Knowledge (XXG)

Knot theory

Source 📝

3389:, also called the Dowker notation or code, for a knot is a finite sequence of even integers. The numbers are generated by following the knot and marking the crossings with consecutive integers. Since each crossing is visited twice, this creates a pairing of even integers with odd integers. An appropriate sign is given to indicate over and undercrossing. For example, in this figure the knot diagram has crossings labelled with the pairs (1,6) (3,−12) (5,2) (7,8) (9,−4) and (11,−10). The Dowker–Thistlethwaite notation for this labelling is the sequence: 6, −12, 2, 8, −4, −10. A knot diagram has more than one possible Dowker notation, and there is a well-understood ambiguity when reconstructing a knot from a Dowker–Thistlethwaite notation. 273: 31: 3100:): consider a planar projection of each knot and suppose these projections are disjoint. Find a rectangle in the plane where one pair of opposite sides are arcs along each knot while the rest of the rectangle is disjoint from the knots. Form a new knot by deleting the first pair of opposite sides and adjoining the other pair of opposite sides. The resulting knot is a sum of the original knots. Depending on how this is done, two different knots (but no more) may result. This ambiguity in the sum can be eliminated regarding the knots as 1420: 1589:
finitely many times when an "event" or "catastrophe" occurs, such as when more than two strands cross at a point or multiple strands become tangent at a point. A close inspection will show that complicated events can be eliminated, leaving only the simplest events: (1) a "kink" forming or being straightened out; (2) two strands becoming tangent at a point and passing through; and (3) three strands crossing at a point. These are precisely the Reidemeister moves (
1606: 3378: 2288: 2383: 2300: 223: 5783: 1792: 1575: 3473:, similar to the Dowker–Thistlethwaite notation, represents a knot with a sequence of integers. However, rather than every crossing being represented by two different numbers, crossings are labeled with only one number. When the crossing is an overcrossing, a positive number is listed. At an undercrossing, a negative number. For example, the trefoil knot in Gauss code can be given as: 1,−2,3,−1,2,−3 2367: 47: 463: 3077: 3275:). This famous error would propagate when Dale Rolfsen added a knot table in his influential text, based on Conway's work. Conway's 1970 paper on knot theory also contains a typographical duplication on its non-alternating 11-crossing knots page and omits 4 examples — 2 previously listed in D. Lombardero's 1968 Princeton senior thesis and 2 more subsequently discovered by 1558: 1546: 3165: 5795: 454: 2431:
A knot in three dimensions can be untied when placed in four-dimensional space. This is done by changing crossings. Suppose one strand is behind another as seen from a chosen point. Lift it into the fourth dimension, so there is no obstacle (the front strand having no component there); then slide it
3451:
Any link admits such a description, and it is clear this is a very compact notation even for very large crossing number. There are some further shorthands usually used. The last example is usually written 8*3:2 0, where the ones are omitted and kept the number of dots excepting the dots at the end.
2414:
neighborhoods of the link. By thickening the link in a standard way, the horoball neighborhoods of the link components are obtained. Even though the boundary of a neighborhood is a torus, when viewed from inside the link complement, it looks like a sphere. Each link component shows up as infinitely
1588:
The proof that diagrams of equivalent knots are connected by Reidemeister moves relies on an analysis of what happens under the planar projection of the movement taking one knot to another. The movement can be arranged so that almost all of the time the projection will be a knot diagram, except at
1636:). For example, if the invariant is computed from a knot diagram, it should give the same value for two knot diagrams representing equivalent knots. An invariant may take the same value on two different knots, so by itself may be incapable of distinguishing all knots. An elementary invariant is 2418:
This pattern, the horoball pattern, is itself a useful invariant. Other hyperbolic invariants include the shape of the fundamental parallelogram, length of shortest geodesic, and volume. Modern knot and link tabulation efforts have utilized these invariants effectively. Fast computers and clever
151:
Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a
1311:
These two notions of knot equivalence agree exactly about which knots are equivalent: Two knots that are equivalent under the orientation-preserving homeomorphism definition are also equivalent under the ambient isotopy definition, because any orientation-preserving homeomorphisms of
3134:). For oriented knots, this decomposition is also unique. Higher-dimensional knots can also be added but there are some differences. While you cannot form the unknot in three dimensions by adding two non-trivial knots, you can in higher dimensions, at least when one considers 3326:). The notation simply organizes knots by their crossing number. One writes the crossing number with a subscript to denote its order amongst all knots with that crossing number. This order is arbitrary and so has no special significance (though in each number of crossings the 2415:
many spheres (of one color) as there are infinitely many light rays from the observer to the link component. The fundamental parallelogram (which is indicated in the picture), tiles both vertically and horizontally and shows how to extend the pattern of spheres infinitely.
3145:
approach. This is done by combining basic units called soft contacts using five operations (Parallel, Series, Cross, Concerted, and Sub). The approach is applicable to open chains as well and can also be extended to include the so-called hard contacts.
3455:
Conway's pioneering paper on the subject lists up to 10-vertex basic polyhedra of which he uses to tabulate links, which have become standard for those links. For a further listing of higher vertex polyhedra, there are nonstandard choices available.
3430:
regions. Such a polyhedron is denoted first by the number of vertices then a number of asterisks which determine the polyhedron's position on a list of basic polyhedra. For example, 10** denotes the second 10-vertex polyhedron on Conway's list.
873: 3244:). The development of knot theory due to Alexander, Reidemeister, Seifert, and others eased the task of verification and tables of knots up to and including 9 crossings were published by Alexander–Briggs and Reidemeister in the late 1920s. 1341:
to itself is the final stage of an ambient isotopy starting from the identity. Conversely, two knots equivalent under the ambient isotopy definition are also equivalent under the orientation-preserving homeomorphism definition, because the
3334:). Links are written by the crossing number with a superscript to denote the number of components and a subscript to denote its order within the links with the same number of components and crossings. Thus the trefoil knot is notated 3 3263:). This verified the list of knots of at most 11 crossings and a new list of links up to 10 crossings. Conway found a number of omissions but only one duplication in the Tait–Little tables; however he missed the duplicates called the 2435:
In fact, in four dimensions, any non-intersecting closed loop of one-dimensional string is equivalent to an unknot. First "push" the loop into a three-dimensional subspace, which is always possible, though technical to explain.
2314:
of each other (take a diagram of the trefoil given above and change each crossing to the other way to get the mirror image). These are not equivalent to each other, meaning that they are not amphichiral. This was shown by
1443:). At each crossing, to be able to recreate the original knot, the over-strand must be distinguished from the under-strand. This is often done by creating a break in the strand going underneath. The resulting diagram is an 2038:. To check that these rules give an invariant of an oriented link, one should determine that the polynomial does not change under the three Reidemeister moves. Many important knot polynomials can be defined in this way. 999: 3572:
Adams, Colin; Crawford, Thomas; DeMeo, Benjamin; Landry, Michael; Lin, Alex Tong; Montee, MurphyKate; Park, Seojung; Venkatesh, Saraswathi; Yhee, Farrah (2015), "Knot projections with a single multi-crossing",
726: 1431:
A useful way to visualise and manipulate knots is to project the knot onto a plane—think of the knot casting a shadow on the wall. A small change in the direction of projection will ensure that it is
287:
who explicitly noted the importance of topological features when discussing the properties of knots related to the geometry of position. Mathematical studies of knots began in the 19th century with
2276: 4957:
Menasco and Thistlethwaite's handbook surveys a mix of topics relevant to current research trends in a manner accessible to advanced undergraduates but of interest to professional researchers.
2029: 571: 4801:). Adams is informal and accessible for the most part to high schoolers. Lickorish is a rigorous introduction for graduate students, covering a nice mix of classical and modern topics. ( 1122: 4994:
This is an online version of an exhibition developed for the 1989 Royal Society "PopMath RoadShow". Its aim was to use knots to present methods of mathematics to the general public.
241:
objects together, knots have interested humans for their aesthetics and spiritual symbolism. Knots appear in various forms of Chinese artwork dating from several centuries BC (see
70:
which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "
3104:, i.e. having a preferred direction of travel along the knot, and requiring the arcs of the knots in the sum are oriented consistently with the oriented boundary of the rectangle. 1516:, demonstrated that two knot diagrams belonging to the same knot can be related by a sequence of three kinds of moves on the diagram, shown below. These operations, now called the 1227: 1072: 632:
is to give a precise definition of when two knots should be considered the same even when positioned quite differently in space. A formal mathematical definition is that two knots
1490:
is a type of projection in which, instead of forming double points, all strands of the knot meet at a single crossing point, connected to it by loops forming non-nested "petals".
2827: 1786: 2962: 2933: 2896: 2867: 2788: 2698: 2657: 2544: 2515: 2486: 1339: 1282: 1151: 142: 113: 471:
On the left, the unknot, and a knot equivalent to it. It can be more difficult to determine whether complex knots, such as the one on the right, are equivalent to the unknot.
3438:
substituted into it (each vertex is oriented so there is no arbitrary choice in substitution). Each such tangle has a notation consisting of numbers and + or − signs.
775: 2742: 783: 670: 615: 4182: 3034: 1192: 311:'s creation of the first knot tables for complete classification. Tait, in 1885, published a table of knots with up to ten crossings, and what came to be known as the 3188:, p. 28). The sequence of the number of prime knots of a given crossing number, up to crossing number 16, is 0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 3060: 2624: 1917: 3002: 1850: 1823: 1728:, which consist of one or more knots entangled with each other. The concepts explained above for knots, e.g. diagrams and Reidemeister moves, also hold for links. 1037: 927: 900: 1879: 3441:
An example is 1*2 −3 2. The 1* denotes the only 1-vertex basic polyhedron. The 2 −3 2 is a sequence describing the continued fraction associated to a
2323:). But the Alexander–Conway polynomial of each kind of trefoil will be the same, as can be seen by going through the computation above with the mirror image. The 1366: 3448:
A more complicated example is 8*3.1.2 0.1.1.1.1.1 Here again 8* refers to a basic polyhedron with 8 vertices. The periods separate the notation for each tangle.
1937: 1302: 507: 272: 3363:'s original and subsequent knot tables, and differences in approach to correcting this error in knot tables and other publications created after this point. 2281:
Since the Alexander–Conway polynomial is a knot invariant, this shows that the trefoil is not equivalent to the unknot. So the trefoil really is "knotted".
2432:
forward, and drop it back, now in front. Analogies for the plane would be lifting a string up off the surface, or removing a dot from inside a circle.
