 513: 511: 507: 503: 499: 495: 491: 482: 480: 477: 471: 467: 463: 461: 452: 447: 440: 438: 435: 430: 426: 419: 417: 414: 413:invertebrates 410: 406: 403:(cox1, COI), 402: 398: 394: 390: 385: 383: 382:amplification 379: 375: 371: 367: 356: 352: 350: 346: 345:metabarcoding 341: 339: 335: 332:of specific, 331: 327: 326:amplification 323: 319: 315: 311: 307: 306: 305:DNA barcoding 297: 295: 293: 289: 285: 281: 277: 273: 272: 268: 267:DNA barcoding 255: 250: 248: 243: 241: 236: 235: 233: 232: 226: 216: 215: 214: 213: 207: 204: 202: 199: 197: 194: 191: 188: 186: 183: 182: 177: 174: 172: 169: 168: 161: 158: 157: 156: 155:Amplification 153: 152: 147: 144: 143: 136: 133: 132: 131: 128: 127: 120: 117: 116: 114: 111: 110: 108: 107: 102: 94: 91: 89: 86: 85: 83: 81: 78: 76: 73: 71: 68: 66: 63: 62: 60: 59: 54: 48: 47:Metabarcoding 44: 43:DNA barcoding 37: 33: 32: 29: 28:DNA barcoding 25: 21: 20: 2929: 2925: 2919: 2886:DNA Barcodes 2885: 2843: 2839: 2832: 2823: 2819: 2813: 2786: 2782: 2772: 2763: 2759: 2715: 2711: 2655: 2651: 2597: 2593: 2583: 2550: 2546: 2540: 2499: 2495: 2485: 2455:(1): 51–62. 2452: 2448: 2422: 2418: 2411: 2378: 2374: 2361: 2344: 2311: 2307: 2300: 2267: 2263: 2257: 2247:, retrieved 2241: 2235: 2209: 2203: 2160: 2156: 2146: 2117: 2107: 2066: 2062: 2056: 2034:(1): 77–85. 2031: 2027: 2021: 1996: 1992: 1958: 1954: 1947: 1904: 1900: 1887: 1836: 1832: 1822: 1797: 1793: 1787: 1734: 1730: 1720: 1679: 1675: 1668: 1633: 1566: 1562: 1552: 1519: 1515: 1502: 1488:(1): 92–99. 1485: 1481: 1475: 1447: 1441: 1398: 1394: 1384: 1351: 1344: 1317: 1313: 1303: 1270: 1266: 1259: 1226: 1222: 1182: 1178: 1136: 1132: 1083: 1079: 1043: 1037: 1011: 1005: 979: 973: 938: 930: 897: 893: 889: 873: 869: 863: 849: 843: 839: 833:Haptophytes 823: 819: 805: 799: 782: 768: 764: 758: 744: 740: 734: 730: 724:Phaeophytes 716: 710: 706: 700:Rhodophytes 692: 688: 662:Marker gene 646:polyphyletic 643: 632: 618: 609: 604:Chlorophytes 602: 593: 591: 582: 573: 569: 565: 546: 538:Applications 532: 528: 519: 486: 475: 472: 468: 464: 459: 456: 431: 427: 423: 386: 363: 342: 324:followed by 302: 301: 276:phylogenetic 265: 263: 130:Metagenomics 79: 2846:(1): 3–29. 2502:: 192–205. 2270:(1): 1–24. 2210:Wilde's WWW 1999:(1): 7–34. 1563:BMC Biology 1012:The Diatoms 980:River Algae 813:Dinophytes 713:2-3 spacer 2984:Categories 2249:2019-03-28 1450:, InTech, 1424:2268/62412 965:References 620:Macroalgae 615:Macroalgae 441:Challenges 420:Advantages 370:morphology 330:sequencing 196:Healthcare 2954:0036-8075 2860:0181-1568 2742:0967-0262 2672:0962-8436 2614:1755-098X 2469:1439-6092 2395:2161-9549 2284:1573-5117 2177:0305-1048 2083:1066-5234 1861:2375-2548 1814:1323-1650 1800:(1): 20. 1761:1932-6203 1704:0013-936X 1585:1741-7007 1569:(1): 72. 1536:2161-9549 1433:0046-5070 1295:206947826 1243:1439-6092 1153:2161-9549 900:L spacer 884:RDNA ITS 727:RDNA ITS 579:Forensics 278:studies. 