Knowledge (XXG)

DNA barcoding in diet assessment

Source 📝

586: 689: 760: 721: 654: 217: 609:) in Pakistan, Shehzad et al. (2012) identified a total of 18 prey taxa using DNA barcoding on faeces. Eight distinct bird taxa were reported, while previous studies based on conventional methods did not identify any bird species in the leopard cat diet. Another example is the use of DNA barcoding to identify soft remains of prey in the stomach contents of predators e.g. 33: 578:, DNA barcoding of ingested plants can be a crucial tool giving an accurate picture of food utilization. Additionally, the fine resolution in plant identification obtained with DNA barcoding allows researchers to understand change in diet composition over time and variability among individuals, as observed in the 393:
of consumed species. Indeed, when compared to traditional morphological analysis, DNA barcoding enables a more reliable separation of closely related taxa reducing the observed bias. Moreover, DNA barcoding enables to detect soft and highly digested items, not recognisable through morphological
479:
recovered to estimate the abundance of prey species in diet contents (e.g. gut, faeces). For example, if the wolf ate more moose than wild boar, there should be more moose DNA in their gut, and thus, more moose sequences are recovered. Despite the evidence for general correlations between the
601:. Diet assessment through DNA barcoding of faeces can have a greater efficiency in prey species detection compared to traditional diet analysis, which mostly rely upon the morphological identification of undigested hard remains in the faeces. Estimating the vertebrate diet diversity of the 417:
contents, with on average 90% of DNA-sequences being identified to genus or species level in comparison to 75% of plant fragments recognised with macroscopy. Morevoer, another empirically tested advantage of metabarcoding compared to traditional time-consuming methods, involves higher cost
463:
Despite the improvement of diet assessment via DNA barcoding, secondary consumption (prey of the prey, parasites, etc.) still represents a confounding factor. In fact, some secondary prey may result in the analysis as primary prey items, introducing a
582:(Rupicapra rupicapra). Between October and November, by analyzing the faeces composition via DNA barcoding, the alpine chamois showed a shift in diet preferences. Also, different diet categories were observed amongst individuals within each month. 1868:
Shehzad W, Riaz T, Nawaz MA, Miquel C, Poillot C, Shah SA, Pompanon F, Coissac E, Taberlet P (April 2012). "Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan".
2399:
MĂ©heust E, Alfonsi E, Le MĂ©nec P, Hassani S, Jung JL (2014-11-19). "DNA barcoding for the identification of soft remains of prey in the stomach contents of grey seals (Halichoerus grypus) and harbour porpoises (Phocoena phocoena)".
2164:
Kowalczyk R, Taberlet P, Coissac E, Valentini A, Miquel C, KamiƄski T, WĂłjcik JM (February 2011). "Influence of management practices on large herbivore diet—Case of European bison in BiaƂowieĆŒa Primeval Forest (Poland)".
480:
sequence number and the biomass, actual evaluations of this method have been unsuccessful. This can be explained by the fact that tissues originally contain different densities of DNA and can be digested differently.
443:. Moreover, DNA provides detailed information of the most recent events (e.g. 24–48 hr) but it is not able to provide a longer dietary prospect unless a continuous sampling is conducted. Additionally, when using 2355:
Rayé G, Miquel C, Coissac E, Redjadj C, Loison A, Taberlet P (2010-11-23). "New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study".
447:
that amplify ‘barcode’ regions from a broad range of food species, the amplifiable host DNA may largely outnumber the presence of prey DNA, complicating prey detection. However, a strategy to prevent the host
2492:
Clare EL, Fraser EE, Braid HE, Fenton MB, Hebert PD (June 2009). "Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey".
434:
With DNA barcoding it is not possible to retrieve information about sex or age of prey species, which can be crucial. This limitation can anyway be overcome with an additional step in the analysis by using
2448:
De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P (March 2014). "DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet".
1053:
Harwood JD, Desneux N, Yoo HJ, Rowley DL, Greenstone MH, Obrycki JJ, O'Neil RJ (October 2007). "Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach".
2560:
Leray M, Meyer CP, Mills SC. (2015) "Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet".
632:
predators, feeding on many different species with both plants and animal origin. This methodology does not require knowledge about the food consumed by animals in the habitat they occupy. In a study on
284:
present in dietary samples, e.g. individual food remains, regurgitates, gut and fecal samples, homogenized body of the host organism, target of the diet study (for example with whole body of
1268:
Santos T, Fonseca C, Barros T, Godinho R, Bastos-Silveira C, Bandeira V, Rocha RG (2015-05-20). "Using stomach contents for diet analysis of carnivores through DNA barcoding".
398:
feed on pre-digested bodies of insects or other small animals and their stomach content is too decomposed and morphologically unrecognizable using traditional methods such as
1501:"Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures" 1552:"Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States?" 2121:
Deagle BE, Chiaradia A, McInnes J, Jarman SN (2010-06-17). "Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out?".
641:) diet, DNA metabarcoding allowed accurate reconstruction of a wide range of taxonomically different items present in faecal samples collected in the field. 2303:
Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, Gielly L, Cruaud C, Nascetti G, Wincker P, Swenson JE, Taberlet P (January 2009).
1666:
Griffiths R, Tiwari B (December 1993). "Primers for the differential amplification of the sex-determining region Y gene in a range of mammal species".