3219: 2065: 2153: 2109: 2078: 2055: 2166: 2143: 2122: 2099: 1387:). Nonetheless, these algorithms can be extremely time-consuming, and a major issue in the theory is to understand how hard this problem really is ( 5160: 4976: 4949: 4920: 4900: 4877: 4853: 4828: 4349: 4323: 4261: 4227: 4163: 4131: 4071: 3880: 3823: 3563: 5728: 3222:). While exponential upper and lower bounds for this sequence are known, it has not been proven that this sequence is strictly increasing ( 2667:). Thus the codimension of a smooth knot can be arbitrarily large when not fixing the dimension of the knotted sphere; however, any smooth 936: 5647: 3386: 3372: 4608: 284: 148:); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself. 2354:. The hyperbolic structure depends only on the knot so any quantity computed from the hyperbolic structure is then a knot invariant ( 5826: 3176:. Knot tables generally include only prime knots, and only one entry for a knot and its mirror image (even if they are different) ( 780:
What this definition of knot equivalence means is that two knots are equivalent when there is a continuous family of homeomorphisms
300: 1735:
one in which every component of the link has a preferred direction indicated by an arrow. For a given crossing of the diagram, let
4789:
There are a number of introductions to knot theory. A classical introduction for graduate students or advanced undergraduates is (
2402:
Geometry lets us visualize what the inside of a knot or link complement looks like by imagining light rays as traveling along the
1671:
and hyperbolic invariants were discovered. These aforementioned invariants are only the tip of the iceberg of modern knot theory.
1659:, which can be computed from the Alexander invariant, a module constructed from the infinite cyclic cover of the knot complement ( 681: 3122:
if it is non-trivial and cannot be written as the knot sum of two non-trivial knots. A knot that can be written as such a sum is
2410:. The inhabitant of this link complement is viewing the space from near the red component. The balls in the picture are views of 1551: 3252: 2041:
The following is an example of a typical computation using a skein relation. It computes the Alexander–Conway polynomial of the
1706: 5194: 433: 3180:). The number of nontrivial knots of a given crossing number increases rapidly, making tabulation computationally difficult ( 5637: 2186: 187:
To gain further insight, mathematicians have generalized the knot concept in several ways. Knots can be considered in other
5642: 5513: 3866: 3620: 3555: 3404: 3398: 3173: 875:
of space onto itself, such that the last one of them carries the first knot onto the second knot. (In detail: Two knots
5214: 3974: 5276: 625:
to be equivalent if the knot can be pushed about smoothly, without intersecting itself, to coincide with another knot.
481:
line segment, wrapping it around itself arbitrarily, and then fusing its two free ends together to form a closed loop (
3547: 2287: 1368:(final) stage of the ambient isotopy must be an orientation-preserving homeomorphism carrying one knot to the other. 315:. This record motivated the early knot theorists, but knot theory eventually became part of the emerging subject of 30: 4590: 3872: 3489: 3311: 2299: 1505: 327: 165:, a "quantity" which is the same when computed from different descriptions of a knot. Important invariants include 5282: 3719:. Leibniz Int. Proc. Inform. Vol. 164. Schloss Dagstuhl–Leibniz-Zentrum fĂŒr Informatik. pp. 25:1–25:17. 3229:
The first knot tables by Tait, Little, and Kirkman used knot diagrams, although Tait also used a precursor to the
1948: 523: 5346: 5341: 5153: 3933: 3240:
The early tables attempted to list all knots of at most 10 crossings, and all alternating knots of 11 crossings (
2749: 2574: 1447:
with the additional data of which strand is over and which is under at each crossing. (These diagrams are called
354: 304: 1077: 4805:) is suitable for undergraduates who know point-set topology; knowledge of algebraic topology is not required. 2591:), although this is no longer a requirement for smoothly knotted spheres. In fact, there are smoothly knotted 2455:
Since a knot can be considered topologically a 1-dimensional sphere, the next generalization is to consider a
5474: 233:
Archaeologists have discovered that knot tying dates back to prehistoric times. Besides their uses such as
5799: 1197: 1042: 342:. This would be the main approach to knot theory until a series of breakthroughs transformed the subject. 5688: 5657: 4594: 3315: 1509: 673: 335: 217: 156: 3279:. Less famous is the duplicate in his 10 crossing link table: 2.-2.-20.20 is the mirror of 8*-20:-20. . 3084:
Two knots can be added by cutting both knots and joining the pairs of ends. The operation is called the
2350:(i.e., the set of points of 3-space not on the knot) admits a geometric structure, in particular that of 180:, which are knots of several components entangled with each other. More than six billion knots and links 5518: 4937: 4837: 4086: 4021: 3476:
Gauss code is limited in its ability to identify knots. This problem is partially addressed with by the
3360: 2797: 2439:
Four-dimensional space occurs in classical knot theory, however, and an important topic is the study of
413: 386: 1738: 4765: 2938: 2909: 2872: 2843: 2764: 2674: 2633: 2520: 2491: 2462: 1315: 1232: 1127: 118: 115:. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of 89: 5821: 5787: 5558: 5146: 4721: 4680: 4639: 4529: 4431: 4219: 3993: 3841: 3745: 3412: 2419:
methods of obtaining these invariants make calculating these invariants, in practice, a simple task (
1698: 1656: 1444: 868:{\displaystyle \{h_{t}:\mathbb {R} ^{3}\rightarrow \mathbb {R} ^{3}\ \mathrm {for} \ 0\leq t\leq 1\}} 421: 405: 393:. A plethora of knot invariants have been invented since then, utilizing sophisticated tools such as 390: 339: 288: 5025:
Silliman, Robert H. (December 1963), "William Thomson: Smoke Rings and Nineteenth-Century Atomism",
2547: 731: 5595: 5578: 5122: 4810: 4599: 4026: 3736: 3477: 3323: 3276: 3155: 2351: 2064: 1702: 1668: 518: 350: 258: 3168:
A table of prime knots up to seven crossings. The knots are labeled with Alexander–Briggs notation
2703: 2177:(unlink of two components) = 0, since the first two polynomials are of the unknot and thus equal. 2152: 2108: 2077: 2054: 5616: 5563: 5177: 5173: 5050: 5042: 4772:. Accessed February 2016. Richard Elwes points out a common mistake in describing the Perko pair. 4670: 4629: 4478: 4447: 4355: 4201: 4169: 4141: 4103: 4043: 4009: 3983: 3917: 3803: 3792: 3689: 3673: 3642: 3608: 3582: 3408: 3282:
In the late 1990s Hoste, Thistlethwaite, and Weeks tabulated all the knots through 16 crossings (
3248: 2791: 2745: 1725: 1460: 1452: 1432: 1424: 1396: 635: 618: 308: 277: 257:
have made repeated appearances in different cultures, often representing strength in unity. The
193: 177: 152:
fundamental problem in knot theory is determining when two descriptions represent the same knot.
63: 3889: 3184:, p. 20). Tabulation efforts have succeeded in enumerating over 6 billion knots and links ( 2165: 2142: 2121: 2098: 4991: 3832:
Doll, Helmut; Hoste, Jim (1991), "A tabulation of oriented links. With microfiche supplement",
2551: 1788:
be the oriented link diagrams resulting from changing the diagram as indicated in the figure:
1605: 1419: 576: 5713: 5662: 5612: 5568: 5528: 5523: 5441: 4972: 4964: 4945: 4916: 4896: 4886: 4873: 4863: 4849: 4824: 4747: 4604: 4367: 4345: 4319: 4257: 4223: 4159: 4127: 4067: 3950: 3876: 3819: 3761: 3559: 3007: 1648: 1513: 1499: 1156: 432:). Knot theory may be crucial in the construction of quantum computers, through the model of 424:, strings with both ends fixed in place, have been effectively used in studying the action of 4525:
Marc Lackenby announces a new unknot recognition algorithm that runs in quasi-polynomial time
2546:
onto itself taking the embedded 2-sphere to the standard "round" embedding of the 2-sphere.
5748: 5573: 5469: 5204: 5034: 4814: 4737: 4729: 4688: 4470: 4439: 4400: 4337: 4301: 4280: 4249: 4191: 4151: 4119: 4095: 4059: 4035: 4001: 3942: 3909: 3849: 3811: 3784: 3753: 3720: 3698: 3665: 3632: 3592: 3519: 3514: 3504: 3499: 3435: 3422:
The notation describes how to construct a particular link diagram of the link. Start with a
3287: 3142: 3039: 2594: 2339: 2310:
Actually, there are two trefoil knots, called the right and left-handed trefoils, which are
1887: 1694: 1487: 1464: 382: 366: 346: 312: 292: 250: 242: 166: 5118: 4237: 3962: 3604: 3419:). The advantage of this notation is that it reflects some properties of the knot or link. 2975: 1828: 1801: 1004: 905: 878: 176:
The original motivation for the founders of knot theory was to create a table of knots and
5708: 5672: 5607: 5553: 5508: 5501: 5391: 5303: 5186: 4585:
Levine, J.; Orr, K (2000), "A survey of applications of surgery to knot and link theory",
4233: 3958: 3600: 3529: 3442: 3233:. Different notations have been invented for knots which allow more efficient tabulation ( 3230: 3159: 2407: 2392: 2373: 2347: 2343: 1855: 1852:, depending on the chosen crossing's configuration. Then the Alexander–Conway polynomial, 1680: 1652: 1637: 1408: 1305: 404:
In the last several decades of the 20th century, scientists became interested in studying
358: 254: 181: 145: 83: 5009: 1345: 17: 5060: 4742: 4725: 4709: 4684: 4643: 4435: 3997: 3845: 3749: 3377: 385:, and others, revealed deep connections between knot theory and mathematical methods in 5768: 5667: 5629: 5548: 5461: 5336: 5328: 5288: 5070: 4503: 4371: 4063: 3928: 3815: 3712: 3684: 3653: 3494: 2969: 2035: 1922: 1686: 1619: 1612: 1380: 1287: 492: 398: 362: 161: 4614:— An introductory article to high dimensional knots and links for the advanced readers 4392: 4005: 3854: 3757: 3637: 2382: 222: 5815: 5703: 5491: 5484: 5479: 5054: 4415: 4359: 4306: 4173: 4081: 3806:(1970), "An enumeration of knots and links, and some of their algebraic properties", 3796: 3703: 3677: 3612: 3509: 3268: 2327:
polynomial can in fact distinguish between the left- and right-handed trefoil knots (
1404: 676: 425: 394: 378: 370: 262: 227: 4451: 4047: 2744:
is unknotted. The notion of a knot has further generalisations in mathematics, see:
5718: 5698: 5602: 5585: 5381: 5318: 4458: 4013: 3862: 3319: 3127: 2042: 1574: 1557: 1545: 622: 246: 39: 35: 5401: 5240: 5232: 5224: 5132: 5131:— software for low-dimensional topology with native support for knots and links. 5106: 4910: 4890: 4867: 4818: 4419: 4213: 4145: 5733: 5496: 5270: 5250: 5138: 5005: 4123: 3725: 3112: 3108: 2444: 2406:
of the geometry. An example is provided by the picture of the complement of the
2311: 266: 4733: 2395:
complement from the perspective of an inhabitant living near the red component.
