Knowledge

Cheeger constant (graph theory)

Source 📝

43: 603: 594:. Intuitively, if the Cheeger constant is small but positive, then there exists a "bottleneck", in the sense that there are two "large" sets of vertices with "few" links (edges) between them. The Cheeger constant is "large" if any possible division of the vertex set into two subsets has "many" links between those two subsets. 866: 1109: 1224: 578: 1254:, and this is highly undesirable in practical terms. We would only need one of the computers on the ring to fail, and network performance would be greatly reduced. If two non-adjacent computers were to fail, the network would split into two disconnected components. 987: 656: 998: 332: 1354: 119:
is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected
910: 1120: 412: 661: 610:
In applications to theoretical computer science, one wishes to devise network configurations for which the Cheeger constant is high (at least, bounded away from zero) even when
385: 1386: 1426: 1406: 1582:
Donetti, Luca; Neri, Franco; Muñoz, Miguel A (2006-08-07). "Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that".
918: 861:{\displaystyle {\begin{aligned}V(G_{N})&=\{1,2,\cdots ,N-1,N\}\\E(G_{N})&={\big \{}\{1,2\},\{2,3\},\cdots ,\{N-1,N\},\{N,1\}{\big \}}\end{aligned}}} 1104:{\displaystyle \partial A=\left\{\left\{\left\lfloor {\tfrac {N}{2}}\right\rfloor ,\left\lfloor {\tfrac {N}{2}}\right\rfloor +1\right\},\{N,1\}\right\},} 227: 1276: 1702: 86: 64: 1219:{\displaystyle {\frac {|\partial A|}{|A|}}={\frac {2}{\left\lfloor {\tfrac {N}{2}}\right\rfloor }}\to 0{\mbox{ as }}N\to \infty .} 878: 573:{\displaystyle h(G):=\min \left\{{\frac {|\partial A|}{|A|}}\ :\ A\subseteq V(G),0<|A|\leq {\tfrac {1}{2}}|V(G)|\right\}.} 116: 1469: 591: 1464: 1707: 57: 51: 30:
This article is about the Cheeger constant in graph theory. For a different use in Riemannian geometry, see
1454: 68: 1449: 1437: 1656: 1601: 340: 136: 121: 1553:
Montenegro, Ravi; Tetali, Prasad (2006). "Mathematical Aspects of Mixing Times in Markov Chains".
1680: 1646: 1625: 1591: 1362: 1637:
Lackenby, Marc (2006). "Heegaard splittings, the virtually Haken conjecture and Property (τ)".
1672: 1617: 1570: 1411: 1664: 1609: 1562: 1539: 1433: 129: 31: 1613: 1263: 650:
clockwise around the ring. Mathematically, the vertex set and the edge set are given by:
1660: 1605: 982:{\displaystyle A=\left\{1,2,\cdots ,\left\lfloor {\tfrac {N}{2}}\right\rfloor \right\}.} 1474: 1391: 1267: 584: 1696: 1544: 1527: 1459: 143: 133: 1684: 1629: 602: 17: 1429: 626: 146: 1250:. Consequently, we would regard a ring network as highly "bottlenecked" for large 1523: 1436:
of the graph. The Cheeger inequality is a fundamental result and motivation for
1270:
relate the eigenvalue gap of a graph with its Cheeger constant. More explicitly
327:{\displaystyle \partial A:=\{\{x,y\}\in E(G)\ :\ x\in A,y\in V(G)\setminus A\}.} 100: 1668: 1676: 1621: 1574: 125: 1596: 1566: 1266:
as it is a way to measure the edge expansion of a graph. The so-called
