Knowledge

Algebraic connectivity

Source 📝

102: 377: 31: 89:. This is a corollary to the fact that the number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph. The magnitude of this value reflects how well connected the overall graph is. It has been used in analyzing the robustness and 449: 654:, as pictured. The squared values of the components of the Fiedler vector, summing up to one since the vector is normalized, can be interpreted as probabilities of the corresponding data points to be assigned to the sign-based partition. 196: 262: 307:, defined by local configurations whose removal would disconnect the graph, the algebraic connectivity is dependent on the global number of vertices, as well as the way in which vertices are connected. In 1035: 590: 731:
Even if G is quasi-strongly connected, which is equivalent to G containing a directed spanning tree, a(G) can still be nonpositive as the exploding star and Theorem 1 indicate.
652: 522: 322:
has developed an extensive theory using a rescaled version of the Laplacian, eliminating the dependence on the number of vertices, so that the bounds are somewhat different.
298: 333:, the Laplacian matrix arises naturally, so the algebraic connectivity gives an indication of how easily the network will synchronize. Other measures, such as the average 387: 154: 300:. For the graph with 6 nodes show above (n=6,D=3) these bound means, 4/18 = 0.222 ≤ algebraic connectivity 0.722  ≤ connectivity 1. 156:
with the inequality being strict if and only if G is connected. However, the algebraic connectivity can be negative for general directed graphs, even if
337:(characteristic path length) can also be used, and in fact the algebraic connectivity is closely related to the (reciprocal of the) average distance. 834:
Graph Theory, Combinatorics, and Applications. Proceedings of the sixth quadrennial international conference on the theory and applications of graphs
524:. Alternatively, the value of 0.069 (which is close to zero) can be placed in a class of its own, partitioning the graph into three components: 171: 227: 969: 934: 885: 799: 1073: 265: 63: 1078: 663: 165: 114: 39: 1083: 304: 334: 217: 35: 527: 312: 106: 595: 465: 341: 271: 110: 444:{\textstyle {\begin{pmatrix}0.415&0.309&0.069&-0.221&0.221&-0.794\end{pmatrix}}} 164:. Furthermore, the value of the algebraic connectivity is bounded above by the traditional (vertex) 311:, the algebraic connectivity decreases with the number of vertices, and increases with the average 905: 722: 710: 452: 17: 856: 212:). If the number of vertices of an undirected connected graph with nonnegative edge weights is 124: 965: 940: 930: 881: 829: 795: 764: 451:. The negative values are associated with the poorly connected vertex 6, and the neighbouring 90: 959: 1047: 1016: 998: 875: 837: 787: 756: 714: 353: 74: 59: 1012: 318:
The exact definition of the algebraic connectivity depends on the type of Laplacian used.
1020: 1008: 841: 688: 365: 326: 161: 86: 668: 330: 199: 892: 340:
The algebraic connectivity also relates to other connectivity attributes, such as the
