Knowledge

Algebraic topology

Source 📝

2148: 403: 1931: 2169: 2137: 2206: 2179: 2159: 38: 601:
defined on the manifold in question. De Rham showed that all of these approaches were interrelated and that, for a closed, oriented manifold, the Betti numbers derived through simplicial homology were the same Betti numbers as those derived through de Rham cohomology. This was extended in the 1950s,
503:) of spaces. This allows one to recast statements about topological spaces into statements about groups, which have a great deal of manageable structure, often making these statements easier to prove. Two major ways in which this can be done are through 86:
Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any
310:. While inspired by knots that appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an 622:
of spaces passes to an isomorphism of homology groups), verified that all existing (co)homology theories satisfied these axioms, and then proved that such an axiomatization uniquely characterized the theory.
285:
which cannot be embedded in three dimensions, but can be embedded in four dimensions. Typically, results in algebraic topology focus on global, non-differentiable aspects of manifolds; for example
488:, which led to the change of name to algebraic topology. The combinatorial topology name is still sometimes used to emphasize an algorithmic approach based on decomposition of spaces. 233:. Cohomology arises from the algebraic dualization of the construction of homology. In less abstract language, cochains in the fundamental sense should assign "quantities" to the 378: 349: 2209: 125:, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space. 751:
is free. This result is quite interesting, because the statement is purely algebraic yet the simplest known proof is topological. Namely, any free group
384:); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself. 1690: 1542: 670: 484:). In the 1920s and 1930s, there was growing emphasis on investigating topological spaces by finding correspondences from them to algebraic 1803: 1843: 619: 2197: 2192: 1761: 1749: 1666: 1648: 1627: 1603: 1578: 1415: 1368: 1341: 1314: 574:
on the associated groups, and these homomorphisms can be used to show non-existence (or, much more deeply, existence) of mappings.
535: 480:, implying an emphasis on how a space X was constructed from simpler ones (the modern standard tool for such construction is the 2187: 1704: 850: 1179: 1213: 1149: 1129: 1010: 1522: 2089: 1778: 1184: 1164: 1504:
Brown, R.; Higgins, P.J. (1978), "On the connection between the second relative homotopy groups of some related spaces",
1144: 570:
have the same associated groups, but their associated morphisms also correspond—a continuous mapping of spaces induces a
1429: 1425: 855: 845: 756: 519:
groups. The fundamental groups give us basic information about the structure of a topological space, but they are often
1139: 2230: 1799: 1773: 1124: 636: 442: 31: 1114: 790:
is free. On the other hand, this type of application is also handled more simply by the use of covering morphisms of
2097: 1741: 1296: 1228: 441:
appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an
235: 801: 1818:
Section 2.7 provides a category-theoretic presentation of the theorem as a colimit in the category of groupoids.
1169: 2168: 1896: 714: 534:
Homology and cohomology groups, on the other hand, are abelian and in many important cases finitely generated.
1119: 733: 2182: 1253: 677: 582: 528: 468:, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). 65: 1396:(Discusses generalized versions of van Kampen's theorem applied to topological spaces and simplicial sets). 2117: 2112: 2038: 1915: 1903: 1876: 1836: 1223: 905: 615: 559: 551: 512: 477: 230: 134: 69: 1134: 1959: 1886: 1768: 1218: 1100: 794:, and that technique has yielded subgroup theorems not yet proved by methods of algebraic topology; see 693: 598: 282: 2147: 354: 351:. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of 325: 2107: 2059: 2033: 1881: 1479: 915: 703:
when the top-dimensional integral homology group is the integers, and is non-orientable when it is 0.