5753: 5738: 5693: 5590: 5543: 5538: 5533: 5363: 5260: 5128: 4253: 4155: 3596: 3470: 3465: 3356: 3331: 3327: 3295: 3264: 3116: 2557:
The mathematical technique called "general position" implies that for a given
2440: 1690: 1644: 331: 238: 188: 170: 3954: 3552:
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
2319:, before the invention of knot polynomials, using group theoretical methods ( 5758: 5426: 4841: 4054:
Hoste, Jim (2005). "The Enumeration and Classification of Knots and Links".
3969: 2366: 2086: 1791: 1667:). In the late 20th century, invariants such as "quantum" knot polynomials, 1376: 514: 478: 462: 75: 46: 5094: 4751: 4647:— An introductory article to high dimensional knots and links for beginners 3765: 3076: 4341: 412:
and other polymers. Knot theory can be used to determine if a molecule is
155:
A complete algorithmic solution to this problem exists, which has unknown
5743: 5353: 3772: 3452:
For an algebraic knot such as in the first example, 1* is often omitted.
3445:. One inserts this tangle at the vertex of the basic polyhedron 1*. 3071: 2756: 2577: 2456: 2447:. A notorious open problem asks whether every slice knot is also ribbon. 2411: 2403: 2316: 323: 316: 198: 55: 4693: 4658: 4523: 3868:
When topology meets chemistry: A topological look at molecular chirality
2133:
of two components) and an unknot. The unlink takes a bit of sneakiness:
1624:
A knot invariant is a "quantity" that is the same for equivalent knots (
5066: 4482: 4443: 4284: 4205: 4107: 4039: 3946: 3921: 3788: 3669: 3646: 3524: 3164: 2388: 2376:
are a link with the property that removing one ring unlinks the others.
1714: 1550: 5046: 4292:
Simon, Jonathan (1986), "Topological chirality of certain molecules",
5763: 5411: 5371: 5083: 4823:, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter, 3988: 2130: 1940: 1392: 994:{\displaystyle H:\mathbb {R} ^{3}\times \rightarrow \mathbb {R} ^{3}} 79: 71: 4474: 4196: 4099: 3931:(1962), "Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I", 3913: 2129:
gives a link deformable to one with 0 crossings (it is actually the
5038: 4675: 3247:
The first major verification of this work was done in the 1960s by
2630:-dimensional space; e.g., there is a smoothly knotted 3-sphere in 1486:), or in which all of the reducible crossings have been removed. A 1439:, where the "shadow" of the knot crosses itself once transversely ( 453: 5652: 4634: 3717:
36th International Symposium on Computational Geometry (SoCG 2020)
3587: 3427: 3376: 3163: 3075: 1604: 1418: 510: 271: 234: 221: 45: 29: 4710:"A tile model of circuit topology for self-entangled biopolymers" 4150:, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, 50:
A knot diagram of the trefoil knot, the simplest non-trivial knot
5723: 3310:
This is the most traditional notation, due to the 1927 paper of
2517:). Such an embedding is knotted if there is no homeomorphism of 1724:
The Alexander–Conway polynomial is actually defined in terms of
67: 5142: 5112: 4659:"Circuit Topology for Bottom-Up Engineering of Molecular Knots" 3734:
Collins, Graham (April 2006), "Computing with Quantum Knots",
1463:.) Analogously, knotted surfaces in 4-space can be related to 409: 283:
A mathematical theory of knots was first developed in 1771 by
4708:
Flapan, Erica; Mashaghi, Alireza; Wong, Helen (1 June 2023).
2045:. The yellow patches indicate where the relation is applied. 617:. Topologists consider knots and other entanglements such as 3972:(1998), "Algorithms for recognizing knots and 3-manifolds", 3381:
A knot diagram with crossings labelled for a Dowker sequence
1790: 1609:
A 3D print depicting the complement of the figure eight knot
721:{\displaystyle h\colon \mathbb {R} ^{3}\to \mathbb {R} ^{3}} 3214: 4587:
Surveys on Surgery Theory: Papers Dedicated to C.T.C. Wall
2089:. Applying the relation to the Hopf link where indicated, 1407:
announced a new unknot recognition algorithm that runs in
4180:
Perko, Kenneth (1974), "On the classification of knots",
3126:. There is a prime decomposition for knots, analogous to 361:, enabling the use of geometry in defining new, powerful 330:, and others—studied knots from the point of view of the 184:
since the beginnings of knot theory in the 19th century.
4657:
Golovnev, Anatoly; Mashaghi, Alireza (7 December 2021).
4572: 4246:
Die eindeutige Zerlegbarkeit eines Knotens in Primknoten
3286:). In 2003 Rankin, Flint, and Schermann, tabulated the 3283: 3241: 3177: 322:
These topologists in the early part of the 20th century—
5103:— software to investigate geometric properties of knots 5100: 3096:
of two knots. This can be formally defined as follows (
1504:
In 1927, working with this diagrammatic form of knots,
5063:
of a modern recreation of Tait's smoke ring experiment
4114:
Kontsevich, M. (1993). "Vassiliev's knot invariants".
4024:; Weeks, Jeffrey (1998), "The First 1,701,935 Knots", 3172:
Traditionally, knots have been catalogued in terms of
2271:{\displaystyle C(\mathrm {trefoil} )=1+z(0+z)=1+z^{2}} 3251:, who not only developed a new notation but also the 3042: 3010: 2978: 2941: 2912: 2875: 2846: 2800: 2767: 2706: 2677: 2636: 2597: 2523: 2494: 2465: 2189: 1951: 1925: 1890: 1858: 1831: 1804: 1741: 1379:
exist to solve this problem, with the first given by
1348: 1318: 1290: 1235: 1200: 1159: 1130: 1080: 1045: 1007: 939: 908: 881: 786: 734: 684: 638: 579: 526: 495: 377:, pp. 71–89), and subsequent contributions from 159:. In practice, knots are often distinguished using a 121: 92: 4271:
Silver, Daniel (2006). "Knot Theory's Odd Origins".
4084:(1965), "A classification of differentiable knots", 3656:; King, Henry C. (1981), "All knots are algebraic", 3623:(1991), "Hyperbolic invariants of knots and links", 2420: 5681: 5625: 5460: 5362: 5327: 5185: 5097:— detailed info on individual knots in knot tables 5089:Table of Knot Invariants and Knot Theory Resources 3515:Contact geometry#Legendrian submanifolds and knots 3054: 3028: 2996: 2956: 2927: 2890: 2861: 2821: 2782: 2736: 2692: 2651: 2618: 2538: 2509: 2480: 2270: 2034:The second rule is what is often referred to as a 2023: 1931: 1911: 1873: 1844: 1817: 1780: 1531:Move a strand completely over or under a crossing. 1360: 1333: 1296: 1276: 1221: 1186: 1145: 1116: 1066: 1031: 993: 921: 894: 867: 769: 720: 664: 609: 565: 501: 136: 107: 3625:Transactions of the American Mathematical Society 2554:are two typical families of such 2-sphere knots. 1881:, is recursively defined according to the rules: 4183:Proceedings of the American Mathematical Society 1375:, is determining the equivalence of two knots. 191:and objects other than circles can be used; see 4420:"Quantum field theory and the Jones polynomial" 2573:), the sphere should be unknotted. In general, 226:Intricate Celtic knotwork in the 1200-year-old 197:. For example, a higher-dimensional knot is an 5115:— online database and image generator of knots 4589:, Annals of mathematics studies, vol. 1, 5154: 5014:Proceedings of the Royal Society of Edinburgh 4793:). Other good texts from the references are ( 2488:) embedded in 4-dimensional Euclidean space ( 1705:. A variant of the Alexander polynomial, the 408:in order to understand knotting phenomena in 8: 3687:(1995), "On the Vassiliev knot invariants", 3575:Journal of Knot Theory and Its Ramifications 3426:, a 4-valent connected planar graph with no 2024:{\displaystyle C(L_{+})=C(L_{-})+zC(L_{0}).