1067: 726: 455:, vertex 4; while the positive values are associated with the other vertices. The 308: 822: 818: 357: 904:
Pereira, Tiago (2011). "Stability of Synchronized Motion in Complex Networks".
718: 70: 1003: 986: 768: 760: 944: 880:. Regional Conference Series in Mathematics. Vol. 92. Amer. Math. Soc. 319: 744: 121:
The algebraic connectivity of undirected graphs with nonnegative weights,
101: 384:
For the example graph in the introductory section, the Fiedler vector is
191:{\displaystyle {\text{algebraic connectivity}}\leq {\text{connectivity}}} 1052: 352:
The original theory related to algebraic connectivity was produced by
376: 257:{\displaystyle {\text{algebraic connectivity}}\geq {\frac {1}{nD}}} 791: 462:
can therefore be used to partition this graph into two components:
30: 910: 701:
Wu, Chai Wai (2005). "Algebraic connectivity of directed graphs".
375: 224:, the algebraic connectivity is also known to be bounded below by 100: 198:, unless the graph is complete (the algebraic connectivity of a 857:"Synchronization and Connectivity of Discrete Complex Systems" 360:
associated with the algebraic connectivity has been named the
964:(2nd ed.). Cambridge University Press. pp. 28, 58. 344:, which is bounded below by half the algebraic connectivity. 598: 530: 468: 396: 390: 274: 230: 174: 127: 81:. This eigenvalue is greater than 0 if and only if 646: 584: 516: 443: 292: 256: 190: 148: 73:(counting multiple eigenvalues separately) of the 1036:"Laplacian of graphs and algebraic connectivity" 27:Second-smallest eigenvalue of a graph Laplacian 372:Partitioning a graph using the Fiedler vector 117:of 3, and an algebraic connectivity of 0.243. 8: 641: 623: 617: 599: 579: 567: 561: 555: 549: 531: 511: 499: 493: 469: 927:Six Degrees: The Science of a Connected Age 861:International Conference on Complex Systems 691:." From MathWorld--A Wolfram Web Resource. 1051: 1002: 909: 597: 529: 467: 391: 389: 275: 273: 239: 231: 229: 183: 175: 173: 126: 836:. Vol. 2. Wiley. pp. 871–898. 29: 813: 811: 680: 380:Partitioning into two connected graphs. 782:Gross, J.L.; Yellen, J., eds. (2004). 305:traditional form of graph connectivity 364:. The Fiedler vector can be used to 7: 585:{\textstyle \{1,2,5\},\{3\},\{4,6\}} 460:of the values in the Fiedler vector 42:1, and algebraic connectivity 0.722 34:An example graph, with 6 vertices, 987:"Algebraic connectivity of Graphs" 823:"The Laplacian Spectrum of Graphs" 745:"Algebraic connectivity of graphs" 264:, and in fact (in a result due to 25: 991:Czechoslovak Mathematical Journal 749:Czechoslovak Mathematical Journal 18:Algebraic connectivity of a graph 647:{\textstyle \{1,2,5\},\{3,4,6\}} 592:or moved to the other partition 517:{\textstyle \{1,2,3,5\},\{4,6\}} 828:. In Alavi, Y.; Chartrand, G.; 293:{\displaystyle {\frac {4}{nD}}} 703:Linear and Multilinear Algebra 137: 131: 1: 664:Connectivity (graph theory) 1100: 1040:Banach Center Publications 893:Incomplete revised edition 786:. CRC Press. p. 571. 743:Fiedler, Miroslav (1973). 149:{\displaystyle a(G)\geq 0} 855:Holroyd, Michael (2006). 719:10.1080/03081080500054810 329:on networks, such as the 1004:10.21136/CMJ.1973.101168 832:; Schwenk, A.J. (eds.). 