164: 1609:. A functorial, algebraic approach originally by Greenberg with geometric flavoring added by Harper. 1553:
This provides a homotopy theoretic approach to basic algebraic topology, without needing a basis in
1527:, European Mathematical Society Tracts in Mathematics, vol. 15, European Mathematical Society, 2158: 1954: 1258: 1233: 1174: 1000: 640: 492: 485: 437:(see illustration). Simplicial complexes should not be confused with the more abstract notion of a 286: 226: 222: 172: 2152: 2102: 2023: 2013: 1891: 1713: 1528: 1470: 1203: 1095: 990: 925: 726: 681: 658: 644: 586: 571: 524: 465: 453: 393: 307: 2122: 1159: 945: 685: 590: 1790: 2140: 2006: 1964: 1829: 1757: 1745: 1699: 1686: 1662: 1644: 1623: 1599: 1574: 1554: 1538: 1411: 1364: 1337: 1331: 1310: 1304: 1189: 1045: 1035: 1020: 965: 955: 935: 875: 865: 504: 415: 258: 168: 122: 118: 61: 1524:
Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids
1487: 1358: 1920: 1866: 1587: 1509: 1462: 1389: 1154: 1085: 1015: 885: 880: 689: 603: 594: 419: 402: 266: 140: 57: 1447:(Gives a broad view of higher-dimensional van Kampen theorems involving multiple groupoids) 1979: 1974: 1676: 1090: 1070: 1065: 1030: 930: 607: 578: 547: 508: 461: 457: 381: 319: 262: 190: 1453:
Brown, R.; Razak, A. (1984), "A van Kampen theorem for unions of non-connected spaces",
566:
of the underlying topological space, in the sense that two topological spaces which are
2069: 2001: 1592: 1570: 1558: 1208: 1050: 1040: 1025: 900: 895: 820: 763: 438: 148: 112: 2224: 2079: 1989: 1969: 1735: 1731: 1617: 1613: 1474: 1243: 1060: 1055: 970: 950: 910: 870: 520: 496: 214: 206: 202: 160: 76: 2172: 562:
originated here. Fundamental groups and homology and cohomology groups are not only
2064: 1984: 1930: 1786: 1702:(1933), "On the connection between the fundamental groups of some related spaces", 1248: 1080: 1005: 975: 860: 835: 830: 825: 666: 567: 423: 278: 1075: 17: 1680: 1638: 1548: 1405: 2162: 2074: 1401: 995: 985: 980: 890: 815: 298: 53: 1513: 1435: 577:
One of the first mathematicians to work with different types of cohomology was
2018: 1949: 1908: 1557:, or the method of simplicial approximation. It contains a lot of material on 960: 940: 920: 840: 748: 700: 516: 481: 397: 218: 184: 92: 2043: 791: 311: 117:
In mathematics, homotopy groups are used in algebraic topology to classify
2028: 1996: 1945: 1852: 1238: 707: 500: 491:
In the algebraic approach, one finds a correspondence between spaces and
427: 248: 198: 156: 88: 80: 1717: 1633:. A modern, geometrically flavoured introduction to algebraic topology. 1466: 611: 555: 523:
and can be difficult to work with. The fundamental group of a (finite)
431: 1482:
with a set of base points of a space which is the union of open sets."
1533: 1300: 315: 270: 610:
generalized this approach. They defined homology and cohomology as
1360:
Blowups, slicings and permutation groups in combinatorial topology
538:
are completely classified and are particularly easy to work with.