248: 84: 472:
and to a higher level of degradation, DNA of secondary prey might represent only a minor part of sequences recovered compared to primary prey.
456:. Indeed, blocking primers for suppressing amplification of predator DNA allows the amplification of the other vertebrate groups and produces 1499:
Soininen EM, Valentini A, Coissac E, Miquel C, Gielly L, Brochmann C, Brysting AK, SĂžnstebĂž JH, Ims RA, Yoccoz NG, Taberlet P (August 2009).
115: 1814:"Blocking primers to enhance PCR amplification of rare sequences in mixed samples - a case study on prey DNA in Antarctic krill stomachs" 504:. Some differences in the methodology can be observed depending on the feeding strategy of the target mammal species, i.e. whether it is 1971:
Vestheim H, Deagle BE, Jarman SN (October 2010). "Application of Blocking Oligonucleotides to Improve Signal-to-Noise Ratio in a PCR".
708:
provided by the metabarcoding approach highlights a complex interaction web and demonstrates that levels of trophic partitioning among
2073:"A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes" 1335:"A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes" 202: 1988: 346: 2535:
Roslin, T. and Majaneva, S. (2016) "The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!".
1385:"Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers" 192: 369:
level. For animal prey, the most broadly used DNA barcode markers to identify diets are the mitochondrial cytochrome C oxydase (
475:
The quantitative interpretation of DNA barcoding results is not straightforward. There have been attempts to use the number of
2194:"Assessment of the food habits of the Moroccan dorcas gazelle in M'Sabih Talaa, west central Morocco, using the trnL approach" 1100:
Kress WJ, GarcĂ­a-Robledo C, Uriarte M, Erickson DL (January 2015). "DNA barcodes for ecology, evolution, and conservation".
964:
Kress WJ, GarcĂ­a-Robledo C, Uriarte M, Erickson DL (January 2015). "DNA barcodes for ecology, evolution, and conservation".
585: 556: 413:
and macroscopic analysis. For instance, Nichols et al. (2016) highlighted the taxonomic precision of metabarcoding on
186: 453: 444: 308: 304: 172: 241: 156: 1912:
Jarman SN, McInnes JC, Faux C, Polanowski AM, Marthick J, Deagle BE, Southwell C, Emmerson L (December 2013).
688: 307:
species with diet items more difficult to identify, it is conceivable to determine all consumed species using
1137:"Cytochrome b or cytochrome c oxidase subunit I for mammalian species identification—An answer to the debate" 2593: 1237:"Assessment of Animal-Based Methods Used for Estimating and Monitoring Rangeland Herbivore Diet Composition" 803: 61: 2598: 234: 221: 2305:"New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach" 2192:
Ait Baamrane MA, Shehzad W, Ouhammou A, Abbad A, Naimi M, Coissac E, Taberlet P, Znari M (2012-04-27).
523:
contents collected from road kills or animals killed during regular hunting. Within DNA barcoding, the
2205: 2025: 1925: 1763: 1622: 1563: 1448: 1189: 813: 705: 409:
enables detection of highly digested plant items with a higher number of taxa identified compared to
390: 71: 66: 808: 419: 142: 76: 2518: 2474: 2425: 2381: 2334: 2146: 2103: 1894: 1691: 1414: 1365: 1079: 1035: 913: 864: 795: 598: 423: 167: 151: 131: 89: 1437:"Diet Assessment Based on Rumen Contents: A Comparison between DNA Metabarcoding and Macroscopy" 2014:"DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem" 1178:"DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem" 2510: 2466: 2417: 2373: 2326: 2282: 2233: 2138: 2095: 2053: 1994: 1984: 1953: 1886: 1845: 1791: 1732: 1683: 1648: 1591: 1532: 1476: 1406: 1357: 1315: 1217: 1158: 1117: 1071: 1027: 981: 905: 856: 709: 700:, French Polynesia. Dietary partitioning among three predatory fish species as detected using 528: 449: 300: 299:
breadth of the target consumer. For organisms feeding on one or only few species, traditional
181: 109: 32: 2603: 2570: 2544: 2502: 2458: 2409: 2365: 2316: 2272: 2264: 2223: 2213: 2174: 2130: 2087: 2043: 2033: 1976: 1943: 1933: 1878: 1835: 1825: 1781: 1771: 1722: 1675: 1638: 1630: 1581: 1571: 1522: 1512: 1466: 1456: 1396: 1349: 1307: 1277: 1248: 1207: 1197: 1148: 1109: 1063: 1017: 973: 944: 895: 846: 618: 338: 326: 296: 269: 564: 536: 532: 418:
efficiency. Finally, with its fine resolution, DNA barcoding represents a crucial tool in
362: 350: 1550:
Stein ED, Martinez MC, Stiles S, Miller PE, Zakharov EV (April 2014). Casiraghi M (ed.).
389:
A major benefit of using DNA barcoding in diet assessment is the ability to provide high
321:
utilized for amplification will differ depending on the diet of the target organism. For
2209: 2029: 1929: 1767: 1752:"Detection of a diverse marine fish fauna using environmental DNA from seawater samples" 1750:
Thomsen PF, Kielgast J, Iversen LL, MĂžller PR, Rasmussen M, Willerslev E (August 2012).