1349:{\displaystyle 2h(G)\geq \lambda \geq {\frac {h^{2}(G)}{2\Delta (G)}}} 1651: 601: 1262:
The Cheeger constant is especially important in the context of
1229:
This example provides an upper bound for the Cheeger constant
36: 905:{\displaystyle \left\lfloor {\tfrac {N}{2}}\right\rfloor } 205:
denote the collection of all edges going from a vertex in
1584:
Journal of Statistical Mechanics: Theory and Experiment
1555:
Foundations and Trends in Theoretical Computer Science
1198: 1174: 1049: 1026: 956: 887: 529: 1414: 1394: 1365: 1279: 1123: 1001: 921: 881: 659: 415: 343: 230: 128:. The graph theoretical notion originated after the 27:
Measure of whether or not a graph has a "bottleneck"
622:(the number of computers in the network) is large. 1420: 1400: 1380: 1348: 1218: 1103: 981: 904: 860: 572: 379: 326: 1505: 431: 161:be an undirected finite graph with vertex set 849: 761: 8: 1090: 1078: 844: 832: 826: 808: 796: 784: 778: 766: 726: 690: 374: 362: 356: 344: 318: 255: 243: 240: 583:The Cheeger constant is strictly positive 1650: 1595: 1543: 1532:Journal of Combinatorial Theory, Series B 1413: 1393: 1364: 1311: 1304: 1278: 1197: 1173: 1164: 1153: 1145: 1138: 1127: 1124: 1122: 1048: 1025: 1000: 955: 920: 912:of these computers in a connected chain: 886: 880: 848: 847: 760: 759: 743: 674: 660: 658: 557: 540: 528: 520: 512: 468: 460: 453: 442: 439: 414: 342: 337:Note that the edges are unordered, i.e., 229: 87:Learn how and when to remove this message 142:The Cheeger constant is named after the 50:This article includes a list of general 1486: 1388:is the maximum degree for the nodes in 312: 1493: 7: 1366: 1331: 1210: 1132: 1002: 447: 231: 56:it lacks sufficient corresponding 25: 1528:"Isoperimetric numbers of graphs" 636:computers, thought of as a graph 1614:10.1088/1742-5468/2006/08/P08007 41: 380:{\displaystyle \{x,y\}=\{y,x\}} 183:. For a collection of vertices 1375: 1369: 1340: 1334: 1323: 1317: 1292: 1286: 1243:, which also tends to zero as 1207: 1191: 1154: 1146: 1139: 1128: 749: 736: 680: 667: 558: 554: 548: 541: 521: 513: 500: 494: 469: 461: 454: 443: 425: 419: 309: 303: 270: 264: 130:Cheeger isoperimetric constant 1: 1545:10.1016/0095-8956(89)90029-4 1506:Montenegro & Tetali 2006 598:Example: computer networking 1724: 1381:{\displaystyle \Delta (G)} 29: 1703:Computer network analysis 1669:10.1007/s00222-005-0480-x 1639:Inventiones mathematicae 1421:{\displaystyle \lambda } 625:For example, consider a 643:. Number the computers 209:to a vertex outside of 71:more precise citations. 1455:Algebraic connectivity 1422: 1402: 1382: 1350: 1220: 1105: 983: 906: 875:to be a collection of 862: 607: 574: 381: 328: 213:(sometimes called the 1590:(08): P08007–P08007. 1450:Spectral graph theory 1438:spectral graph theory 1423: 1403: 1383: 1351: 1221: 1106: 984: 907: 863: 605: 575: 382: 329: 122:networks of computers 1412: 1392: 1363: 1277: 1268:Cheeger inequalities 1258:Cheeger Inequalities 1121: 999: 919: 879: 657: 413: 341: 228: 113:isoperimetric number 18:Isoperimetric number 1661:2006InMat.164..317L 1606:2006JSMTE..08..007D 1508:, pp. 237–354. 