274: 73: 45:, one of the most frequently studied objects in algebraic topology 42: 36: 1263: 103:
Below are some of the main areas studied in algebraic topology:
37: 1825: 1685:, EMS Textbooks in Mathematics, European Mathematical Society, 277:, which can all be realized in three dimensions, but also the 1517:. "The first 2-dimensional version of van Kampen's theorem." 1821: 155:"identical") is a certain general procedure to associate a 1521:
Brown, Ronald; Higgins, Philip J.; Sivera, Rafael (2011),
1410:, Graduate Texts in Mathematics, vol. 139, Springer, 209:. That is, cohomology is defined as the abstract study of 744:-space identifies at least one pair of antipodal points. 546:
In general, all constructions of algebraic topology are
460:. This class of spaces is broader and has some better 1598:, Mathematics Lecture Note Series, Westview/Perseus, 1486:
Brown, R.; Hardie, K.; Kamps, H.; Porter, T. (2002),
357: 328: 631:
Classic applications of algebraic topology include:
418:
of a certain kind, constructed by "gluing together"
221:. Cohomology can be viewed as a method of assigning 2088: 2052: 1938: 1859: 1594:
Algebraic Topology: A First Course, Revised edition
1488:"The homotopy double groupoid of a Hausdorff space" 786:is again a graph. Therefore, its fundamental group 1591: 372: 343: 774:is the fundamental group of some covering space 225:to a topological space that has a more refined 121:. The first and simplest homotopy group is the 30:For the topology of pointwise convergence, see 755:may be realized as the fundamental group of a 725: = 2, this is sometimes called the " 1837: 452:is a type of topological space introduced by 8: 581:. One can use the differential structure of 1336:, Courier Dover Publications, p. 221, 1309:, Courier Dover Publications, p. 101, 713:admits a nowhere-vanishing continuous unit 167:with a given mathematical object such as a 2205: 2178: 1844: 1830: 1822: 676:One can use the differential structure of 1622:, Cambridge: Cambridge University Press, 1532: 364: 360: 359: 356: 335: 331: 330: 327: 1391:Simplicial Sets and van Kampen's Theorem 1363:, Logos Verlag Berlin GmbH, p. 23, 1333:A Combinatorial Introduction to Topology 1283: 401: 1276: 795: 1792:A Concise Course in Algebraic Topology 64:. The basic goal is to find algebraic 79:, though usually most classify up to 7: 1306:Invitation to Combinatorial Topology 696:defined on the manifold in question. 669:, which allows one to calculate the 618:subject to certain axioms (e.g., a 1567:A First Course In Abstract Algebra 1478:. "Gives a general theorem on the 692:to investigate the solvability of 597:to investigate the solvability of 476:An older name for the subject was 25: 1661:, London: Van Nostrand Reinhold, 1640:Notes on categories and groupoids 536:Finitely generated abelian groups 2204: 2177: 2167: 2157: 2146: 2136: 2135: 1929: 1388:Allegretti, Dylan G. L. (2008), 1264:Topological quantum field theory 373:{\displaystyle \mathbb {R} ^{3}} 344:{\displaystyle \mathbb {R} ^{3}} 1809:from the original on 2022-10-09 1705:American Journal of Mathematics 1431:Higher dimensional group theory 261:that near each point resembles 1214:Glossary of algebraic topology 1150:Freudenthal suspension theorem 1130:Cellular approximation theorem 736:: any continuous map from the 495:that respects the relation of 472:Method of algebraic invariants 1: 1185:Universal coefficient theorem 1165:Lefschetz fixed-point theorem 766:tells us that every subgroup 671:Euler–PoincarĂ© characteristic 846:Luitzen Egbertus Jan Brouwer 650:to itself has a fixed point. 