1626: 1567: 1452: 1193: 2277: 2252: 2228: 2193: 2048: 2013: 1948: 1913: 1840: 1813: 1786: 1751: 1727: 1710: 1679: 1643: 1610: 1586: 1551: 1527: 1500: 1471: 1436: 1212: 1177: 933:"Advances in molecular ecology: tracking trophic links through predator-prey food-webs" 527:
L approach can be used to identify plant species by using a very short but informative
436: 330: 318: 292: 2253:"ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis" 2072: 1334: 759: 720: 653: 2587: 2506: 2321: 2304: 2107: 1898: 1882: 1401: 1384: 1369: 1298:
Valentini A, Pompanon F, Taberlet P (February 2009). "DNA barcoding for ecologists".
1067: 1022: 1005: 949: 932: 900: 883: 851: 835:"Molecular analysis of predation: a review of best practice for DNA-based approaches" 834: 693: 539:). Potentially, this application is applicable to all herbivorous species feeding on 501: 497: 476: 406: 378: 370: 315: 273: 265: 43: 39: 24: 2478: 2429: 2385: 2150: 1695: 1083: 1039: 917: 868: 2522: 2338: 1418: 1004:
Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (April 2012).
882:
Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (April 2012).
594: 440: 374: 334: 126: 1383:
AgustĂ­ N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD, Symondson WO (2003).
2413: 2218: 2178: 2038: 1980: 1938: 1776: 1611:"Evaluation of plant contamination in metabarcoding diet analysis of a herbivore" 1576: 1461: 1202: 1153: 1136: 628:
DNA metabarcoding is a game changer for the study of complex diets, such as for
602: 540: 2251:
Riaz T, Shehzad W, Viari A, Pompanon F, Taberlet P, Coissac E (November 2011).
1634: 1311: 1253: 1236: 1113: 977: 2369: 2134: 1975:. Methods in Molecular Biology. Vol. 687. Humana Press. pp. 265–74. 634: 560: 544: 519:
For herbivore mammal species, DNA is usually extracted from faeces samples or
399: 358: 2421: 2377: 2142: 1736: 1176:
JakubavičiĆ«tė E, Bergström U, Eklöf JS, Haenel Q, Bourlat SJ (October 2017).
1162: 2462: 2091: 1914:"Adélie penguin population diet monitoring by analysis of food DNA in scats" 1353: 610: 509: 505: 410: 322: 2514: 2470: 2330: 2286: 2237: 2099: 2057: 2012:
JakubavičiĆ«tė E, Bergström U, Eklöf JS, Haenel Q, Bourlat SJ (2017-10-23).
1998: 1957: 1890: 1849: 1830: 1795: 1652: 1595: 1536: 1517: 1480: 1410: 1361: 1319: 1221: 1121: 1075: 1031: 985: 909: 860: 2548: 1687: 1281: 2268: 629: 513: 457: 395: 2574: 1609:
Ando H, Fujii C, Kawanabe M, Ao Y, Inoue T, Takenaka A (October 2018).
579: 575: 552: 469: 366: 365:(noncoding intergenic spacer) used to identify diet items to genus and 277: 1863: 1861: 1859: 1807: 1805: 1430: 1428: 1006:"Who is eating what: diet assessment using next generation sequencing" 884:"Who is eating what: diet assessment using next generation sequencing" 2443: 2441: 2439: 2071:
Piñol J, San Andrés V, Clare EL, Mir G, Symondson WO (January 2014).
1494: 1492: 1490: 1333:
Piñol J, San Andrés V, Clare EL, Mir G, Symondson WO (January 2014).
1095: 1093: 999: 997: 995: 697: 493: 285: 687: 570:
When studying small herbivores with a cryptic life style, such as
520: 414: 342: 571: 465: 354: 1293: 1291: 597:
approaches is crucial especially when dealing with elusive and
426:
and animals that can cause feeding damages to the environment.
754: 715: 648: 281: 1711:"Non-invasive genetic sampling and individual identification" 833:
King RA, Read DS, Traugott M, Symondson WO (February 2008).