65:Microbial 2970:32788100 2962:12805537 2912:22684958 2868:84276804 2805:84811166 2690:16214745 2630:32631697 2622:24286499 2567:24502836 2524:29602086 2425:: 1–12. 2403:59043627 2328:23590277 2292:18668007 2099:31422075 2091:17552986 2048:16431158 2013:19674931 1975:17581782 1939:54010645 1879:29057321 1779:25265556 1731:PLOS ONE 1712:26052741 1660:29801222 1603:19886985 1544:59043627 1376:24342490 1336:27004417 1287:28296259 1251:39047583 1199:21239228 1161:85771495 1108:27291997 1100:25270047 935:See also 669:nuclear 628:SSU rDNA 399:(rbcL), 393:18S rRNA 312:even to 225:Category 84:Aquatic 2934:Bibcode 2926:Science 2720:Bibcode 2681:1609223 2575:1057761 2532:5008250 2504:Bibcode 2477:3879922 2336:2706722 2195:2014163 2028:Protist 1993:Protist 1955:Protist 1909:Bibcode 1870:5647131 1841:Bibcode 1770:4180937 1739:Bibcode 1684:Bibcode 1638:Bibcode 1594:2777867 1403:Bibcode 1356:Bibcode 1179:Protist 874:, rbc 389:markers 378:primers 314:species 310:diatoms 303:Diatom 298:Diatoms 282:form a 190:Chimera 135:viruses 56:By taxa 40:  2968:  2960:  2952:  2910:  2900:  2866:  2858:  2803:  2740:  2688:  2678:  2670:  2628:  2620:  2612:  2573:  2565:  2530:  2522:  2475:  2467:  2401:  2393:  2334:  2326:  2290:  2282:  2224:  2193:  2186:333584 2183:  2175:  2134:  2097:  2089:  2081:  2046:  2011:  1973:  1937:  1877:  1867:  1859:  1812:  1777:  1767:  1759:  1710:  1702:  1658:  1601:  1591:  1583:  1542:  1534:  1464:  1431:  1374:  1334:  1293:  1285:  1249:  1241:  1197:  1159:  1151:  1106:  1098:  1058:  1026:  994:  626:. The 594:  338:genome 288:marker 223:  75:Pollen 70:Fungal 50:  2966:S2CID 2864:S2CID 2801:S2CID 2626:S2CID 2571:S2CID 2528:S2CID 2473:S2CID 2399:S2CID 2371:(PDF) 2353:(PDF) 2332:S2CID 2288:S2CID 2095:S2CID 1935:S2CID 1897:(PDF) 1630:(PDF) 1540:S2CID 1512:(PDF) 1291:S2CID 1247:S2CID 1157:S2CID 1104:S2CID 892:L, 822:1, 767:A, 743:A, 733:1, 709:1, 691:A, 280:Algae 271:algae 104:Other 80:Algae 2958:PMID 2950:ISSN 2908:PMID 2898:ISBN 2856:ISSN 2826:(4). 2738:ISSN 2686:PMID 2668:ISSN 2618:PMID 2610:ISSN 2563:PMID 2520:PMID 2465:ISSN 2391:ISSN 2324:PMID 2280:ISSN 2222:ISBN 2191:PMID 2173:ISSN 2132:ISBN 2087:PMID 2079:ISSN 2044:PMID 2009:PMID 1971:PMID 1875:PMID 1857:ISSN 1810:ISSN 1775:PMID 1757:ISSN 1708:PMID 1700:ISSN 1656:PMID 1599:PMID 1581:ISSN 1532:ISSN 1462:ISBN 1429:ISSN 1372:PMID 1332:PMID 1283:PMID 1239:ISSN 1195:PMID 1149:ISSN 1096:PMID 1056:ISBN 1024:ISBN 992:ISBN 525:rbcL 502:5.8S 490:rbcL 407:and 328:and 93:fish 2942:doi 2930:300 2890:doi 2848:doi 2791:doi 2728:doi 2676:PMC 2660:doi 2656:360 2602:doi 2555:doi 2512:doi 2500:138 2457:doi 2427:doi 2383:doi 2316:doi 2272:doi 2268:683 2214:doi 2181:PMC 2165:doi 2122:doi 2071:doi 2036:doi 2032:157 2001:doi 1997:161 1963:doi 1959:158 1925:hdl 1917:doi 1865:PMC 1849:doi 1802:doi 1765:PMC 1747:doi 1692:doi 1646:doi 1589:PMC 1571:doi 1524:doi 