1496:, pp. 274–291. 606:Ring network layout 137:Riemannian manifold 1567:10.1561/0400000003 1418: 1398: 1378: 1346: 1216: 1202: 1183: 1101: 1058: 1035: 979: 965: 902: 896: 858: 856: 608: 570: 538: 377: 324: 1401:{\displaystyle G} 1344: 1201: 1189: 1182: 1159: 1057: 1034: 964: 895: 537: 484: 478: 474: 281: 275: 97: 96: 89: 16:(Redirected from 1715: 1708:Graph invariants 1688: 1654: 1633: 1599: 1597:cond-mat/0605565 1578: 1549: 1547: 1509: 1503: 1497: 1491: 1434:Laplacian matrix 1427: 1425: 1424: 1419: 1407: 1405: 1404: 1399: 1387: 1385: 1384: 1379: 1355: 1353: 1352: 1347: 1345: 1343: 1326: 1316: 1315: 1305: 1253: 1249: 1242: 1225: 1223: 1222: 1217: 1203: 1199: 1190: 1188: 1184: 1175: 1165: 1160: 1158: 1157: 1149: 1143: 1142: 1131: 1125: 1110: 1108: 1107: 1102: 1097: 1093: 1074: 1070: 1063: 1059: 1050: 1040: 1036: 1027: 988: 986: 985: 980: 975: 971: 970: 966: 957: 911: 909: 908: 903: 901: 897: 888: 874: 867: 865: 864: 859: 857: 853: 852: 765: 764: 748: 747: 679: 678: 649: 642: 635: 621: 589: 579: 577: 576: 571: 566: 562: 561: 544: 539: 530: 524: 516: 482: 476: 475: 473: 472: 464: 458: 457: 446: 440: 406:, is defined by 405: 394: 389:Cheeger constant 386: 384: 383: 378: 333: 331: 330: 325: 279: 273: 220: 212: 208: 204: 197: 182: 171: 160: 105:Cheeger constant 92: 85: 81: 78: 72: 67:this article by 58:inline citations 45: 44: 37: 32:Cheeger constant 21: 1723: 1722: 1718: 1717: 1716: 1714: 1713: 1712: 1693: 1692: 1691: 1636: 1581: 1552: 1522: 1518: 1513: 1512: 1504: 1500: 1492: 1488: 1483: 1446: 1410: 1409: 1390: 1389: 1361: 1360: 1327: 1307: 1306: 1275: 1274: 1264:expander graphs 1260: 1251: 1244: 1239: 1230: 1169: 1144: 1126: 1119: 1118: 1044: 1021: 1020: 1016: 1015: 1011: 997: 996: 951: 932: 928: 917: 916: 882: 877: 876: 872: 855: 854: 752: 739: 730: 729: 683: 670: 655: 654: 644: 641: 637: 630: 611: 600: 592:connected graph 587: 459: 441: 438: 434: 411: 410: 396: 392: 339: 338: 226: 225: 218: 210: 206: 199: 184: 173: 162: 158: 155: 93: 82: 76: 73: 63:Please help to 62: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 1721: 1719: 1711: 1710: 1705: 1695: 1694: 1690: 1689: 1645:(2): 317–359. 1634: 1579: 1561:(3): 237–354. 1550: 1538:(3): 274–291. 1519: 1517: 1514: 1511: 1510: 1498: 1485: 1484: 1482: 1479: 1478: 1477: 1475:Expander graph 1472: 1467: 1462: 1457: 1452: 1445: 1442: 1417: 1397: 1377: 1374: 1371: 1368: 1357: 1356: 1342: 1339: 1336: 1333: 1330: 1325: 1322: 1319: 1314: 1310: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1259: 1256: 1237: 1227: 1226: 1215: 1212: 1209: 1206: 1200: as  1196: 1193: 1187: 1181: 1178: 1172: 1168: 1163: 1156: 1152: 1148: 1141: 1137: 1134: 1130: 1112: 1111: 1100: 1096: 1092: 1089: 1086: 1083: 1080: 1077: 1073: 1069: 1066: 1062: 1056: 1053: 1047: 1043: 1039: 1033: 1030: 1024: 1019: 1014: 1010: 1007: 1004: 990: 989: 978: 974: 969: 963: 960: 954: 950: 947: 944: 941: 938: 935: 931: 927: 924: 900: 894: 891: 885: 869: 868: 851: 846: 843: 840: 837: 834: 831: 828: 825: 822: 819: 816: 813: 810: 807: 804: 801: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 