1800:University of Chicago Press 1774:Encyclopedia of Mathematics 1637:Higgins, Philip J. (1971), 1125:Brouwer fixed point theorem 637:Brouwer fixed point theorem 443:abstract simplicial complex 32:Algebraic topology (object) 2247: 2098:Banach fixed-point theorem 1742:Cambridge University Press 1657:Maunder, C. R. F. (1970), 1590:; Harper, John R. (1981), 1565:Fraleigh, John B. (1976), 1229:Higher-dimensional algebra 1180:Seifert–van Kampen theorem 542:Setting in category theory 391: 296: 246: 182: 139:In algebraic topology and 132: 110: 29: 2131: 1927: 1643:, Van Nostrand Reinhold, 1569:(2nd ed.), Reading: 1357:Spreer, Jonathan (2011), 802:Topological combinatorics 435:-dimensional counterparts 380:upon itself (known as an 1514:10.1112/plms/s3-36.2.193 1175:PoincarĂ© duality theorem 1145:Eilenberg–Zilber theorem 197:is a general term for a 193:and algebraic topology, 1506:Proc. London Math. Soc. 1492:Theory Appl. Categories 1330:Henle, Michael (1994), 1254:Serre spectral sequence 1140:Eilenberg–Ganea theorem 657:th homology group of a 616:natural transformations 406:A simplicial 3-complex. 265:. Examples include the 95:is again a free group. 2153:Mathematics portal 2053:Metrics and properties 2039:Second-countable space 1508:, S3-36 (2): 193–212, 1224:Higher category theory 1115:Blakers–Massey theorem 906:Alexander Grothendieck 762:. The main theorem on 694:differential equations 599:differential equations 560:natural transformation 478:combinatorial topology 407: 374: 345: 46: 1407:Topology and Geometry 1219:Grothendieck topology 1101:Gordon Thomas Whyburn 740:-sphere to Euclidean 653:The free rank of the 456:to meet the needs of 405: 375: 346: 318:in three-dimensional 283:real projective plane 56:that uses tools from 40: 27:Branch of mathematics 2108:Invariance of domain 2060:Euler characteristic 2034:Bundle (mathematics) 1769:"Algebraic topology" 1588:Greenberg, Marvin J. 1480:fundamental groupoid 1170:Leray–Hirsch theorem 916:Friedrich Hirzebruch 507:, or more generally 466:simplicial complexes 355: 326: 239:of homology theory. 223:algebraic invariants 81:homotopy equivalence 2118:Tychonoff's theorem 2113:PoincarĂ© conjecture 1867:General (point-set) 1234:Homological algebra 1120:Borsuk–Ulam theorem 1001:Joseph Neisendorfer 734:Borsuk–Ulam theorem 527:does have a finite 227:algebraic structure 72:topological spaces 2231:Algebraic topology 2103:De Rham cohomology 2024:Polyhedral complex 2014:Simplicial complex 1737:Algebraic topology 1700:van Kampen, Egbert 1682:Algebraic Topology 1659:Algebraic Topology 1619:Algebraic Topology 1467:10.1007/BF01198133 1204:Algebraic K-theory 1108:Important theorems 1096:J. H. C. Whitehead 991:John Coleman Moore 926:Michael J. Hopkins 747:Any subgroup of a 727:hairy ball theorem 682:de Rham cohomology 