1490:doi 1452:doi 1419:hdl 1411:doi 1364:doi 1322:doi 1275:doi 1231:doi 1187:doi 1183:162 1141:doi 1088:doi 1048:doi 1016:doi 984:doi 898:rbc 894:psb 890:Rbc 870:psa 864:cox 850:tuf 844:atp 842:1b- 840:cox 824:cob 820:cox 806:rbc 800:cox 783:cox 769:rbc 765:psa 759:cox 745:rbc 741:psb 735:cox 731:cox 717:rbc 711:cox 707:cox 693:rbc 689:tuf 510:18S 506:SSU 498:ITS 494:COI 409:28S 405:ITS 322:RNA 320:or 318:DNA 269:of 160:PCR 2986:: 2964:. 2956:. 2948:. 2940:. 2928:. 2906:, 2896:, 2876:^ 2862:. 2854:. 2844:36 2842:. 2824:31 2822:. 2799:. 2787:57 2785:. 2781:. 2764:42 2762:. 2750:^ 2736:. 2726:. 2716:49 2714:. 2710:. 2698:^ 2684:. 2674:. 2666:. 2654:. 2650:. 2638:^ 2624:. 2616:. 2608:. 2598:14 2596:. 2592:. 2569:. 2561:. 2551:59 2549:. 2526:. 2518:. 2510:. 2498:. 2494:. 2471:. 2463:. 2453:18 2451:. 2439:^ 2423:82 2421:. 2397:. 2389:. 2379:36 2377:. 2373:. 2330:. 2322:. 2312:13 2310:. 2286:. 2278:. 2266:. 2220:, 2189:. 2179:. 2171:. 2161:19 2159:. 2155:. 2130:. 2116:. 2093:. 2085:. 2077:. 2067:54 2065:. 2042:. 2030:. 2007:. 1995:. 1983:^ 1969:. 1957:. 1933:. 1923:. 1915:. 1903:. 1899:. 1873:. 1863:. 1855:. 1847:. 1835:. 1831:. 1808:. 1798:68 1796:. 1773:. 1763:. 1755:. 1745:. 1733:. 1729:. 1706:. 1698:. 1690:. 1680:49 1678:. 1654:. 1644:. 1632:. 1611:^ 1597:. 1587:. 1579:. 1565:. 1561:. 1538:. 1530:. 1520:36 1518:. 1514:. 1486:15 1484:. 1460:, 1427:. 1417:. 1409:. 1399:53 1397:. 1393:. 1370:. 1362:. 1330:. 1318:55 1316:. 1312:. 1289:. 1281:. 1271:17 1269:. 1245:. 1237:. 1227:11 1225:. 1207:^ 1193:. 1181:. 1169:^ 1155:. 1147:. 1137:33 1135:. 1116:^ 1102:. 1094:. 1084:15 1082:. 1070:^ 1054:. 1022:, 990:, 896:A- 876:L 866:1 852:A 846:4 808:L 802:1 785:1 771:L 761:1 737:3 695:L 508:, 504:, 496:, 492:, 384:. 45:• 2972:. 2944:: 2936:: 2892:: 2870:. 2850:: 2807:. 2793:: 2744:. 2730:: 2722:: 2692:. 2662:: 2632:. 2604:: 2577:. 2557:: 2534:. 2514:: 2506:: 2479:. 2459:: 2433:. 2429:: 2405:. 2385:: 2355:. 2338:. 2318:: 2294:. 2274:: 2216:: 2197:. 2167:: 2140:. 2124:: 2101:. 2073:: 2050:. 2038:: 2015:. 2003:: 1977:. 1965:: 1941:. 1927:: 1919:: 1911:: 1905:9 1881:. 1851:: 1843:: 1837:3 1816:. 1804:: 1781:. 1749:: 1741:: 1735:9 1714:. 1694:: 1686:: 1662:. 1648:: 1640:: 1605:. 1573:: 1567:7 1546:. 1526:: 1496:. 1492:: 1454:: 1435:. 1421:: 1413:: 1405:: 1378:. 1366:: 1358:: 1338:. 1324:: 1297:. 1277:: 1253:. 1233:: 1201:. 1189:: 1163:. 1143:: 1110:. 1090:: 1064:. 1050:: 1018:: 986:: 872:A 500:+ 488:( 253:e 246:t 239:v

Index

DNA barcoding

DNA barcoding
Metabarcoding
Microbial
Fungal
Pollen
Algae
macroinvertebrates
fish
Environmental DNA (eDNA)
environmental RNA
Metagenomics
viruses
Metatranscriptomics
Amplification
PCR
Shotgun sequencing
High throughput sequencing
Extracellular RNA
Chimera
Healthcare
Diet assessment
Consortium for the Barcode of Life
Category
v
t
e
DNA barcoding
algae

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