} 862: 787: 566:{\displaystyle K\colon \to \mathbb {R} ^{3}} 4334:Quantum Invariants of Knots and 3-Manifolds 4218:, Mathematics Lecture Series, vol. 7, 3355:are ambiguous, due to the discovery of the 2830: 1611:by François GuĂ©ritaud, Saul Schleimer, and 74:"). In mathematical language, a knot is an 5161: 5147: 5139: 4971:, Simon & Schuster, pp. 203–218, 4560: 4461:(1963), "Unknotting combinatorial balls", 4118:. ADVSOV. Vol. 16. pp. 137–150. 3808:Computational Problems in Abstract Algebra 1117:{\displaystyle H(x,t)\in \mathbb {R} ^{3}} 477:A knot is created by beginning with a one- 305:theory that atoms were knots in the aether 34:Examples of different knots including the 4798: 4741: 4692: 4674: 4633: 4598: 4548: 4305: 4195: 3987: 3853: 3775:(1914), "Die beiden Kleeblattschlingen", 3724: 3702: 3636: 3586: 3347:. Alexander–Briggs names in the range 10 3267:, which would only be noticed in 1974 by 3260: 3041: 3009: 2977: 2948: 2944: 2943: 2940: 2919: 2915: 2914: 2911: 2882: 2878: 2877: 2874: 2853: 2849: 2848: 2845: 2807: 2803: 2802: 2799: 2774: 2770: 2769: 2766: 2705: 2684: 2680: 2679: 2676: 2660: 2643: 2639: 2638: 2635: 2596: 2530: 2526: 2525: 2522: 2501: 2497: 2496: 2493: 2472: 2468: 2467: 2464: 2328: 2262: 2196: 2188: 2009: 1984: 1962: 1950: 1924: 1889: 1857: 1836: 1830: 1809: 1803: 1772: 1759: 1746: 1740: 1718: 1660: 1629: 1594: 1590: 1347: 1325: 1321: 1320: 1317: 1289: 1268: 1246: 1234: 1213: 1209: 1208: 1199: 1158: 1137: 1133: 1132: 1129: 1108: 1104: 1103: 1079: 1058: 1054: 1053: 1044: 1006: 985: 981: 980: 952: 948: 947: 938: 913: 907: 886: 880: 833: 824: 820: 819: 809: 805: 804: 794: 785: 761: 745: 733: 712: 708: 707: 697: 693: 692: 683: 656: 643: 637: 578: 557: 553: 552: 525: 494: 486: 374: 128: 124: 123: 120: 99: 95: 94: 91: 4802: 3141:Knots can also be constructed using the 3131: 1643:"Classical" knot invariants include the 1528:Move one strand completely over another. 1474:is a knot diagram in which there are no 573:, with the only "non-injectivity" being 4790: 4495: 3322:in his knot table (see image above and 2283: 1664: 1633: 1440: 1391:). The special case of recognizing the 437: 5135:of prime knots with up to 19 crossings 4626:Introduction to high dimensional knots 4502:As first sketched using the theory of 3416: 3299: 3284:Hoste, Thistlethwaite & Weeks 1998 3256: 3242:Hoste, Thistlethwaite & Weeks 1998 3178:Hoste, Thistlethwaite & Weeks 1998 3036:cases are well studied, and so is the 2664: 2588: 1525:Twist and untwist in either direction. 1371:The basic problem of knot theory, the 429: 296: 4794: 4507: 3291: 3272: 3234: 3223: 3185: 3181: 3097: 2355: 2180:Putting all this together will show: 1798:The original diagram might be either 1625: 1400: 1222:{\displaystyle x\in \mathbb {R} ^{3}} 1067:{\displaystyle x\in \mathbb {R} ^{3}} 933:if there exists a continuous mapping 482: 417: 265:lavished entire pages with intricate 7: 5794: 5109:— software to create images of knots 4965:"Ch. 8: Unreasonable Effectiveness?" 4511: 2750:isotopy classification of embeddings 2451:Knotting spheres of higher dimension 2320: 1435:except at the double points, called 1388: 1384: 2587: + 2)-dimensional space ( 1731:Consider an oriented link diagram, 1423:Tenfold Knottiness, plate IX, from 4895:(4th ed.), World Scientific, 3896: − 1)-spheres in 6 3816:10.1016/B978-0-08-012975-4.50034-5 3619:Adams, Colin; Hildebrand, Martin; 3107:The knot sum of oriented knots is 2822:{\displaystyle \mathbb {R} ^{n+1}} 2421:Adams, Hildebrand & Weeks 1991 2215: 2212: 2209: 2206: 2203: 2200: 2197: 1709:, is a polynomial in the variable 1693:. Well-known examples include the 840: 837: 834: 25: 3855:10.1090/S0025-5718-1991-1094946-4 3758:10.1038/scientificamerican0406-56 3638:10.1090/s0002-9947-1991-0994161-2 3407:for knots and links, named after 3138:knots in codimension at least 3. 2565:-dimensional Euclidean space, if 1781:{\displaystyle L_{+},L_{-},L_{0}} 353:into the study of knots with the 208:+2)-dimensional Euclidean space. 5793: 5782: 5781: 5125:function for investigating knots 4510:. For a more recent survey, see 4064:10.1016/B978-044451452-3/50006-X 3294:). In 2020 Burton tabulated all 2957:{\displaystyle \mathbb {R} ^{m}} 2928:{\displaystyle \mathbb {S} ^{n}} 2891:{\displaystyle \mathbb {R} ^{m}} 2862:{\displaystyle \mathbb {S} ^{n}} 2783:{\displaystyle \mathbb {S} ^{n}} 2693:{\displaystyle \mathbb {R} ^{n}} 2652:{\displaystyle \mathbb {R} ^{6}} 2539:{\displaystyle \mathbb {R} ^{4}} 2510:{\displaystyle \mathbb {R} ^{4}} 2481:{\displaystyle \mathbb {S} ^{2}} 2381: 2365: 2298: 2286: 2164: 2151: 2141: 2120: 2107: 2097: 2076: 2063: 2053: 1573: 1556: 1549: 1544: 1334:{\displaystyle \mathbb {R} ^{3}} 1277:{\displaystyle H(K_{1},1)=K_{2}} 1146:{\displaystyle \mathbb {R} ^{3}} 509:is a "simple closed curve" (see 461: 452: 137:{\displaystyle \mathbb {R} ^{3}} 108:{\displaystyle \mathbb {E} ^{3}} 4316:Knots, mathematics with a twist 1535: 434:topological quantum computation 285:Alexandre-ThĂ©ophile Vandermonde 5648:Dowker–Thistlethwaite notation 4915:, Cambridge University Press, 4872:, Princeton University Press, 4147:An Introduction to Knot Theory 3810:, Pergamon, pp. 329–358, 3387:Dowker–Thistlethwaite notation 3373:Dowker–Thistlethwaite notation 3367:Dowker–Thistlethwaite notation 2613: 2598: 2569:is large enough (depending on 2305:The right-handed trefoil knot. 2246: 2234: 2219: 2193: 2015: 2002: 1990: 1977: 1968: 1955: 1900: 1894: 1868: 1862: 1258: 1239: 1175: 1163: 1096: 1084: 1026: 1014: 976: 973: 961: 815: 770:{\displaystyle h(K_{1})=K_{2}} 751: 738: 703: 672:are equivalent if there is an 604: 598: 589: 583: 548: 545: 533: 357:. Many knots were shown to be 1: 4766:The Revenge of the Perko Pair 4006:10.1016/S0960-0779(97)00109-4 3556:American Mathematical Society 3399:Conway notation (knot theory) 2794:with isolated singularity in 2293:The left-handed trefoil knot. 1399:, is of particular interest ( 489:). Simply, we can say a knot 416:(has a "handedness") or not ( 173:, and hyperbolic invariants. 4391:Weisstein, Eric W. (2013a). 4332:Turaev, Vladimir G. (2016). 4318:, Harvard University Press, 4307:10.1016/0040-9383(86)90041-8 3975:Chaos, Solitons and Fractals 3713:"The Next 350 Million Knots" 3711:Burton, Benjamin A. (2020). 3704:10.1016/0040-9383(95)93237-2 3411:, is based on the theory of 2737:{\displaystyle 2n-3k-3>0} 4909:Cromwell, Peter R. (2004), 4846:Introduction to Knot Theory 3726:10.4230/LIPIcs.SoCG.2020.25 3253:Alexander–Conway polynomial 1707:Alexander–Conway polynomial 1427:'s article "On Knots", 1884 665:{\displaystyle K_{1},K_{2}} 27:Study of mathematical knots 5843: 4734:10.1038/s41598-023-35771-8 4591:Princeton University Press 4528:, Mathematical Institute, 4314:Sossinsky, Alexei (2002), 3873:Cambridge University Press 3490:List of knot theory topics 3463: 3396: 3370: 3153: 3069: 1678: 1617: 1497: 276:The first knot tabulator, 215: 5777: 5638:Alexander–Briggs notation 4254:10.1007/978-3-642-45813-2 4156:10.1007/978-1-4612-0691-0 3934:Mathematische Zeitschrift 3597:10.1142/S021821651550011X 3306:Alexander–Briggs notation 3298:with up to 19 crossings ( 2085:gives the unknot and the 1581: 1572: 610:{\displaystyle K(0)=K(1)} 144:upon itself (known as an 18:Alexander–Briggs notation 5827:Low-dimensional topology 5078:Knot tables and software 4244:Schubert, Horst (1949). 4142:Lickorish, W. B. Raymond 3434:Each vertex then has an 3029:{\displaystyle m>n+2} 1187:{\displaystyle H(x,0)=x} 513:) — that is: a "nearly" 189:three-dimensional spaces 5729:List of knots and links 5277:Kinoshita–Terasaka knot 4992:"Mathematics and Knots" 4969:Is God a Mathematician? 