276:. This approach is based on the identification of consumed 1141:
Forensic Science International: Genetics Supplement Series
770: 731: 664: 272:
of organisms. and further detect and describe their
2298: 2296: 1435:Nichols RV, Åkesson M, Kjellander P (June 2016). 1135:Tobe SS, Kitchener A, Linacre A (December 2009). 329:will differ significantly depending on the plant 589:Faeces of wolf (Canis lupus) collected in Sweden 381:is used to identify most of the consumed items. 1235:Garnick S, Barboza PS, Walker JW (July 2018). 2350: 2348: 242: 8: 452:can be the addition of a predator-specific 377:). When the diet is broad and diverse, DNA 249: 235: 15: 2320: 2276: 2227: 2217: 2047: 2037: 1947: 1937: 1839: 1829: 1785: 1775: 1726: 1715:Biological Journal of the Linnean Society 1642: 1585: 1575: 1526: 1516: 1470: 1460: 1400: 1252: 1211: 1201: 1152: 1021: 948: 899: 850: 1709:Taberlet P, Luikart G (September 1999). 931:Sheppard SK, Harwood JD (October 2005). 800:Aquatic macroinvertebrates DNA barcoding 584: 405:When investigating herbivores diet, DNA 825: 460:mixes that are predominately food DNA. 100: 52: 23: 567:can be used to amplify plant species. 295:approach to be adopted depends on the 468:. However, due to a much lower total 353:are used, which differ from the loci 7: 1812:Vestheim H, Jarman SN (July 2008). 1728:10.1111/j.1095-8312.1999.tb01157.x 1680:10.1111/j.1365-294x.1993.tb00034.x 1241:Rangeland Ecology & Management 422:to identify the feeding habits of 203:Consortium for the Barcode of Life 14: 1300:Trends in Ecology & Evolution 1102:Trends in Ecology & Evolution 966:Trends in Ecology & Evolution 2507:10.1111/j.1365-294x.2009.04184.x 2322:10.1111/j.1755-0998.2008.02352.x 1883:10.1111/j.1365-294x.2011.05424.x 1402:10.1046/j.1365-294X.2003.02014.x 1068:10.1111/j.1365-294x.2007.03482.x 1023:10.1111/j.1365-294x.2011.05403.x 950:10.1111/j.1365-2435.2005.01041.x 901:10.1111/j.1365-294X.2011.05403.x 852:10.1111/j.1365-294X.2007.03613.x 758: 719: 712:have likely been underestimated. 652: 325:diets, the standard DNA barcode 262:DNA barcoding in diet assessment 216: 215: 31: 702:metabarcoding dietary analysis 1: 2167:Forest Ecology and Management 537:chloroplast trnL (UAA) intron 496:diet is widely studied using 394:identification. For example, 333:. Therefore, for identifying 2414:10.1080/17451000.2014.943240 2219:10.1371/journal.pone.0035643 2179:10.1016/j.foreco.2010.11.026 2039:10.1371/journal.pone.0186929 1981:10.1007/978-1-60761-944-4_19 1939:10.1371/journal.pone.0082227 1777:10.1371/journal.pone.0041732 1577:10.1371/journal.pone.0095525 1462:10.1371/journal.pone.0157977 1270:Wildlife Biology in Practice 1203:10.1371/journal.pone.0186929 1154:10.1016/j.fsigss.2009.08.053 303:techniques can be used. For 2451:Molecular Ecology Resources 2309:Molecular Ecology Resources 2080:Molecular Ecology Resources 1342:Molecular Ecology Resources 692:Food web reconstruction by 593:For carnivores, the use of 437:microsatellite polymorphism 2620: 1635:10.1038/s41598-018-32845-w 1312:10.1016/j.tree.2008.09.011 1254:10.1016/j.rama.2018.03.003 1114:10.1016/j.tree.2014.10.008 978:10.1016/j.tree.2014.10.008 441:Y-chromosome amplification 173:High throughput sequencing 2370:10.1007/s11284-010-0780-5 2135:10.1007/s10592-010-0096-6 607:Prionailurus bengalensis 551:L approach, the markers 110:Environmental DNA (eDNA) 2463:10.1111/1755-0998.12188 2402:Marine Biology Research 2092:10.1111/1755-0998.12156 1354:10.1111/1755-0998.12156 804:Microbial DNA barcoding 280:by characterization of 2257:Nucleic Acids Research 1831:10.1186/1742-9994-5-12 1518:10.1186/1742-9994-6-16 767:This section is empty. 728:This section is empty. 713: 661:This section is empty. 