768: 763: 758: 755: 753: 751: 746: 742: 738: 735: 732: 731: 728: 725: 722: 719: 716: 713: 710: 707: 704: 701: 698: 695: 692: 689: 686: 684: 682: 677: 673: 669: 666: 663: 662: 639: 599: 596: 585:if and only if 581: 580: 569: 565: 560: 556: 553: 550: 547: 543: 536: 533: 527: 523: 519: 515: 511: 508: 505: 502: 499: 496: 493: 490: 487: 481: 471: 467: 463: 456: 452: 449: 445: 437: 433: 430: 427: 424: 421: 418: 376: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 335: 334: 323: 320: 317: 314: 311: 308: 305: 302: 299: 296: 293: 290: 287: 284: 278: 272: 269: 266: 263: 260: 257: 254: 251: 248: 245: 242: 239: 236: 233: 154: 151: 126:card shuffling 109:Cheeger number 95: 94: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1720: 1709: 1706: 1704: 1701: 1700: 1698: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1653: 1648: 1644: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1611: 1607: 1603: 1598: 1593: 1589: 1585: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1551: 1546: 1541: 1537: 1533: 1529: 1525: 1521: 1520: 1515: 1507: 1502: 1499: 1495: 1490: 1487: 1480: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1460:Cheeger bound 1458: 1456: 1453: 1451: 1448: 1447: 1443: 1441: 1439: 1435: 1431: 1415: 1395: 1372: 1337: 1328: 1320: 1312: 1308: 1301: 1298: 1295: 1289: 1283: 1280: 1273: 1272: 1271: 1269: 1265: 1257: 1255: 1247: 1240: 1233: 1213: 1204: 1194: 1185: 1179: 1176: 1170: 1166: 1161: 1150: 1135: 1117: 1116: 1115: 1098: 1094: 1087: 1084: 1081: 1075: 1071: 1067: 1064: 1060: 1054: 1051: 1045: 1041: 1037: 1031: 1028: 1022: 1017: 1012: 1008: 1005: 995: 994: 993: 976: 972: 967: 961: 958: 952: 948: 945: 942: 939: 936: 933: 929: 925: 922: 915: 914: 913: 898: 892: 889: 883: 841: 838: 835: 829: 823: 820: 817: 814: 811: 805: 802: 799: 793: 790: 787: 781: 775: 772: 769: 756: 754: 744: 740: 733: 723: 720: 717: 714: 711: 708: 705: 702: 699: 696: 693: 687: 685: 675: 671: 664: 653: 652: 651: 648: 633: 628: 623: 619: 615: 604: 597: 595: 593: 586: 567: 563: 551: 545: 534: 531: 525: 517: 509: 506: 503: 497: 491: 488: 485: 479: 465: 450: 435: 428: 422: 416: 409: 408: 407: 403: 399: 390: 371: 368: 365: 359: 353: 350: 347: 321: 315: 306: 300: 297: 294: 291: 288: 285: 282: 276: 267: 261: 258: 252: 249: 246: 237: 234: 224: 223: 222: 216: 215:edge boundary 203: 195: 191: 187: 180: 176: 172:and edge set 169: 165: 152: 150: 148: 145: 144:mathematician 140: 138: 135: 131: 127: 123: 118: 114: 110: 106: 102: 91: 88: 80: 77:February 2013 70: 66: 60: 59: 53: 48: 39: 38: 33: 19: 1652:math/0205327 1642: 1638: 1587: 1583: 1558: 1554: 1535: 1531: 1524:Mohar, Bojan 1501: 1489: 1470:Connectivity 1430:spectral gap 1358: 1261: 1245: 1235: 1231: 1228: 1113: 991: 870: 646: 631: 627:ring network 624: 617: 613: 609: 582: 401: 397: 388: 336: 214: 201: 193: 189: 185: 178: 174: 167: 163: 156: 147:Jeff Cheeger 141: 112: 108: 104: 98: 83: 74: 55: 1465:Conductance 645:1, 2, ..., 101:mathematics 69:introducing 1697:Categories 1516:References 1494:Mohar 1989 395:, denoted 153:Definition 52:references 1677:0020-9910 1622:1742-5468 1575:1551-305X 1416:λ 1367:Δ 1359:in which 1332:Δ 1302:≥ 1299:λ 1296:≥ 1211:∞ 1208:→ 1192:→ 1133:∂ 1003:∂ 946:⋯ 815:− 803:⋯ 715:− 706:⋯ 526:≤ 489:⊆ 448:∂ 313:∖ 298:∈ 286:∈ 259:∈ 232:∂ 1685:12847770 1630:16192273 1526:(1989). 