4942:Handbook of Knot Theory 4124:10.1090/advsov/016.2/04 4056:Handbook of Knot Theory 3130:and composite numbers ( 2831:Akbulut & King 1981 1685:A knot polynomial is a 365:. The discovery of the 355:hyperbolization theorem 5067:History of knot theory 4938:Thistlethwaite, Morwen 4785:Introductory textbooks 4372:"Reduced Knot Diagram" 4212:Rolfsen, Dale (1976), 4022:Thistlethwaite, Morwen 3382: 3338:and the Hopf link is 2 3318:and later extended by 3290:through 22 crossings ( 3169: 3081: 3056: 3055:{\displaystyle n>1} 3030: 2998: 2958: 2929: 2892: 2863: 2823: 2784: 2738: 2694: 2653: 2620: 2619:{\displaystyle (4k-1)} 2540: 2511: 2482: 2457:two-dimensional sphere 2342:proved many knots are 2272: 2025: 1939:is any diagram of the 1933: 1913: 1912:{\displaystyle C(O)=1} 1875: 1846: 1819: 1795: 1782: 1615: 1459:when they represent a 1451:when they represent a 1428: 1362: 1335: 1298: 1278: 1223: 1188: 1147: 1124:is a homeomorphism of 1118: 1068: 1033: 1001:such that a) for each 995: 923: 896: 869: 771: 722: 674:orientation-preserving 666: 611: 567: 503: 280: 261:monks who created the 230: 218:History of knot theory 138: 109: 51: 43: 5519:Finite type invariant 5069:(on the home page of 4963:Livio, Mario (2009), 4936:Menasco, William W.; 4463:Annals of Mathematics 4342:10.1515/9783110435221 4222:: Publish or Perish, 4116:I. M. Gelfand Seminar 4087:Annals of Mathematics 3902:Annals of Mathematics 3777:Mathematische Annalen 3380: 3361:Charles Newton Little 3261:Doll & Hoste 1991 3167: 3079: 3057: 3031: 2999: 2997:{\displaystyle m=n+2} 2959: 2930: 2893: 2864: 2824: 2785: 2739: 2695: 2654: 2621: 2541: 2512: 2483: 2335:Hyperbolic invariants 2273: 2026: 1934: 1914: 1876: 1847: 1845:{\displaystyle L_{-}} 1820: 1818:{\displaystyle L_{+}} 1794: 1783: 1608: 1422: 1409:quasi-polynomial time 1363: 1336: 1299: 1279: 1224: 1189: 1148: 1119: 1069: 1034: 1032:{\displaystyle t\in } 996: 924: 922:{\displaystyle K_{2}} 897: 895:{\displaystyle K_{1}} 870: 772: 723: 667: 612: 568: 504: 387:statistical mechanics 275: 235:recording information 225: 139: 110: 49: 33: 5006:Thomson, Sir William 4624:Ogasa, Eiji (2013), 4530:University of Oxford 4393:"Reducible Crossing" 4220:Berkeley, California 4058:. pp. 209–232. 3658:Comment. Math. Helv. 3525:Necktie § Knots 3040: 3008: 2976: 2939: 2910: 2873: 2844: 2798: 2765: 2704: 2675: 2671:-sphere embedded in 2634: 2595: 2583:form knots only in ( 2521: 2492: 2463: 2187: 1949: 1923: 1888: 1874:{\displaystyle C(z)} 1856: 1829: 1802: 1739: 1699:Alexander polynomial 1669:Vassiliev invariants 1657:Alexander polynomial 1512:, and independently 1510:Garland Baird Briggs 1445:immersed plane curve 1403:). In February 2021 1346: 1316: 1288: 1233: 1198: 1157: 1128: 1078: 1043: 1005: 937: 906: 879: 784: 732: 682: 636: 577: 524: 493: 391:quantum field theory 340:Alexander polynomial 334:and invariants from 289:Carl Friedrich Gauss 119: 90: 66:. While inspired by 5689:Alexander's theorem 5123:Wolfram Mathematica 4838:Crowell, Richard H. 4726:2023NatSR..13.8889F 4694:10.3390/sym13122353 4685:2021Symm...13.2353G 4644:2013arXiv1304.6053O 4436:1989CMaPh.121..351W 4027:Math. Intelligencer 3998:1998CSF.....9..569H 3892:(1962), "Knotted (4 3846:1991MaCom..57..747D 3750:2006SciAm.294d..56C 3737:Scientific American 3478:extended Gauss code 3324:List of prime knots 3156:List of prime knots 3088:, or sometimes the 2352:hyperbolic geometry 2346:, meaning that the 2173:which implies that 1703:Kauffman polynomial 1540: 1484:removable crossings 1476:reducible crossings 1383:in the late 1960s ( 1373:recognition problem 1361:{\displaystyle t=1} 1039:the mapping taking 519:continuous function 351:hyperbolic geometry 345:In the late 1970s, 338:theory such as the 202:-dimensional sphere 182:have been tabulated 38:(top left) and the 4887:Kauffman, Louis H. 4864:Kauffman, Louis H. 4770:RichardElwes.co.uk 4714:Scientific Reports 4444:10.1007/BF01217730 4368:Weisstein, Eric W. 4285:10.1511/2006.2.158 4273:American Scientist 4040:10.1007/BF03025227 3947:10.1007/BF01162369 3789:10.1007/BF01563732 3670:10.1007/BF02566217 3581:(3): 1550011, 30, 3409:John Horton Conway 3383: 3312:James W. Alexander 3249:John Horton Conway 3170: 3082: 3052: 3026: 2994: 2954: 2925: 2902:-link consists of 2888: 2859: 2840:-knot is a single 2819: 2792:real-algebraic set 2780: 2755:Every knot in the 2746:Knot (mathematics) 2734: 2690: 2649: 2616: 2536: 2507: 2478: 2391:'s cusp view: the 2268: 2021: 1929: 1909: 1871: 1842: 1815: 1796: 1778: 1616: 1538:Reidemeister moves 1536: 1518:Reidemeister moves 1494:Reidemeister moves 1429: 1425:Peter Guthrie Tait 1397:unknotting problem 1358: 1331: 1294: 1284:. Such a function 1274: 1219: 1184: 1143: 1114: 1064: 1029: 991: 919: 892: 865: 767: 718: 662: 607: 563: 499: 309:Peter Guthrie Tait 299:). In the 1860s, 291:, who defined the 281: 278:Peter Guthrie Tait 231: 194:knot (mathematics) 134: 105: 64:mathematical knots 52: 44: 5809: 5808: 5663:Reidemeister move 5529:Khovanov homology 5524:Hyperbolic volume 5010:"On Vortex Atoms" 4978:978-0-7432-9405-8 4951:978-0-444-51452-3 4922:978-0-521-54831-1 4902:978-981-4383-00-4 4892:Knots and Physics 4879:978-0-691-08435-0 4855:978-0-387-90272-2 4830:978-3-11-008675-1 4815:Zieschang, Heiner 4573:Adams et al. 2015 4465:, Second Series, 4424:Comm. Math. Phys. 4351:978-3-11-043522-1 4325:978-0-674-00944-8 4263:978-3-540-01419-5 4229:978-0-914098-16-4 4165:978-0-387-98254-0 4133:978-0-8218-4117-4 4090:, Second Series, 4073:978-0-444-51452-3 3904:, Second Series, 3882:978-0-521-66254-3 3825:978-0-08-012975-4 3565:978-0-8218-3678-1 3316:Garland B. Briggs 3288:alternating knots 2790:is the link of a 2427:Higher dimensions 1932:{\displaystyle O} 1649:fundamental group 1586: 1585: 1514:Kurt Reidemeister 1500:Reidemeister move 1465:immersed surfaces 1297:{\displaystyle H} 846: 832: 502:{\displaystyle K} 82:in 3-dimensional 16:(Redirected from 5834: 5797: 5796: 5785: 5784: 5749:Tait conjectures 5452: 5451: 5437: 5436: 5422: 5421: 5314: 5313: 5299: 5298: 5283:(−2,3,7) pretzel 5163: 5156: 5149: 5140: 5057: 5021: 4981: 4954: 4925: 4905: 4882: 4859: 4833: 4773: 4762: 4756: 4755: 4745: 4705: 4699: 4698: 4696: 4678: 4654: 4648: 4646: 4637: 4621: 4615: 4613: 4602: 4582: 4576: 4570: 4564: 4558: 4552: 4546: 4540: 4539: 4538: 4537: 4520: 4514: 4500: 4485: 4454: 4411: 4409: 4407: 4387: 4385: 4383: 4363: 4328: 4310: 4309: 4288: 4267: 4240: 4208: 4199: 4176: 4137: 4110: 4077: 4050: 4016: 3991: 3982:(4–5): 569–581, 3965: 3924: 3890:Haefliger, AndrĂ© 3885: 3858: 3857: 3840:(196): 747–761, 3828: 3799: 3768: 3730: 3728: 3707: 3706: 3680: 3649: 3640: 3615: 3590: 3568: 3520:Knots and graphs 3505:Quantum topology 3500:Circuit topology 3436:algebraic tangle 3424:basic polyhedron 3346: 3345: 3330:comes after the 3217: 3211: 3210: 3207: 3201: 3200: 3194: 3193: 3150:Tabulating knots 3143:circuit topology 3080:Adding two knots 3061: 3059: 3058: 3053: 3035: 3033: 3032: 3027: 3003: 3001: 3000: 2995: 2963: 2961: 2960: 2955: 2953: 2952: 2947: 2934: 2932: 2931: 2926: 2924: 2923: 2918: 2897: 2895: 2894: 2889: 2887: 2886: 2881: 2868: 2866: 2865: 2860: 2858: 2857: 2852: 2828: 2826: 2825: 2820: 2818: 2817: 2806: 2789: 2787: 2786: 2781: 2779: 2778: 2773: 2743: 2741: 2740: 2735: 2699: 2697: 2696: 2691: 2689: 2688: 2683: 2658: 2656: 2655: 2650: 2648: 2647: 2642: 2625: 2623: 2622: 2617: 2575:piecewise-linear 2545: 2543: 2542: 2537: 2535: 2534: 2529: 2516: 2514: 2513: 2508: 2506: 2505: 2500: 2487: 2485: 2484: 2479: 2477: 2476: 2471: 2385: 2369: 2344:hyperbolic knots 2340:William Thurston 2302: 2290: 2277: 2275: 2274: 2269: 2267: 2266: 2218: 2168: 2155: 2145: 