784:Handbook of Graph Theory 761:10.21136/cmj.1973.101168 113:graph has a traditional 233:algebraic connectivity 69:is the second-smallest 1074:Algebraic graph theory 961:Algebraic Graph Theory 958:Biggs, Norman (1993). 874:Chung, F.R.K. (1997). 689:Algebraic Connectivity 648: 586: 518: 445: 381: 294: 258: 192: 177:algebraic connectivity 150: 118: 48:algebraic connectivity 43: 1034:Fiedler, M. (1989) . 877:Spectral Graph Theory 649: 587: 519: 446: 379: 295: 259: 193: 151: 107:truncated icosahedron 104: 33: 985:Fiedler, M. (1973). 687:Weisstein, Eric W. " 596: 528: 466: 388: 342:isoperimetric number 272: 228: 172: 125: 111:Buckminsterfullerene 1053:10.4064/-25-1-57-70 356:. In his honor the 1079:Graph connectivity 925:Watts, D. (2003). 711:Taylor and Francis 644: 582: 514: 453:articulation point 441: 435: 382: 290: 254: 188: 146: 119: 56:Fiedler eigenvalue 44: 288: 252: 234: 186: 178: 91:synchronizability 16:(Redirected from 1091: 1084:Graph invariants 1058: 1057: 1055: 1031: 1025: 1024: 1006: 982: 976: 975: 955: 949: 948: 922: 916: 915: 913: 901: 895: 891: 871: 865: 864: 852: 846: 845: 830:Oellermann, O.R. 827: 815: 806: 805: 779: 773: 772: 740: 734: 733: 698: 692: 685: 653: 651: 650: 645: 591: 589: 588: 583: 523: 521: 520: 515: 450: 448: 447: 442: 440: 439: 354:Miroslav Fiedler 299: 297: 296: 291: 289: 287: 276: 263: 261: 260: 255: 253: 251: 240: 235: 232: 211: 207: 197: 195: 194: 189: 187: 184: 179: 176: 155: 153: 152: 147: 75:Laplacian matrix 60:Miroslav Fiedler 21: 1099: 1098: 1094: 1093: 1092: 1090: 1089: 1088: 1064: 1063: 1062: 1061: 1033: 1032: 1028: 997:(98): 298–305. 984: 983: 979: 972: 957: 956: 952: 937: 924: 923: 919: 903: 902: 898: 888: 873: 872: 868: 854: 853: 849: 825: 817: 816: 809: 802: 781: 780: 776: 742: 741: 737: 700: 699: 695: 686: 682: 677: 660: 594: 593: 526: 525: 464: 463: 434: 433: 425: 420: 412: 407: 402: 392: 386: 385: 374: 350: 327:synchronization 280: 270: 269: 244: 226: 225: 209: 206: 202: 170: 169: 162:connected graph 123: 122: 99: 87:connected graph 50:(also known as 28: 23: 22: 15: 12: 11: 5: 1097: 1095: 1087: 1086: 1081: 1076: 1066: 1065: 1060: 1059: 1026: 977: 970: 950: 935: 917: 896: 886: 866: 847: 807: 800: 792:10.1201/b16132 774: 755:(2): 298–305. 735: 693: 679: 678: 676: 673: 672: 671: 669:Graph property 666: 659: 656: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 581: 578: 575: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 542: 539: 536: 533: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 471: 438: 432: 429: 426: 424: 421: 419: 416: 413: 411: 408: 406: 403: 401: 398: 397: 395: 373: 370: 362:Fiedler vector 349: 348:Fiedler vector 346: 331:Kuramoto model 286: 283: 279: 250: 247: 243: 238: 204: 200:complete graph 182: 145: 142: 139: 136: 133: 130: 98: 95: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1096: 1085: 1082: 1080: 1077: 1075: 1072: 1071: 1069: 1054: 1049: 1045: 1041: 1037: 1030: 1027: 1022: 1018: 1014: 1010: 1005: 1000: 996: 992: 988: 981: 978: 973: 971:0-521-45897-8 967: 963: 962: 954: 951: 946: 942: 938: 936:0-434-00908-3 932: 928: 921: 918: 912: 907: 900: 897: 894: 889: 887:0-8218-8936-2 883: 879: 878: 870: 867: 862: 858: 851: 