659:simplicial complex 643:map from the unit 587:de Rham cohomology 572:group homomorphism 525:simplicial complex 505:fundamental groups 454:J. H. C. Whitehead 412:simplicial complex 408: 394:Simplicial complex 370: 341: 308:mathematical knots 119:topological spaces 62:topological spaces 50:Algebraic topology 47: 18:Algebraic Topology 2218: 2217: 2007:fundamental group 1692:978-3-03719-048-7 1555:singular homology 1544:978-3-03719-083-8 1190:Whitehead theorem 1135:Dold–Thom theorem 1046:Jean-Pierre Serre 1036:Mikhail Postnikov 966:Saunders Mac Lane 956:Solomon Lefschetz 936:Egbert van Kampen 876:Charles Ehresmann 866:Shiing-Shen Chern 782:; but every such 550:; the notions of 499:(or more general 416:topological space 259:topological space 169:topological space 123:fundamental group 16:(Redirected from 2238: 2208: 2207: 2181: 2180: 2171: 2161: 2151: 2150: 2139: 2138: 1933: 1846: 1839: 1832: 1823: 1817: 1815: 1814: 1808: 1797: 1782: 1755: 1720: 1695: 1677:tom Dieck, Tammo 1671: 1653: 1632: 1608: 1597: 1583: 1552: 1547:, archived from 1536: 1516: 1499: 1477: 1445: 1444: 1443: 1434:, archived from 1420: 1394: 1375: 1373: 1354: 1348: 1346: 1327: 1321: 1319: 1297:FrĂ©chet, Maurice 1293: 1287: 1281: 1155:Hurewicz theorem 1086:Leopold Vietoris 1016:Grigori Perelman 886:Hans Freudenthal 881:Samuel Eilenberg 690:sheaf cohomology 678:smooth manifolds 620:weak equivalence 604:Samuel Eilenberg 595:sheaf cohomology 583:smooth manifolds 464:properties than 379: 377: 376: 371: 369: 368: 363: 350: 348: 347: 342: 340: 339: 334: 306:is the study of 287:PoincarĂ© duality 141:abstract algebra 58:abstract algebra 21: 2246: 2245: 2241: 2240: 2239: 2237: 2236: 2235: 2221: 2220: 2219: 2214: 2145: 2127: 2123:Urysohn's lemma 2084: 2048: 1934: 1925: 1897:low-dimensional 1855: 1850: 1812: 1810: 1806: 1795: 1785: 1767: 1752: 1730: 1727: 1725:Further reading 1698: 1693: 1675: 1669: 1656: 1651: 1636: 1630: 1612: 1606: 1586: 1581: 1564: 1559:crossed modules 1545: 1520: 1503: 1485: 1452: 1441: 1439: 1424: 1418: 1402:Bredon, Glen E. 1400: 1387: 1384: 1379: 1378: 1371: 1356: 1355: 1351: 1344: 1329: 1328: 1324: 1317: 1295: 1294: 1290: 1282: 1278: 1273: 1268: 1199: 1194: 1160:KĂŒnneth theorem 1110: 1105: 1091:Hassler Whitney 1071:Dennis Sullivan 1066:Norman Steenrod 1031:Nicolae Popescu 946:Hermann KĂŒnneth 931:Witold Hurewicz 851:William Browder 811: 764:covering spaces 717:if and only if 629: 608:Norman Steenrod 579:Georges de Rham 544: 509:homotopy theory 474: 458:homotopy theory 400: 392:Main articles: 390: 382:ambient isotopy 358: 353: 352: 329: 324: 323: 320:Euclidean space 301: 295: 263:Euclidean space 251: 245: 207:cochain complex 205:defined from a 191:homology theory 187: 181: 137: 131: 115: 109: 107:Homotopy groups 101: 52:is a branch of 35: 28: 23: 22: 15: 12: 11: 5: 2244: 2242: 2234: 2233: 2223: 2222: 2216: 2215: 2213: 2212: 2202: 2201: 2200: 2195: 2190: 2175: 2165: 2155: 2143: 2132: 2129: 2128: 2126: 2125: 2120: 2115: 2110: 2105: 2100: 2094: 2092: 2086: 2085: 2083: 2082: 2077: 2072: 2070:Winding number 2067: 2062: 2056: 2054: 2050: 2049: 2047: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2011: 2010: 2009: 2004: 2002:homotopy group 1994: 1993: 