2124: 2111: 2101: 2080: 2067: 2057: 2030: 2028: 2027: 2022: 2014: 2013: 1989: 1988: 1967: 1966: 1938: 1936: 1935: 1930: 1918: 1916: 1915: 1910: 1880: 1878: 1877: 1872: 1851: 1849: 1848: 1843: 1841: 1840: 1824: 1822: 1821: 1816: 1814: 1813: 1787: 1785: 1784: 1779: 1777: 1776: 1764: 1763: 1751: 1750: 1695:Jones polynomial 1675:Knot polynomials 1577: 1560: 1553: 1548: 1541: 1488:petal projection 1367: 1365: 1364: 1359: 1340: 1338: 1337: 1332: 1330: 1329: 1324: 1303: 1301: 1300: 1295: 1283: 1281: 1280: 1275: 1273: 1272: 1251: 1250: 1228: 1226: 1225: 1220: 1218: 1217: 1212: 1193: 1191: 1190: 1185: 1153:onto itself; b) 1152: 1150: 1149: 1144: 1142: 1141: 1136: 1123: 1121: 1120: 1115: 1113: 1112: 1107: 1073: 1071: 1070: 1065: 1063: 1062: 1057: 1038: 1036: 1035: 1030: 1000: 998: 997: 992: 990: 989: 984: 957: 956: 951: 928: 926: 925: 920: 918: 917: 901: 899: 898: 893: 891: 890: 874: 872: 871: 866: 844: 843: 830: 829: 828: 823: 814: 813: 808: 799: 798: 776: 774: 773: 768: 766: 765: 750: 749: 727: 725: 724: 719: 717: 716: 711: 702: 701: 696: 671: 669: 668: 663: 661: 660: 648: 647: 630:knot equivalence 616: 614: 613: 608: 572: 570: 569: 564: 562: 561: 556: 508: 506: 505: 500: 465: 456: 444:Knot equivalence 383:Maxim Kontsevich 367:Jones polynomial 359:hyperbolic knots 347:William Thurston 313:Tait conjectures 293:linking integral 251:Tibetan Buddhism 243:Chinese knotting 167:knot polynomials 143: 141: 140: 135: 133: 132: 127: 114: 112: 111: 106: 104: 103: 98: 62:is the study of 21: 5842: 5841: 5837: 5836: 5835: 5833: 5832: 5831: 5812: 5811: 5810: 5805: 5773: 5677: 5643:Conway notation 5627: 5621: 5608:Tricolorability 5456: 5450: 5447: 5446: 5445: 5435: 5432: 5431: 5430: 5420: 5417: 5416: 5415: 5407: 5397: 5387: 5377: 5358: 5337:Composite knots 5323: 5312: 5309: 5308: 5307: 5304:Borromean rings 5297: 5294: 5293: 5292: 5266: 5256: 5246: 5236: 5228: 5220: 5210: 5200: 5181: 5167: 5080: 5024: 5004: 5001: 4988: 4979: 4962: 4952: 4940:, eds. (2005), 4935: 4932: 4923: 4912:Knots and Links 4908: 4903: 4885: 4880: 4862: 4856: 4836: 4831: 4809: 4787: 4782: 4780:Further reading 4777: 4776: 4763: 4759: 4707: 4706: 4702: 4656: 4655: 4651: 4623: 4622: 4618: 4611: 4584: 4583: 4579: 4571: 4567: 4561:Weisstein 2013a 4559: 4555: 4547: 4543: 4535: 4533: 4522: 4521: 4517: 4504:Haken manifolds 4501: 4497: 4492: 4475:10.2307/1970538 4459:Zeeman, Erik C. 4457: 4414: 4405: 4403: 4390: 4381: 4379: 4366: 4352: 4331: 4326: 4313: 4291: 4270: 4264: 4243: 4230: 4215:Knots and Links 4211: 4197:10.2307/2040074 4179: 4166: 4140: 4134: 4113: 4100:10.2307/1970561 4080: 4074: 4053: 4019: 3968: 3929:Haken, Wolfgang 3927: 3914:10.2307/1970208 3888: 3883: 3861: 3831: 3826: 3804:Conway, John H. 3802: 3771: 3733: 3710: 3685:Bar-Natan, Dror 3683: 3654:Akbulut, Selman 3652: 3618: 3571: 3566: 3546: 3543: 3538: 3530:Lamp cord trick 3486: 3468: 3462: 3443:rational tangle 3405:Conway notation 3401: 3395: 3393:Conway notation 3375: 3369: 3354: 3350: 3344: 3341: 3340: 3339: 3337: 3308: 3231:Dowker notation 3213: 3208: 3205: 3203: 3198: 3196: 3191: 3189: 3174:crossing number 3162: 3160:Knot tabulation 3152: 3074: 3068: 3038: 3037: 3006: 3005: 2974: 2973: 2942: 2937: 2936: 2913: 2908: 2907: 2876: 2871: 2870: 2847: 2842: 2841: 2801: 2796: 2795: 2768: 2763: 2762: 2702: 2701: 2678: 2673: 2672: 2637: 2632: 2631: 2593: 2592: 2548:Suspended knots 2524: 2519: 2518: 2495: 2490: 2489: 2466: 2461: 2460: 2453: 2429: 2408:Borromean rings 2400: 2399: 2398: 2397: 2396: 2393:Borromean rings 2386: 2378: 2377: 2374:Borromean rings 2370: 2348:knot complement 2337: 2306: 2303: 2294: 2291: 2258: 2185: 2184: 2005: 1980: 1958: 1947: 1946: 1921: 1920: 1886: 1885: 1854: 1853: 1832: 1827: 1826: 1805: 1800: 1799: 1768: 1755: 1742: 1737: 1736: 1683: 1681:Knot polynomial 1677: 1653:knot complement 1647:, which is the 1638:tricolorability 1622: 1610: 1603: 1601:Knot invariants 1534: 1506:J. W. Alexander 1502: 1496: 1472:reduced diagram 1417: 1344: 1343: 1319: 1314: 1313: 1306:ambient isotopy 1304:is known as an 1286: 1285: 1264: 1242: 1231: 1230: 1207: 1196: 1195: 1155: 1154: 1131: 1126: 1125: 1102: 1076: 1075: 1052: 1041: 1040: 1003: 1002: 979: 946: 935: 934: 909: 904: 903: 882: 877: 876: 818: 803: 790: 782: 781: 757: 741: 730: 729: 706: 691: 680: 679: 652: 639: 634: 633: 575: 574: 551: 522: 521: 491: 490: 475: 474: 473: 472: 468: 467: 466: 458: 457: 446: 363:knot invariants 328:J. W. Alexander 267:Celtic knotwork 255:Borromean rings 220: 214: 146:ambient isotopy 122: 117: 116: 93: 88: 87: 84:Euclidean space 28: 23: 22: 15: 12: 11: 5: 5840: 5838: 5830: 5829: 5824: 5814: 5813: 5807: 5806: 5804: 5803: 5791: 5778: 5775: 5774: 5772: 5771: 5769:Surgery theory 5766: 5761: 5756: 5751: 5746: 5741: 5736: 5731: 5726: 5721: 5716: 5711: 5706: 5701: 5696: 5691: 5685: 5683: 5679: 5678: 5676: 5675: 5670: 5668:Skein relation 5665: 5660: 5655: 5650: 5645: 5640: 5634: 5632: 5623: 5622: 5620: 5619: 5613:Unknotting no. 5610: 5605: 5600: 5599: 5598: 5588: 5583: 5582: 5581: 5576: 5571: 5566: 5561: 5551: 5546: 5541: 5536: 5531: 5526: 5521: 5516: 5511: 5506: 5505: 5504: 5494: 5489: 5488: 5487: 5477: 5472: 5466: 5464: 5458: 5457: 5455: 5454: 5448: 5439: 5433: 5424: 5418: 5409: 5405: 5399: 5395: 5389: 5385: 5379: 5375: 5368: 5366: 5360: 5359: 5357: 5356: 5351: 5350: 5349: 5344: 5333: 5331: 5325: 5324: 5322: 5321: 5316: 5310: 5301: 5295: 5286: 5280: 5274: 5268: 5264: 5258: 5254: 5248: 5244: 5238: 5234: 5230: 5226: 5222: 5218: 5212: 5208: 5202: 5198: 5191: 5189: 5183: 5182: 5168: 5166: 5165: 5158: 5151: 5143: 5137: 5136: 5126: 5116: 5110: 5104: 5098: 5095:The Knot Atlas 5092: 5079: 5076: 5075: 5074: 5071:Andrew Ranicki 5064: 5058: 5039:10.1086/349764 5033:(4): 461–474, 5022: 5000: 4997: 4996: 4995: 4987: 4986:External links 4984: 4983: 4982: 4977: 4960: 4959: 4958: 4950: 4931: 4928: 4927: 4926: 4921: 4906: 4901: 4883: 4878: 4860: 4854: 4834: 4829: 4811:Burde, Gerhard 4799:Lickorish 1997 4786: 4783: 4781: 4778: 4775: 4774: 4757: 4700: 4649: 4616: 4610:978-0691049380 4609: 4600:10.1.1.64.4359 4577: 4565: 4553: 4549:Weisstein 2013 4541: 4515: 4494: 4493: 4491: 4488: 4487: 4486: 4469:(3): 501–526, 4455: 4430:(3): 351–399, 4416:Witten, Edward 4412: 4388: 4364: 4350: 4329: 4324: 4311: 4300:(2): 229–235, 4289: 4268: 4262: 4241: 4228: 4209: 4177: 4164: 4138: 4132: 4111: 4082:Levine, Jerome 4078: 4072: 4051: 4017: 3966: 3925: 3908:(3): 452–466, 3886: 3881: 3859: 3829: 3824: 3800: 3783:(3): 402–413, 3769: 3731: 3708: 3697:(2): 423–472, 3681: 3664:(3): 339–351, 3650: 3621:Weeks, Jeffrey 3616: 3569: 3564: 3542: 3539: 3537: 3534: 3533: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3497: 3495:Molecular knot 3492: 3485: 3482: 3464:Main article: 3461: 3458: 3397:Main article: 3394: 3391: 3371:Main article: 3368: 3365: 3352: 3348: 3342: 3335: 3307: 3304: 3212:... (sequence 3151: 3148: 3070:Main article: 3067: 3064: 3051: 3048: 3045: 3025: 3022: 3019: 3016: 3013: 2993: 2990: 2987: 2984: 2981: 2970:natural number 2951: 2946: 2922: 2917: 2885: 2880: 2856: 2851: 2816: 2813: 2810: 2805: 2777: 2772: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2712: 2709: 2687: 2682: 2661:Haefliger 1962 2646: 2641: 2615: 2612: 2609: 2606: 2603: 2600: 2533: 2528: 2504: 2499: 2475: 2470: 2452: 2449: 2428: 2425: 2387: 2380: 2379: 2371: 2364: 2363: 2362: 2361: 2360: 2336: 2333: 2329:Lickorish 1997 2308: 2307: 2304: 2297: 2295: 2292: 2285: 2279: 2278: 2265: 2261: 2257: 2254: 2251: 2248: 2245: 2242: 2239: 2236: 2233: 2230: 2227: 2224: 2221: 2217: 2214: 2211: 2208: 2205: 2202: 2199: 2195: 2192: 2171: 2170: 2127: 2126: 2083: 