590: 2549:10.1139/gen-2015-0229 2123:Conservation Genetics 1282:10.2461/wbp.2015.11.4 696:at the coral reef of 691: 588: 547:Alternatively to the 1818:Frontiers in Zoology 1505:Frontiers in Zoology 814:Pollen DNA barcoding 706:taxonomic resolution 391:taxonomic resolution 373:) and cytochrome b ( 274:trophic interactions 2358:Ecological Research 2210:2012PLoSO...735643A 2030:2017PLoSO..1286929J 1930:2013PLoSO...882227J 1768:2012PLoSO...741732T 1627:2018NatSR...815563A 1568:2014PLoSO...995525S 1453:2016PLoSO..1157977N 1194:2017PLoSO..1286929J 809:Algae DNA barcoding 420:wildlife management 345:level, the markers 143:Metatranscriptomics 19:Part of a series on 2575:10.7717/peerj.1047 2269:10.1093/nar/gkr732 1615:Scientific Reports 937:Functional Ecology 796:Fish DNA barcoding 714: 615:Halichoerus grypus 599:endangered species 591: 424:endangered species 168:Shotgun sequencing 85:macroinvertebrates 2495:Molecular Ecology 1871:Molecular Ecology 1668:Molecular Ecology 1395:(12): 3467–3475. 1389:Molecular Ecology 1056:Molecular Ecology 1010:Molecular Ecology 888:Molecular Ecology 839:Molecular Ecology 787: 786: 748: 747: 710:coral reef fishes 681: 680: 623:Phocoena phocoena 619:harbour porpoises 450:DNA amplification 337:at the taxonomic 301:Sanger sequencing 259: 258: 182:Extracellular RNA 116:environmental RNA 2611: 2578: 2558: 2552: 2533: 2527: 2526: 2489: 2483: 2482: 2445: 2434: 2433: 2396: 2390: 2389: 2352: 2343: 2342: 2324: 2300: 2291: 2290: 2280: 2248: 2242: 2241: 2231: 2221: 2189: 2183: 2182: 2161: 2155: 2154: 2129:(5): 2039–2048. 2118: 2112: 2111: 2077: 2068: 2062: 2061: 2051: 2041: 2024:(10): e0186929. 2009: 2003: 2002: 1968: 1962: 1961: 1951: 1941: 1909: 1903: 1902: 1865: 1854: 1853: 1843: 1833: 1809: 1800: 1799: 1789: 1779: 1747: 1741: 1740: 1730: 1706: 1700: 1699: 1663: 1657: 1656: 1646: 1606: 1600: 1599: 1589: 1579: 1547: 1541: 1540: 1530: 1520: 1496: 1485: 1484: 1474: 1464: 1432: 1423: 1422: 1404: 1380: 1374: 1373: 1339: 1330: 1324: 1323: 1295: 1286: 1285: 1265: 1259: 1258: 1256: 1232: 1226: 1225: 1215: 1205: 1188:(10): e0186929. 1173: 1167: 1166: 1156: 1132: 1126: 1125: 1097: 1088: 1087: 1062:(20): 4390–400. 1050: 1044: 1043: 1025: 1001: 990: 989: 961: 955: 954: 952: 928: 922: 921: 903: 879: 873: 872: 854: 830: 782: 779: 769:You can help by 762: 755: 743: 740: 730:You can help by 723: 716: 676: 673: 663:You can help by 656: 649: 535:(P6 loop of the 251: 244: 237: 224: 219: 218: 35: 16: 2619: 2618: 2614: 2613: 2612: 2610: 2609: 2608: 2584: 2583: 2582: 2581: 2559: 2555: 2534: 2530: 2501:(11): 2532–42. 2491: 2490: 2486: 2447: 2446: 2437: 2398: 2397: 2393: 2354: 2353: 2346: 2302: 2301: 2294: 2250: 2249: 2245: 2191: 2190: 2186: 2163: 2162: 2158: 2120: 2119: 2115: 2075: 2070: 2069: 2065: 2011: 2010: 2006: 1991: 1970: 1969: 1965: 1911: 1910: 1906: 1867: 1866: 1857: 1811: 1810: 1803: 1749: 1748: 1744: 1708: 1707: 1703: 1665: 1664: 1660: 1608: 1607: 1603: 1549: 1548: 1544: 1498: 1497: 1488: 1447:(6): e0157977. 1434: 1433: 1426: 1382: 1381: 1377: 1337: 1332: 1331: 1327: 1297: 1296: 1289: 1267: 1266: 1262: 1234: 1233: 1229: 1175: 1174: 1170: 1134: 1133: 1129: 1099: 1098: 1091: 1052: 1051: 1047: 1003: 1002: 993: 963: 962: 958: 930: 929: 925: 881: 880: 876: 832: 831: 827: 822: 792: 783: 777: 774: 753: 744: 738: 735: 686: 677: 671: 668: 647: 533:chloroplast DNA 491: 486: 454:blocking primer 445:generic primers 432: 387: 331:taxonomic level 309:NGS methodology 268:to analyse the 255: 214: 207: 198:Diet assessment 189: 177: 163: 147: 138: 122: 112: 96: 48: 46: 38: 12: 11: 5: 2617: 2615: 2607: 2606: 2601: 2596: 2594:Bioinformatics 2586: 2585: 2580: 2579: 2553: 2543:(9): 603–628. 2528: 2484: 2435: 2408:(4): 385–395. 2391: 2364:(2): 265–276. 2344: 2292: 2243: 2184: 2173:(4): 821–828. 2156: 2113: 2063: 2004: 1989: 1963: 1924:(12): e82227. 1904: 1877:(8): 1951–65. 1855: 1801: 1742: 1721:(1–2): 41–55. 1701: 1658: 1601: 1542: 1486: 1424: 1375: 1325: 1287: 1260: 1247:(4): 449–457. 