1992: 1987: 1982: 1977: 1972: 1962: 1957: 1952: 1942: 1940: 1936: 1935: 1928: 1926: 1924: 1923: 1918: 1913: 1912: 1911: 1901: 1900: 1899: 1889: 1884: 1879: 1874: 1869: 1863: 1861: 1857: 1856: 1851: 1849: 1848: 1841: 1834: 1826: 1820: 1819: 1783: 1765: 1750: 1732:Hatcher, Allen 1726: 1723: 1722: 1721: 1696: 1691: 1673: 1667: 1654: 1649: 1634: 1628: 1614:Hatcher, Allen 1610: 1604: 1584: 1579: 1571:Addison-Wesley 1562: 1543: 1518: 1501: 1483: 1450: 1422: 1416: 1398: 1383: 1380: 1377: 1376: 1369: 1349: 1342: 1322: 1315: 1288: 1286:, p. 163) 1284:Fraleigh (1976 1275: 1274: 1272: 1269: 1267: 1266: 1261: 1256: 1251: 1246: 1241: 1236: 1231: 1226: 1221: 1216: 1211: 1209:Exact sequence 1206: 1200: 1198: 1195: 1193: 1192: 1187: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1122: 1117: 1111: 1109: 1106: 1104: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1051:Isadore Singer 1048: 1043: 1041:Daniel Quillen 1038: 1033: 1028: 1026:Lev Pontryagin 1023: 1021:Henri PoincarĂ© 1018: 1013: 1011:Sergei Novikov 1008: 1003: 998: 993: 988: 983: 978: 973: 968: 963: 958: 953: 948: 943: 938: 933: 928: 923: 918: 913: 908: 903: 901:Israel Gelfand 898: 896:Pierre Gabriel 893: 888: 883: 878: 873: 868: 863: 858: 853: 848: 843: 838: 833: 828: 823: 821:Michael Atiyah 818: 812: 810: 809:Notable people 807: 806: 805: 799: 796:Higgins (1971) 745: 730: 704: 699:A manifold is 697: 674: 651: 628: 625: 614:equipped with 543: 540: 511:, and through 473: 470: 439:simplicial set 389: 386: 367: 362: 338: 333: 297:Main article: 294: 291: 247:Main article: 244: 241: 203:abelian groups 183:Main article: 180: 177: 161:abelian groups 147:(in part from 133:Main article: 130: 127: 113:Homotopy group 111:Main article: 108: 105: 100: 97: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2243: 2232: 2229: 2228: 2226: 2211: 2203: 2199: 2196: 2194: 2191: 2189: 2186: 2185: 2184: 2176: 2174: 2170: 2166: 2164: 2160: 2156: 2154: 2149: 2144: 2142: 2134: 2133: 2130: 2124: 2121: 2119: 2116: 2114: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2095: 2093: 2091: 2087: 2081: 2080:Orientability 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2057: 2055: 2051: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2008: 2005: 2003: 2000: 1999: 1998: 1995: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1967: 1966: 1963: 1961: 1958: 1956: 1953: 1951: 1947: 1944: 1943: 1941: 1937: 1932: 1922: 1919: 1917: 1916:Set-theoretic 1914: 1910: 1907: 1906: 1905: 1902: 1898: 1895: 1894: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1877:Combinatorial 1875: 1873: 1870: 1868: 1865: 1864: 1862: 1858: 1854: 1847: 1842: 1840: 1835: 1833: 1828: 1827: 1824: 1805: 1801: 1794: 1793: 1788: 1784: 1780: 1776: 1775: 1770: 1766: 1763: 1762:0-521-79540-0 1759: 1753: 1751:0-521-79160-X 1747: 1743: 1739: 1738: 1733: 1729: 1728: 1724: 1719: 1715: 1711: 1707: 1706: 1701: 1697: 1694: 1688: 1684: 1683: 1678: 1674: 1670: 1668:0-486-69131-4 1664: 1660: 1655: 1652: 1650:9780442034061 1646: 1642: 1641: 1635: 1631: 1629:0-521-79540-0 1625: 1621: 1620: 1615: 1611: 1607: 1605:9780805335576 1601: 1596: 1595: 1589: 1585: 1582: 1580:0-201-01984-1 1576: 1572: 1568: 1563: 1560: 1556: 1551:on 2009-06-04 1550: 