2082: 2068:) +  2058:) =  2036:skein relation 2032: 2031: 2020: 2017: 2012: 2008: 2004: 2001: 1998: 1995: 1992: 1987: 1983: 1979: 1976: 1973: 1970: 1965: 1961: 1957: 1954: 1944: 1928: 1908: 1905: 1902: 1899: 1896: 1893: 1870: 1867: 1864: 1861: 1839: 1835: 1812: 1808: 1775: 1771: 1767: 1762: 1758: 1754: 1749: 1745: 1719:Lickorish 1997 1717:coefficients ( 1687:knot invariant 1679:Main article: 1676: 1673: 1661:Lickorish 1997 1630:Lickorish 1997 1620:Knot invariant 1618:Main article: 1613:Henry Segerman 1602: 1599: 1595:Lickorish 1997 1591:Sossinsky 2002 1584: 1583: 1579: 1578: 1570: 1569: 1566: 1562: 1561: 1554: 1533: 1532: 1529: 1526: 1522: 1498:Main article: 1495: 1492: 1416: 1413: 1381:Wolfgang Haken 1357: 1354: 1351: 1328: 1323: 1293: 1271: 1267: 1263: 1260: 1257: 1254: 1249: 1245: 1241: 1238: 1216: 1211: 1206: 1203: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1140: 1135: 1111: 1106: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1061: 1056: 1051: 1048: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 988: 983: 978: 975: 972: 969: 966: 963: 960: 955: 950: 945: 942: 916: 912: 889: 885: 864: 861: 858: 855: 852: 849: 842: 839: 836: 827: 822: 817: 812: 807: 802: 797: 793: 789: 764: 760: 756: 753: 748: 744: 740: 737: 715: 710: 705: 700: 695: 690: 687: 659: 655: 651: 646: 642: 606: 603: 600: 597: 594: 591: 588: 585: 582: 560: 555: 550: 547: 544: 541: 538: 535: 532: 529: 498: 487:Sossinsky 2002 470: 469: 460: 459: 451: 450: 449: 448: 447: 445: 442: 406:physical knots 399:Floer homology 395:quantum groups 375:Sossinsky 2002 216:Main article: 213: 210: 162:knot invariant 131: 126: 102: 97: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5839: 5828: 5825: 5823: 5820: 5819: 5817: 5802: 5801: 5792: 5790: 5789: 5780: 5779: 5776: 5770: 5767: 5765: 5762: 5760: 5757: 5755: 5752: 5750: 5747: 5745: 5742: 5740: 5737: 5735: 5732: 5730: 5727: 5725: 5722: 5720: 5717: 5715: 5712: 5710: 5707: 5705: 5704:Conway sphere 5702: 5700: 5697: 5695: 5692: 5690: 5687: 5686: 5684: 5680: 5674: 5671: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5649: 5646: 5644: 5641: 5639: 5636: 5635: 5633: 5631: 5624: 5618: 5614: 5611: 5609: 5606: 5604: 5601: 5597: 5594: 5593: 5592: 5589: 5587: 5584: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5557: 5556: 5555: 5552: 5550: 5547: 5545: 5542: 5540: 5537: 5535: 5532: 5530: 5527: 5525: 5522: 5520: 5517: 5515: 5512: 5510: 5507: 5503: 5500: 5499: 5498: 5495: 5493: 5490: 5486: 5483: 5482: 5481: 5478: 5476: 5475:Arf invariant 5473: 5471: 5468: 5467: 5465: 5463: 5459: 5443: 5440: 5428: 5425: 5413: 5410: 5403: 5400: 5393: 5390: 5383: 5380: 5373: 5370: 5369: 5367: 5365: 5361: 5355: 5352: 5348: 5345: 5343: 5340: 5339: 5338: 5335: 5334: 5332: 5330: 5326: 5320: 5317: 5305: 5302: 5290: 5287: 5284: 5281: 5278: 5275: 5272: 5269: 5262: 5259: 5252: 5249: 5242: 5239: 5237: 5231: 5229: 5223: 5216: 5213: 5206: 5203: 5196: 5193: 5192: 5190: 5188: 5184: 5179: 5175: 5171: 5164: 5159: 5157: 5152: 5150: 5145: 5144: 5141: 5134: 5130: 5127: 5124: 5120: 5119:KnotData.html 5117: 5114: 5111: 5108: 5105: 5102: 5099: 5096: 5093: 5091: 5090: 5086: 5082: 5081: 5077: 5072: 5068: 5065: 5062: 5059: 5056: 5052: 5048: 5044: 5040: 5036: 5032: 5028: 5023: 5019: 5015: 5011: 5007: 5003: 5002: 4998: 4993: 4990: 4989: 4985: 4980: 4974: 4970: 4966: 4961: 4956: 4955: 4953: 4947: 4943: 4939: 4934: 4933: 4929: 4924: 4918: 4914: 4913: 4907: 4904: 4898: 4894: 4893: 4888: 4884: 4881: 4875: 4871: 4870: 4865: 4861: 4857: 4851: 4847: 4843: 4839: 4835: 4832: 4826: 4822: 4821: 4816: 4812: 4808: 4807: 4806: 4804: 4803:Cromwell 2004 4800: 4796: 4792: 4784: 4779: 4771: 4767: 4761: 4758: 4753: 4749: 4744: 4739: 4735: 4731: 4727: 4723: 4719: 4715: 4711: 4704: 4701: 4695: 4690: 4686: 4682: 4677: 4672: 4668: 4664: 4660: 4653: 4650: 4645: 4641: 4636: 4631: 4627: 4620: 4617: 4612: 4606: 4601: 4596: 4592: 4588: 4581: 4578: 4574: 4569: 4566: 4562: 4557: 4554: 4550: 4545: 4542: 4531: 4527: 4526: 4519: 4516: 4513: 4509: 4505: 4499: 4496: 4489: 4484: 4480: 4476: 4472: 4468: 4464: 4460: 4456: 4453: 4449: 4445: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4413: 4402: 4398: 4394: 4389: 4377: 4373: 4369: 4365: 4361: 4357: 4353: 4347: 4343: 4339: 4335: 4330: 4327: 4321: 4317: 4312: 4308: 4303: 4299: 4295: 4290: 4286: 4282: 4278: 4274: 4269: 4265: 4259: 4255: 4251: 4247: 4242: 4239: 4235: 4231: 4225: 4221: 4217: 4216: 4210: 4207: 4203: 4198: 4193: 4189: 4185: 4184: 4178: 4175: 4171: 4167: 4161: 4157: 4153: 4149: 4148: 4143: 4139: 4135: 4129: 4125: 4121: 4117: 4112: 4109: 4105: 4101: 4097: 4093: 4089: 4088: 4083: 4079: 4075: 4069: 4065: 4061: 4057: 4052: 4049: 4045: 4041: 4037: 4033: 4029: 4028: 4023: 4018: 4015: 4011: 4007: 4003: 3999: 3995: 3990: 3985: 3981: 3977: 3976: 3971: 3967: 3964: 3960: 3956: 3952: 3948: 3944: 3940: 3936: 3935: 3930: 3926: 3923: 3919: 3915: 3911: 3907: 3903: 3899: 3895: 3891: 3887: 3884: 3878: 3874: 3870: 3869: 3864: 3863:Flapan, Erica 3860: 3856: 3851: 3847: 3843: 3839: 3835: 3830: 3827: 3821: 3817: 3813: 3809: 3805: 3801: 3798: 3794: 3790: 3786: 3782: 3778: 3774: 3770: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3738: 3732: 3727: 3722: 3718: 3714: 3709: 3705: 3700: 3696: 3692: 3691: 3686: 3682: 3679: 3675: 3671: 3667: 3663: 3659: 3655: 3651: 3648: 3644: 3639: 3634: 3630: 3626: 3622: 3617: 3614: 3610: 3606: 3602: 3598: 3594: 3589: 3584: 3580: 3576: 3570: 3567: 3561: 3557: 3553: 3549: 3545: 3544: 3540: 3535: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3510:Ribbon theory 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3487: 3483: 3481: 3479: 3474: 3472: 3467: 3459: 3457: 3453: 3449: 3446: 3444: 3439: 3437: 3432: 3429: 3425: 3420: 3418: 3414: 3410: 3406: 3400: 3392: 3390: 3388: 3379: 3374: 3366: 3364: 3362: 3358: 3333: 3329: 3325: 3321: 3317: 3313: 3305: 3303: 3301: 3297: 3293: 3289: 3285: 3280: 3278: 3277:Alain Caudron 3274: 3270: 3269:Kenneth Perko 3266: 3262: 3258: 3254: 3250: 3245: 3243: 3238: 3236: 3232: 3227: 3225: 3221: 3216: 3187: 3183: 3179: 3175: 3166: 3161: 3157: 3149: 3147: 3144: 3139: 3137: 3133: 3132:Schubert 1949 3129: 3125: 3121: 3120: 3114: 3110: 3105: 3103: 3099: 3095: 3091: 3090:connected sum 3087: 3078: 3073: 3065: 3063: 3049: 3046: 3043: 3023: 3020: 3017: 3014: 3011: 2991: 2988: 2985: 2982: 2979: 2971: 2967: 2949: 2920: 2905: 2901: 2883: 2869:embedded in 2854: 2839: 2834: 2832: 2814: 2811: 2808: 2793: 2775: 2761: 2759: 2753: 2751: 2747: 2731: 2728: 2725: 2722: 2719: 2716: 2713: 2710: 2707: 2685: 2670: 2666: 2662: 2644: 2629: 2626:-spheres in 6 2610: 2607: 2604: 2601: 2590: 2586: 2582: 2580: 2576: 2572: 2568: 2564: 2560: 2555: 2553: 2549: 2531: 2502: 2473: 2458: 2450: 2448: 2446: 2442: 2437: 2433: 2426: 2424: 2422: 2416: 2413: 2409: 2405: 2394: 2390: 2384: 2375: 2368: 2359: 2357: 2353: 2349: 2345: 2341: 2334: 2332: 2330: 2326: 2322: 2318: 2313: 2312:mirror images 2301: 2296: 2289: 2284: 2282: 2263: 2259: 2255: 2252: 2249: 2243: 2240: 2237: 2231: 2228: 2225: 2222: 2190: 2183: 2182: 2181: 2178: 2176: 2167: 2162: 2159: 2154: 2149: 2144: 2139: 2136: 2135: 2134: 2132: 2123: 2118: 2115: 2110: 2105: 2100: 2095: 2092: 2091: 2090: 2088: 2079: 2074: 2071: 2066: 2061: 2056: 2051: 2048: 2047: 2046: 2044: 2039: 2037: 2018: 2010: 2006: 1999: 1996: 1993: 1985: 1981: 1974: 1971: 1963: 1959: 1952: 1945: 1942: 1926: 1906: 1903: 1897: 1891: 1884: 1883: 1882: 1865: 1859: 1837: 1833: 1810: 1806: 1793: 1789: 1773: 1769: 1765: 1760: 1756: 1752: 1747: 1743: 1734: 1729: 1727: 1722: 1720: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1682: 1674: 1672: 1670: 1666: 