1227: 1168: 1147:(1): 306–307. 1127: 1089: 1045: 1016:(8): 1931–50. 991: 956: 943:(5): 751–762. 923: 894:(8): 1931–50. 874: 824: 823: 821: 818: 817: 816: 811: 806: 801: 798: 791: 788: 785: 784: 778:September 2020 765: 763: 752: 749: 746: 745: 739:September 2020 726: 724: 685: 682: 679: 678: 672:September 2020 659: 657: 646: 643: 580:alpine chamois 490: 487: 485: 482: 431: 428: 411:microhistology 386: 383: 293:DNA sequencing 264:is the use of 257: 256: 254: 253: 246: 239: 231: 228: 227: 226: 225: 209: 208: 206: 205: 200: 195: 190: 184: 178: 176: 175: 170: 164: 162: 161: 160: 159: 148: 146: 145: 139: 137: 136: 135: 134: 123: 121: 120: 119: 118: 106: 103: 102: 98: 97: 95: 94: 93: 92: 87: 79: 74: 69: 64: 58: 55: 54: 50: 49: 36: 28: 27: 21: 20: 13: 10: 9: 6: 4: 3: 2: 2616: 2605: 2602: 2600: 2599:DNA barcoding 2597: 2595: 2592: 2591: 2589: 2576: 2572: 2568: 2564: 2557: 2554: 2550: 2546: 2542: 2538: 2532: 2529: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2488: 2485: 2480: 2476: 2472: 2468: 2464: 2460: 2457:(2): 306–23. 2456: 2452: 2444: 2442: 2440: 2436: 2431: 2427: 2423: 2419: 2415: 2411: 2407: 2403: 2395: 2392: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2351: 2349: 2345: 2340: 2336: 2332: 2328: 2323: 2318: 2314: 2310: 2306: 2299: 2297: 2293: 2288: 2284: 2279: 2274: 2270: 2266: 2262: 2258: 2254: 2247: 2244: 2239: 2235: 2230: 2225: 2220: 2215: 2211: 2207: 2204:(4): e35643. 2203: 2199: 2195: 2188: 2185: 2180: 2176: 2172: 2168: 2160: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2117: 2114: 2109: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2067: 2064: 2059: 2055: 2050: 2045: 2040: 2035: 2031: 2027: 2023: 2019: 2015: 2008: 2005: 2000: 1996: 1992: 1990:9781607619437 1986: 1982: 1978: 1974: 1973:PCR Protocols 1967: 1964: 1959: 1955: 1950: 1945: 1940: 1935: 1931: 1927: 1923: 1919: 1915: 1908: 1905: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1864: 1862: 1860: 1856: 1851: 1847: 1842: 1837: 1832: 1827: 1823: 1819: 1815: 1808: 1806: 1802: 1797: 1793: 1788: 1783: 1778: 1773: 1769: 1765: 1762:(8): e41732. 1761: 1757: 1753: 1746: 1743: 1738: 1734: 1729: 1724: 1720: 1716: 1712: 1705: 1702: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1662: 1659: 1654: 1650: 1645: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1605: 1602: 1597: 1593: 1588: 1583: 1578: 1573: 1569: 1565: 1562:(4): e95525. 1561: 1557: 1553: 1546: 1543: 1538: 1534: 1529: 1524: 1519: 1514: 1510: 1506: 1502: 1495: 1493: 1491: 1487: 1482: 1478: 1473: 1468: 1463: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1429: 1425: 1420: 1416: 1412: 1408: 1403: 1398: 1394: 1390: 1386: 1379: 1376: 1371: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1329: 1326: 1321: 1317: 1313: 1309: 1305: 1301: 1294: 1292: 1288: 1283: 1279: 1275: 1271: 1264: 1261: 1255: 1250: 1246: 1242: 1238: 1231: 1228: 1223: 1219: 1214: 1209: 1204: 1199: 1195: 1191: 1187: 1183: 1179: 1172: 1169: 1164: 1160: 1155: 1150: 1146: 1142: 1138: 1131: 1128: 1123: 1119: 1115: 1111: 1107: 1103: 1096: 1094: 1090: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1049: 1046: 1041: 1037: 1033: 1029: 1024: 1019: 1015: 1011: 1007: 1000: 998: 996: 992: 987: 983: 979: 975: 971: 967: 960: 957: 951: 946: 942: 938: 934: 927: 924: 919: 915: 911: 907: 902: 897: 893: 889: 885: 878: 875: 870: 866: 862: 858: 853: 848: 845:(4): 947–63. 