848: 843: 839: 835: 831: 824: 820: 814: 812: 808: 803: 801:0-203-49020-7 797: 793: 789: 785: 778: 775: 770: 766: 762: 758: 754: 750: 746: 739: 736: 732: 728: 724: 720: 716: 712: 708: 704: 697: 694: 690: 684: 681: 674: 670: 667: 665: 662: 661: 657: 655: 638: 635: 632: 629: 626: 620: 614: 611: 608: 605: 602: 576: 573: 570: 564: 558: 552: 546: 543: 540: 537: 534: 508: 505: 502: 496: 490: 487: 484: 481: 478: 475: 472: 461: 459: 454: 436: 430: 427: 422: 417: 414: 409: 404: 399: 393: 378: 371: 369: 367: 363: 359: 355: 347: 345: 343: 338: 336: 332: 328: 325:In models of 323: 321: 316: 314: 310: 309:random graphs 306: 301: 284: 281: 277: 267: 266:Brendan McKay 248: 245: 241: 236: 223: 219: 215: 208:is its order 201: 180: 167: 163: 159: 143: 140: 134: 128: 116: 112: 108: 103: 96: 94: 93:of networks. 92: 88: 84: 80: 76: 72: 68: 65: 61: 57: 53: 52:Fiedler value 49: 41: 37: 32: 19: 1046:(1): 57–70. 1043: 1039: 1029: 994: 990: 980: 960: 953: 926: 920: 899: 876: 869: 860: 850: 833: 819:Mohar, Bojan 783: 777: 752: 748: 738: 730: 706: 702: 696: 683: 457: 456: 383: 361: 351: 339: 324: 317: 302: 221: 213: 185:connectivity 168:of a graph, 166:connectivity 157: 120: 115:connectivity 82: 78: 66: 55: 51: 47: 45: 40:connectivity 929:. Vintage. 713:: 203–223. 358:eigenvector 303:Unlike the 1068:Categories 1021:0265.05119 842:0840.05059 675:References 368:a graph. 97:Properties 71:eigenvalue 911:1112.2297 769:0011-4642 727:121368189 428:− 415:− 366:partition 320:Fan Chung 237:≥ 181:≤ 141:≥ 945:51622138 821:(1991). 658:See also 335:distance 218:diameter 216:and the 36:diameter 1013:0318007 62:) of a 1019:  1011:  968:  943:  933:  884:  840:  798:  767:  725:  313:degree 58:after 906:arXiv 826:(PDF) 723:S2CID 709:(3). 458:signs 431:0.794 423:0.221 418:0.221 410:0.069 405:0.309 400:0.415 268:) by 160:is a 85:is a 64:graph 966:ISBN 941:OCLC 931:ISBN 882:ISBN 796:ISBN 765:ISSN 105:The 46:The 1048:doi 1017:Zbl 999:doi 838:Zbl 788:doi 757:doi 715:doi 220:is 109:or 77:of 54:or 38:3, 1070:: 1044:25 1042:. 1038:. 1015:. 1009:MR 1007:. 995:23 993:. 989:. 939:. 859:. 810:^ 794:. 763:. 753:23 751:. 747:. 729:. 721:. 707:53 705:. 315:. 1056:. 1050:: 1023:. 1001:: 974:. 947:. 914:. 908:: 890:. 863:. 844:. 804:. 790:: 771:. 759:: 717:: 642:} 639:6 636:, 633:4 630:, 627:3 624:{ 621:, 618:} 615:5 612:, 609:2 606:, 603:1 600:{ 580:} 577:6 574:, 571:4 568:{ 565:, 562:} 559:3 556:{ 553:, 550:} 547:5 544:, 541:2 538:, 535:1 532:{ 512:} 509:6 506:, 503:4 500:{ 497:, 494:} 491:5 488:, 485:3 482:, 479:2 476:, 473:1 470:{ 437:) 394:( 285:D 282:n 278:4 249:D 246:n 242:1 222:D 214:n 210:n 205:n 203:K 158:G 144:0 138:) 135:G 132:( 129:a 83:G 79:G 67:G 20:)

Index

Algebraic connectivity of a graph

diameter
connectivity
Miroslav Fiedler
graph
eigenvalue
Laplacian matrix
connected graph
synchronizability

truncated icosahedron
Buckminsterfullerene
connectivity
connected graph
connectivity
complete graph
diameter
Brendan McKay
traditional form of graph connectivity
random graphs
degree
Fan Chung
synchronization
Kuramoto model
distance
isoperimetric number
Miroslav Fiedler
eigenvector
partition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.