1546: 1540: 1535: 1530: 1526: 1525: 1519: 1515: 1511: 1507: 1502: 1497: 1493: 1489: 1484: 1481: 1476: 1472: 1468: 1464: 1460: 1456: 1451: 1448: 1438:on 2016-05-14 1437: 1433: 1432: 1427: 1423: 1419: 1417:0-387-97926-3 1413: 1409: 1408: 1403: 1399: 1397: 1393: 1392: 1386: 1385: 1381: 1372: 1370:9783832529833 1366: 1362: 1361: 1353: 1350: 1345: 1343:9780486679662 1339: 1335: 1334: 1326: 1323: 1318: 1316:9780486147888 1312: 1308: 1307: 1302: 1298: 1292: 1289: 1285: 1280: 1277: 1270: 1265: 1262: 1260: 1257: 1255: 1252: 1250: 1247: 1245: 1244:Lie algebroid 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1196: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1112: 1107: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1061:Edwin Spanier 1059: 1057: 1056:Stephen Smale 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 972: 971:Mark Mahowald 969: 967: 964: 962: 959: 957: 954: 952: 951:Ruth Lawrence 949: 947: 944: 942: 939: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 911:Allen Hatcher 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 871:Albrecht Dold 869: 867: 864: 862: 859: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 813: 808: 803: 800: 797: 793: 789: 785: 781: 777: 773: 769: 765: 761: 758: 754: 750: 746: 743: 739: 735: 731: 728: 724: 721:is odd. (For 720: 716: 712: 710: 705: 702: 698: 695: 691: 687: 683: 679: 675: 672: 668: 664: 660: 656: 652: 649: 647: 642: 638: 634: 633: 632: 626: 624: 621: 617: 613: 609: 605: 600: 596: 592: 588: 584: 580: 575: 573: 569: 565: 561: 557: 553: 549: 541: 539: 537: 532: 530: 526: 522: 518: 514: 510: 506: 502: 498: 497:homeomorphism 494: 489: 487: 483: 479: 471: 469: 467: 463: 459: 455: 451: 446: 444: 440: 436: 434: 429: 425: 424:line segments 421: 417: 413: 404: 399: 395: 387: 385: 383: 365: 336: 321: 317: 313: 309: 305: 300: 292: 290: 288: 284: 280: 276: 272: 268: 264: 260: 256: 250: 242: 240: 238: 237: 232: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 186: 178: 176: 174: 170: 166: 162: 158: 154: 150: 146: 142: 136: 128: 126: 124: 120: 114: 106: 104: 99:Main branches 98: 96: 94: 90: 84: 82: 78: 77:homeomorphism 75: 71: 67: 63: 59: 55: 51: 44: 39: 33: 19: 2210:Publications 2075:Chern number 2065:Betti number 1948: / 1939:Key concepts 1887:Differential 1871: 1811:. Retrieved 1791: 1772: 1736: 1712:(1): 261–7, 1709: 1703: 1681: 1658: 1639: 1618: 1593: 1566: 1549:the original 1534:math/0407275 1523: 1505: 1495: 1491: 1458: 1454: 1446: 1440:, retrieved 1436:the original 1430: 1406: 1395: 1390: 1359: 1352: 1332: 1325: 1305: 1291: 1279: 1249:Lie groupoid 1081:Hiroshi Toda 1006:Emmy Noether 976:J. Peter May 861:Henri Cartan 856:Ronald Brown 836:Karol Borsuk 831:Armand Borel 826:Enrico Betti 787: 783: 779: 775: 771: 767: 759: 752: 741: 737: 722: 718: 715:vector field 708: 667:Betti number 662: 654: 645: 630: 627:Applications 576: 568:homeomorphic 563: 545: 533: 529:presentation 490: 475: 449: 447: 432: 430:, and their 411: 409: 303: 302: 279:Klein bottle 254: 252: 234: 219:coboundaries 210: 194: 188: 152: 144: 138: 116: 102: 85: 49: 48: 2173:Wikiversity 2090:Key results 1455:Arch. Math. 996:Jack Morava 986:John Milnor 981:Barry Mazur 891:Peter Freyd 816:Frank Adams 