844: 840: 836: 829: 826: 819: 815: 812: 810: 807: 805: 802: 799: 797: 794: 793: 789: 781: 772: 768: 764: 761: 757: 756: 750: 742: 733: 729: 725: 722: 718: 717: 711: 707: 703: 699: 695: 690: 683: 675: 666: 662: 658: 655: 651: 650: 644: 642: 640: 636: 631: 626: 624: 620: 616: 612: 608: 604: 600: 596: 587: 583: 581: 577: 573: 568: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 522: 517: 515: 511: 507: 503: 502:metabarcoding 499: 498:DNA barcoding 495: 488: 483: 481: 478: 473: 471: 467: 461: 459: 455: 451: 446: 442: 438: 429: 427: 425: 421: 416: 412: 408: 407:metabarcoding 403: 401: 397: 392: 384: 382: 380: 379:metabarcoding 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 320: 317: 312: 310: 306: 302: 298: 294: 289: 287: 283: 279: 275: 271: 267: 266:DNA barcoding 263: 252: 247: 245: 240: 238: 233: 232: 230: 229: 223: 213: 212: 211: 210: 204: 201: 199: 196: 194: 191: 188: 185: 183: 180: 179: 174: 171: 169: 166: 165: 158: 155: 154: 153: 152:Amplification 150: 149: 144: 141: 140: 133: 130: 129: 128: 125: 124: 117: 114: 113: 111: 108: 107: 105: 104: 99: 91: 88: 86: 83: 82: 80: 78: 75: 73: 70: 68: 65: 63: 60: 59: 57: 56: 51: 45: 44:Metabarcoding 41: 40:DNA barcoding 34: 30: 29: 26: 25:DNA barcoding 22: 18: 17: 2566: 2562: 2556: 2540: 2536: 2531: 2498: 2494: 2487: 2454: 2450: 2405: 2401: 2394: 2361: 2357: 2315:(1): 51–60. 2312: 2308: 2263:(21): e145. 2260: 2256: 2246: 2201: 2197: 2187: 2170: 2166: 2159: 2126: 2122: 2116: 2086:(1): 18–26. 2083: 2079: 2066: 2021: 2017: 2007: 1972: 1966: 1921: 1917: 1907: 1874: 1870: 1821: 1817: 1759: 1755: 1745: 1718: 1714: 1704: 1674:(6): 405–6. 1671: 1667: 1661: 1621:(1): 15563. 1618: 1614: 1604: 1559: 1555: 1545: 1508: 1504: 1444: 1440: 1392: 1388: 1378: 1348:(1): 18–26. 1345: 1341: 1328: 1306:(2): 110–7. 1303: 1299: 1273: 1269: 1263: 1244: 1240: 1230: 1185: 1181: 1171: 1144: 1140: 1130: 1108:(1): 25–35. 1105: 1101: 1059: 1055: 1048: 1013: 1009: 972:(1): 25–35. 969: 965: 959: 940: 936: 926: 891: 887: 877: 842: 838: 828: 775: 771:adding to it 766: 736: 732:adding to it 727: 701: 694:DNA barcodes 669: 665:adding to it 660: 639:Ursus arctos 638: 627: 622: 614: 606: 595:non-invasive 592: 569: 548: 524: 518: 492: 474: 462: 433: 404: 388: 351:trn-L-intron 335:plant tissue 313: 290: 261: 260: 197: 127:Metagenomics 603:leopard cat 545:gymnosperms 541:angiosperms 305:polyphagous 2588:Categories 820:References 751:Arthropods 635:brown bear 611:grey seals 430:Challenges 400:microscopy 385:Advantages 193:Healthcare 2569:: e1047. 2422:1745-1000 2378:0912-3814 2143:1566-0621 2108:206946302 1899:205364612 1824:(1): 12. 1737:0024-4066 1511:(1): 16. 1370:206946302 1163:1875-1768 630:omnivores 565:trnH-psbA 510:carnivore 506:herbivore 477:sequences 396:Arachnids 363:trnH-psbA 323:herbivore 62:Microbial 2515:19457192 2479:25972059 2471:24128180 2430:83991013 2386:20754195 2331:21564566 2287:21930509 2238:22558187 2198:PLOS ONE 2151:19992150 2100:23957910 2058:29059215 2018:PLOS ONE 1999:20967615 1958:24358158 1918:PLOS ONE 1891:22250784 1850:18638418 1796:22952584 1756:PLOS ONE 1696:43323282 1653:30349088 1596:24755838 1556:PLOS ONE 1537:19695081 1481:27322387 1441:PLOS ONE 1411:14629361 1362:23957910 1320:19100655 1222:29059215 1182:PLOS ONE 1122:25468359 1084:21211301 1076:17784913 1040:10013333 1032:22171763 986:25468359 918:10013333 910:22171763 869:44796921 861:18208490 790:See also 576:lemmings 529:fragment 514:omnivore 484:Examples 458:amplicon 222:Category 81:Aquatic 2604:Ecology 2523:3940026 2339:5308081 2278:3241669 2229:3338736 2206:Bibcode 2049:5653352 2026:Bibcode 1949:3864945 1926:Bibcode 1841:2517594 1787:3430657 1764:Bibcode 1688:8162230 1644:6197254 1623:Bibcode 1587:3995707 1564:Bibcode 1528:2736939 1472:4913902 1449:Bibcode 1419:7985256 1213:5653352 1190:Bibcode 494:Mammals 489:Mammals 470:biomass 367:species 319:markers 316:barcode 286:insects 278:species 187:Chimera 132:viruses 53:By taxa 37:  2537:Genome 2521:  2513:  2477:  2469:  2428:  2420:  2384:  2376:  2337:  2329:  2285:  2275:  2236:  2226:  2149:  2141:  2106:  2098:  2056:  2046:  1997:  1987:  1956:  1946:  1897:  1889:  1848:  1838:  1794:  1784:  1735:  1694:  1686:  1651:  1641:  1594:  1584:  1535:  1525:  1479:  1469:  1417:  1409:  1368:  1360:  1318:  1220:  1210:  1161:  1120:  1082:  1074:  1038:  1030:  984:  916:  908:  867:  859:  704:. The 698:Moorea 617:) and 339:family 220:  72:Pollen 67:Fungal 47:  2563:PeerJ 2519:S2CID 2475:S2CID 2426:S2CID 2382:S2CID 2335:S2CID 2147:S2CID 2104:S2CID 2076:(PDF) 1895:S2CID 1692:S2CID 1415:S2CID 1366:S2CID 1338:(PDF) 1276:(1). 