1444:See also 1186:⌋ 1171:⌊ 1061:⌋ 1046:⌊ 1038:⌋ 1023:⌊ 968:⌋ 953:⌊ 899:⌋ 884:⌊ 1657:Bibcode 1602:Bibcode 1432:of the 1428:is the 134:compact 115:) of a 65:improve 1683:  1675:  1628:  1620:  1573:  483:  477:  387:. The 280:  274:  198:, let 107:(also 103:, the 54:, but 1681:S2CID 1647:arXiv 1626:S2CID 1592:arXiv 1481:Notes 871:Take 590:is a 132:of a 117:graph 1673:ISSN 1618:ISSN 1588:2006 1571:ISSN 1408:and 1114:and 992:So, 510:< 157:Let 1665:doi 1643:164 1610:doi 1563:doi 1540:doi 1248:→ ∞ 634:≥ 3 629:of 432:min 391:of 221:): 217:of 111:or 99:In 1699:: 1679:. 1671:. 1663:. 1655:. 1641:. 1624:. 1616:. 1608:. 1600:. 1586:. 1569:. 1557:. 1536:47 1534:. 1530:. 1440:. 620:)| 429::= 238::= 188:⊆ 149:. 139:. 124:, 1687:. 1667:: 1659:: 1649:: 1632:. 1612:: 1604:: 1594:: 1577:. 1565:: 1559:1 1548:. 1542:: 1396:G 1376:) 1373:G 1370:( 1341:) 1338:G 1335:( 1329:2 1324:) 1321:G 1318:( 1313:2 1309:h 1293:) 1290:G 1287:( 1284:h 1281:2 1252:N 1246:N 1241:) 1238:N 1236:G 1234:( 1232:h 1214:. 1205:N 1195:0 1180:2 1177:N 1167:2 1162:= 1155:| 1151:A 1147:| 1140:| 1136:A 1129:| 1099:, 1095:} 1091:} 1088:1 1085:, 1082:N 1079:{ 1076:, 1072:} 1068:1 1065:+ 1055:2 1052:N 1042:, 1032:2 1029:N 1018:{ 1013:{ 1009:= 1006:A 977:. 973:} 962:2 959:N 949:, 943:, 940:2 937:, 934:1 930:{ 926:= 923:A 893:2 890:N 873:A 850:} 845:} 842:1 839:, 836:N 833:{ 830:, 827:} 824:N 821:, 818:1 812:N 809:{ 806:, 800:, 797:} 794:3 791:, 788:2 785:{ 782:, 779:} 776:2 773:, 770:1 767:{ 762:{ 757:= 750:) 745:N 741:G 737:( 734:E 727:} 724:N 721:, 718:1 712:N 709:, 703:, 700:2 697:, 694:1 691:{ 688:= 681:) 676:N 672:G 668:( 665:V 647:N 640:N 638:G 632:N 618:G 616:( 614:V 612:| 588:G 568:. 564:} 559:| 555:) 552:G 549:( 546:V 542:| 535:2 532:1 522:| 518:A 514:| 507:0 504:, 501:) 498:G 495:( 492:V 486:A 480:: 470:| 466:A 462:| 455:| 451:A 444:| 436:{ 426:) 423:G 420:( 417:h 404:) 402:G 400:( 398:h 393:G 375:} 372:x 369:, 366:y 363:{ 360:= 357:} 354:y 351:, 348:x 345:{ 322:. 319:} 316:A 310:) 307:G 304:( 301:V 295:y 292:, 289:A 283:x 277:: 271:) 268:G 265:( 262:E 256:} 253:y 250:, 247:x 244:{ 241:{ 235:A 219:A 211:A 207:A 202:A 200:∂ 196:) 194:G 192:( 190:V 186:A 181:) 179:G 177:( 175:E 170:) 168:G 166:( 164:V 159:G 90:) 84:( 79:) 75:( 61:. 34:. 20:)

Index

Isoperimetric number
Cheeger constant
references
inline citations
improve
introducing
Learn how and when to remove this message
mathematics
graph
networks of computers
card shuffling
Cheeger isoperimetric constant
compact
Riemannian manifold
mathematician
Jeff Cheeger
if and only if
connected graph

ring network
expander graphs
Cheeger inequalities
spectral gap
Laplacian matrix
spectral graph theory
Spectral graph theory
Algebraic connectivity
Cheeger bound
Conductance
Connectivity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.