462:categorical 304:Knot theory 299:Knot theory 293:Knot theory 54:mathematics 2019:CW complex 1960:Continuity 1950:Closed set 1909:cohomology 1813:2008-09-27 1498:(2): 71–93 1442:2022-08-17 1382:References 961:Jean Leray 941:Daniel Kan 921:Heinz Hopf 841:Raoul Bott 749:free group 701:orientable 641:continuous 564:invariants 548:functorial 521:nonabelian 517:cohomology 482:CW complex 450:CW complex 398:CW complex 273:, and the 229:than does 195:cohomology 185:Cohomology 179:Cohomology 93:free group 66:invariants 2198:geometric 2193:algebraic 2044:Cobordism 1980:Hausdorff 1975:connected 1892:Geometric 1882:Continuum 1872:Algebraic 1779:EMS Press 1475:122228464 1461:: 85–88, 1426:Brown, R. 1076:RenĂ© Thom 792:groupoids 428:triangles 388:Complexes 312:embedding 243:Manifolds 60:to study 2225:Category 2163:Wikibook 2141:Category 2029:Manifold 1997:Homotopy 1955:Interior 1946:Open set 1904:Homology 1853:Topology 1804:Archived 1789:(1999). 1734:(2002). 1718:51000091 1679:(2008), 1616:(2002), 1428:(2007), 1404:(1993), 1303:(2012), 1239:K-theory 1197:See also 639:: every 612:functors 552:category 513:homology 501:homotopy 255:manifold 249:Manifold 231:homology 215:cocycles 211:cochains 199:sequence 157:sequence 145:homology 135:Homology 129:Homology 89:subgroup 70:classify 2188:general 1990:uniform 1970:compact 1921:Digital 1781:, 2001 1301:Fan, Ky 711:-sphere 661:is the 556:functor 165:modules 2183:Topics 1985:metric 1860:Fields 1787:May JP 1760:  1748:  1716:  1689:  1665:  1647:  1626:  1602:  1577:  1541:  1473:  1414:  1367:  1340:  1313:  493:groups 486:groups 420:points 316:circle 271:sphere 269:, the 236:chains 217:, and 1965:Space 1807:(PDF) 1796:(PDF) 1714:JSTOR 1529:arXiv 1471:S2CID 1271:Notes 1259:Sheaf 757:graph 684:, or 648:-disk 602:when 589:, or 414:is a 314:of a 275:torus 267:plane 257:is a 173:group 171:or a 153:homos 151:ᜁΌός 149:Greek 91:of a 74:up to 68:that 43:torus 1758:ISBN 1756:and 1746:ISBN 1687:ISBN 1663:ISBN 1645:ISBN 1624:ISBN 1600:ISBN 1575:ISBN 1539:ISBN 1412:ISBN 1365:ISBN 1338:ISBN 1311:ISBN 732:The 706:The 686:Čech 680:via 635:The 606:and 591:Čech 585:via 558:and 515:and 396:and 281:and 1510:doi 1463:doi 778:of 770:of 729:".) 688:or 665:th 593:or 201:of 189:In 163:or 159:of 2227:: 1802:. 1798:. 1777:, 1771:, 1744:. 1740:. 1710:55 1708:, 1573:, 1537:, 1496:10 1494:, 1490:, 1469:, 1459:42 1457:, 1299:; 554:, 531:. 448:A 445:. 426:, 422:, 410:A 322:, 289:. 253:A 213:, 175:. 143:, 83:. 41:A 1845:e 1838:t 1831:v 1816:. 1764:. 1754:. 1672:. 1561:. 1531:: 1512:: 1500:. 1465:: 1449:. 1421:. 1374:. 1347:. 1320:. 804:. 798:. 788:H 784:Y 780:X 776:Y 772:G 768:H 760:X 753:G 742:n 738:n 723:n 719:n 709:n 673:. 663:n 655:n 646:n 433:n 366:3 361:R 337:3 332:R 34:. 20:)

Index

Algebraic Topology
Algebraic topology (object)

torus
mathematics
abstract algebra
topological spaces
invariants
classify
up to
homeomorphism
homotopy equivalence
subgroup
free group
Homotopy group
topological spaces
fundamental group
Homology
abstract algebra
Greek
sequence
abelian groups
modules
topological space
group
Cohomology
homology theory
sequence
abelian groups
cochain complex

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