1080:S2CID 1036:S2CID 914:S2CID 865:S2CID 645:Birds 572:voles 521:rumen 512:, or 415:rumen 343:genus 101:Other 77:Algae 2511:PMID 2467:PMID 2418:ISSN 2374:ISSN 2327:PMID 2283:PMID 2234:PMID 2139:ISSN 2096:PMID 2054:PMID 1995:PMID 1985:ISBN 1954:PMID 1887:PMID 1846:PMID 1792:PMID 1733:ISSN 1684:PMID 1649:PMID 1592:PMID 1533:PMID 1477:PMID 1407:PMID 1358:PMID 1316:PMID 1218:PMID 1159:ISSN 1118:PMID 1072:PMID 1028:PMID 982:PMID 906:PMID 857:PMID 684:Fish 574:and 561:matK 557:ITS2 553:rbcL 543:and 500:and 466:bias 439:and 375:cytb 359:matK 355:ITS2 349:and 347:rbcL 327:loci 314:The 297:diet 291:The 270:diet 90:fish 2571:doi 2545:doi 2503:doi 2459:doi 2410:doi 2366:doi 2317:doi 2273:PMC 2265:doi 2224:PMC 2214:doi 2175:doi 2171:261 2131:doi 2088:doi 2044:PMC 2034:doi 1977:doi 1944:PMC 1934:doi 1879:doi 1836:PMC 1826:doi 1782:PMC 1772:doi 1723:doi 1676:doi 1639:PMC 1631:doi 1582:PMC 1572:doi 1523:PMC 1513:doi 1467:PMC 1457:doi 1397:doi 1350:doi 1308:doi 1278:doi 1249:doi 1208:PMC 1198:doi 1149:doi 1110:doi 1064:doi 1018:doi 974:doi 945:doi 896:doi 847:doi 773:. 734:. 667:. 625:). 549:trn 531:of 525:trn 371:COI 341:or 288:). 282:DNA 157:PCR 2590:: 2565:, 2541:59 2539:, 2517:. 2509:. 2499:18 2497:. 2473:. 2465:. 2455:14 2453:. 2438:^ 2424:. 2416:. 2406:11 2404:. 2380:. 2372:. 2362:26 2360:. 2347:^ 2333:. 2325:. 2311:. 2307:. 2295:^ 2281:. 2271:. 2261:39 2259:. 2255:. 2232:. 2222:. 2212:. 2200:. 2196:. 2169:. 2145:. 2137:. 2127:11 2125:. 2102:. 2094:. 2084:14 2082:. 2078:. 2052:. 2042:. 2032:. 2022:12 2020:. 2016:. 1993:. 1983:. 1952:. 1942:. 1932:. 1920:. 1916:. 1893:. 1885:. 1875:21 1873:. 1858:^ 1844:. 1834:. 1820:. 1816:. 1804:^ 1790:. 1780:. 1770:. 1758:. 1754:. 1731:. 1719:68 1717:. 1713:. 1690:. 1682:. 1670:. 1647:. 1637:. 1629:. 1617:. 1613:. 1590:. 1580:. 1570:. 1558:. 1554:. 1531:. 1521:. 1507:. 1503:. 1489:^ 1475:. 1465:. 1455:. 1445:11 1443:. 1439:. 1427:^ 1413:. 1405:. 1393:12 1391:. 1387:. 1364:. 1356:. 1346:14 1344:. 1340:. 1314:. 1304:24 1302:. 1290:^ 1274:11 1272:. 1245:71 1243:. 1239:. 1216:. 1206:. 1196:. 1186:12 1184:. 1180:. 1157:. 1143:. 1139:. 1116:. 1106:30 1104:. 1092:^ 1078:. 1070:. 1060:16 1058:. 1034:. 1026:. 1014:21 1012:. 1008:. 994:^ 980:. 970:30 968:. 941:19 939:. 935:. 912:. 904:. 892:21 890:. 886:. 863:. 855:. 843:17 841:. 837:. 563:, 559:, 555:, 516:. 508:, 402:. 361:, 357:, 311:. 42:‱ 2577:. 2573:: 2567:3 2551:. 2547:: 2525:. 2505:: 2481:. 2461:: 2432:. 2412:: 2388:. 2368:: 2341:. 2319:: 2313:9 2289:. 2267:: 2240:. 2216:: 2208:: 2202:7 2181:. 2177:: 2153:. 2133:: 2110:. 2090:: 2060:. 2036:: 2028:: 2001:. 1979:: 1960:. 1936:: 1928:: 1922:8 1901:. 1881:: 1852:. 1828:: 1822:5 1798:. 1774:: 1766:: 1760:7 1739:. 1725:: 1698:. 1678:: 1672:2 1655:. 1633:: 1625:: 1619:8 1598:. 1574:: 1566:: 1560:9 1539:. 1515:: 1509:6 1483:. 1459:: 1451:: 1421:. 1399:: 1372:. 1352:: 1322:. 1310:: 1284:. 1280:: 1257:. 1251:: 1224:. 1200:: 1192:: 1165:. 1151:: 1145:2 1124:. 1112:: 1086:. 1066:: 1042:. 1020:: 988:. 976:: 953:. 947:: 920:. 898:: 871:. 849:: 780:) 776:( 741:) 737:( 674:) 670:( 637:( 621:( 613:( 605:( 250:e 243:t 236:v

Index

DNA barcoding

DNA barcoding
Metabarcoding
Microbial
Fungal
Pollen
Algae
macroinvertebrates
fish
Environmental DNA (eDNA)
environmental RNA
Metagenomics
viruses
Metatranscriptomics
Amplification
PCR
Shotgun sequencing
High throughput sequencing
Extracellular RNA
Chimera
Healthcare
Diet assessment
Consortium for the Barcode of Life
Category
v
t
e
DNA barcoding
diet

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