1662: 1658: 1654: 1650: 1646: 1641: 1639: 1635: 1631: 1627: 1621: 1614: 1607: 1600: 1598: 1596: 1592: 1580: 1576: 1571: 1567: 1564: 1563: 1559: 1555: 1552: 1547: 1543: 1542: 1539: 1530: 1527: 1524: 1523: 1521: 1519: 1515: 1511: 1507: 1501: 1493: 1491: 1489: 1485: 1481: 1477: 1473: 1468: 1466: 1462: 1458: 1457:link diagrams 1454: 1450: 1449:knot diagrams 1446: 1442: 1438: 1434: 1426: 1421: 1415:Knot diagrams 1414: 1412: 1410: 1406: 1405:Marc Lackenby 1402: 1398: 1395:, called the 1394: 1390: 1386: 1382: 1378: 1374: 1369: 1355: 1352: 1349: 1326: 1309: 1307: 1291: 1269: 1265: 1261: 1255: 1252: 1247: 1243: 1236: 1214: 1204: 1201: 1181: 1178: 1172: 1169: 1166: 1160: 1138: 1109: 1099: 1093: 1090: 1087: 1081: 1059: 1049: 1046: 1023: 1020: 1017: 1011: 1008: 986: 970: 967: 964: 958: 953: 943: 940: 932: 914: 910: 887: 883: 859: 856: 853: 850: 847: 825: 810: 800: 795: 791: 778: 762: 758: 754: 746: 742: 735: 713: 698: 688: 685: 678: 677:homeomorphism 675: 657: 653: 649: 644: 640: 631: 626: 624: 620: 601: 595: 592: 586: 580: 558: 542: 539: 536: 530: 527: 520: 516: 512: 496: 488: 484: 480: 464: 455: 443: 441: 439: 435: 431: 427: 426:topoisomerase 423: 419: 415: 411: 407: 402: 400: 396: 392: 388: 384: 380: 379:Edward Witten 376: 372: 371:Vaughan Jones 368: 364: 360: 356: 352: 348: 343: 341: 337: 333: 329: 325: 320: 318: 314: 310: 306: 302: 298: 294: 290: 286: 279: 274: 270: 268: 264: 263:Book of Kells 260: 256: 252: 248: 244: 240: 236: 229: 228:Book of Kells 224: 219: 211: 209: 207: 204:embedded in ( 203: 201: 196: 195: 190: 185: 183: 179: 174: 172: 168: 164: 163: 158: 153: 149: 147: 129: 100: 85: 81: 77: 73: 69: 65: 61: 57: 48: 41: 37: 32: 19: 5798: 5786: 5714:Double torus 5699:Braid theory 5514:Crossing no. 5509:Crosscap no. 5195:Figure-eight 5169: 5088: 5084: 5030: 5026: 5017: 5013: 4968: 4944:, Elsevier, 4941: 4911: 4891: 4868: 4848:. Springer. 4845: 4819: 4791:Rolfsen 1976 4788: 4769: 4760: 4717: 4713: 4703: 4669:(12): 2353. 4666: 4662: 4652: 4625: 4619: 4586: 4580: 4568: 4556: 4544: 4534:, retrieved 4532:, 2021-02-03 4524: 4518: 4508:Haken (1962) 4498: 4466: 4462: 4427: 4423: 4404:. Retrieved 4396: 4380:. Retrieved 4375: 4333: 4315: 4297: 4293: 4276: 4272: 4245: 4214: 4190:(2): 262–6, 4187: 4181: 4146: 4115: 4094:(1): 15–50, 4091: 4085: 4055: 4034:(4): 33–48, 4031: 4025: 4020:Hoste, Jim; 3989:math/9712269 3979: 3973: 3938: 3932: 3905: 3901: 3897: 3893: 3867: 3837: 3833: 3807: 3780: 3776: 3744:(4): 56–63, 3741: 3735: 3716: 3694: 3688: 3661: 3657: 3628: 3624: 3578: 3574: 3551: 3548:Adams, Colin 3475: 3469: 3454: 3450: 3447: 3440: 3433: 3423: 3421: 3402: 3384: 3320:Dale Rolfsen 3309: 3281: 3246: 3239: 3228: 3171: 3140: 3135: 3123: 3118: 3106: 3101: 3093: 3089: 3085: 3083: 3066:Adding knots 2965: 2935:embedded in 2903: 2899: 2837: 2835: 2757: 2754: 2668: 2627: 2584: 2578: 2570: 2566: 2562: 2558: 2556: 2454: 2445:ribbon knots 2438: 2434: 2430: 2417: 2401: 2338: 2324: 2309: 2280: 2179: 2174: 2172: 2160: 2157: 2147: 2137: 2128: 2116: 2113: 2103: 2093: 2084: 2072: 2069: 2059: 2049: 2043:trefoil knot 2040: 2033: 1797: 1732: 1730: 1723: 1710: 1684: 1665:Rolfsen 1976 1642: 1634:Rolfsen 1976 1623: 1587: 1537: 1517: 1503: 1483: 1479: 1475: 1471: 1469: 1467:in 3-space. 1456: 1448: 1441:Rolfsen 1976 1436: 1430: 1372: 1370: 1310: 930: 779: 629: 628:The idea of 627: 476: 438:Collins 2006 403: 344: 321: 282: 253:, while the 247:endless knot 232: 205: 199: 192: 186: 175: 160: 154: 150: 59: 53: 40:trefoil knot 36:trivial knot 5822:Knot theory 5549:Linking no. 5470:Alternating 5271:Conway knot 5251:Carrick mat 5205:Three-twist 5170:Knot theory 4720:(1): 8889. 4512:Hass (1998) 3871:, Outlook, 3834:Math. Comp. 3631:(1): 1–56, 3417:Conway 1970 3300:Burton 2020 3296:prime knots 3257:Conway 1970 3113:associative 3109:commutative 3094:composition 2972:. Both the 2906:-copies of 2665:Levine 1965 2589:Zeeman 1963 2561:-sphere in 2441:slice knots 479:dimensional 430:Flapan 2000 349:introduced 301:Lord Kelvin 297:Silver 2006 249:appears in 171:knot groups 60:knot theory 5816:Categories 5709:Complement 5673:Tabulation 5630:operations 5554:Polynomial 5544:Link group 5539:Knot group 5502:Invertible 5480:Bridge no. 5462:Invariants 5392:Cinquefoil 5261:Perko pair 5187:Hyperbolic 4842:Fox, Ralph 4795:Adams 2004 4676:2106.03925 4536:2021-02-03 4279:(2): 158. 3970:Hass, Joel 3941:: 89–120, 3536:References 3471:Gauss code 3466:Gauss code 3460:Gauss code 3357:Perko pair 3332:torus knot 3328:twist knot 3292:Hoste 2005 3273:Perko 1974 3265:Perko pair 3235:Hoste 2005 3224:Adams 2004 3186:Hoste 2005 3182:Hoste 2005 3154:See also: 3098:Adams 2004 2552:spun knots 2356:Adams 2004 1701:, and the 1691:polynomial 1689:that is a 1655:, and the 1645:knot group 1626:Adams 2004 1597:, ch. 1). 1593:, ch. 3) ( 1433:one-to-one 1401:Hoste 2005 1377:Algorithms 931:equivalent 483:Adams 2004 418:Simon 1986 332:knot group 157:complexity 42:(below it) 5603:Stick no. 5559:Alexander 5497:Chirality 5442:Solomon's 5402:Septafoil 5329:Satellite 5289:Whitehead 5215:Stevedore 5113:Knoutilus 5107:Knotscape 5055:144988108 4635:1304.6053 4595:CiteSeerX 4490:Footnotes 4397:MathWorld 4378:. Wolfram 4376:MathWorld 4360:118682559 4174:122824389 3955:0025-5874 3900:-space", 3797:120452571 3773:Dehn, Max 3678:120218312 3613:119320887 3588:1208.5742 3124:composite 2723:− 2714:− 2608:− 2404:geodesics 2321:Dehn 1914 2087:Hopf link 1986:− 1838:− 1761:− 1582:Type III 1437:crossings 1389:Hass 1998 1385:Hass 1998 1229:; and c) 1205:∈ 1100:∈ 1050:∈ 1012:∈ 977:→ 959:× 857:≤ 851:≤ 816:→ 704:→ 689:: 549:→ 531:: 515:injective 373:in 1984 ( 76:embedding 5788:Category 5658:Mutation 5626:Notation 5579:Kauffman 5492:Brunnian 5485:2-bridge 5354:Knot sum 5285:(12n242) 5101:KnotPlot 5085:KnotInfo 5020:: 94–105 5008:(1867), 4889:(2013), 4869:On Knots 4866:(1987), 4844:(1977). 4817:(1985), 4752:37264056 4743:10235088 4663:Symmetry 4452:14951363 4418:(1989), 4370:(2013). 4294:Topology 4144:(1997), 4048:18027155 3865:(2000), 3766:16596880 3690:Topology 3550:(2004), 3484:See also 3117:knot is 3102:oriented 3086:knot sum 3072:Knot sum 3004:and the 2964:, where 2581:-spheres 2412:horoball 2317:Max Dehn 1568:Type II 1480:nugatory 1194:for all 428:on DNA ( 336:homology 324:Max Dehn 317:topology 56:topology 5800:Commons 5719:Fibered 5617:problem 5586:Pretzel 5564:Bracket 5382:Trefoil 5319:L10a140 5279:(11n42) 5273:(11n34) 5241:Endless 4999:History 4930:Surveys 4797:) and ( 4722:Bibcode 4681:Bibcode 4640:Bibcode 4483:1970538 4432:Bibcode 4401:Wolfram 4238:0515288 4206:2040074 4108:1970561 4014:7381505 3994:Bibcode 3963:0160196 3922:1970208 3842:Bibcode 3746:Bibcode 3647:2001854 3605:3342136 3541:Sources 3413:tangles 3218:in the 3215:A002863 2760:-sphere 2389:SnapPea 1919:(where 1715:integer 1651:of the 1520:, are: 422:Tangles 307:led to 245:). The 212:History 5764:Writhe 5734:Ribbon 5569:HOMFLY 5412:Unlink 5372:Unknot 5347:Square 5342:Granny 5133:Tables 5129:Regina 5053:  5047:228151 5045:  4975:  4948:  4919:  4899:  4876:  4852:  4827:  4750:  4740:  4607:  4597:  4481:  4450:  4358:  4348:  4322:  4260:  4236:  4226:  4204:  4172:  4162:  4130:  4106:  4070:  4046:  4012:  3961:  3953:  3920:  3879:  3822:  3795:  3764:  3676:  3645:  3611:  3603:  3562:  3136:smooth 3062:case. 2131:unlink 1941:unknot 1697:, the 1565:Type I 1478:(also 1393:unknot 845:  831:  623:braids 414:chiral 259:Celtic 80:circle 72:unknot 5754:Twist 5739:Slice 5694:Berge 5682:Other 5653:Flype 5591:Prime 5574:Jones 5534:Genus 5364:Torus 5178:links 5174:knots 5061:Movie 5051:S2CID 5043:JSTOR 4820:Knots 4671:arXiv 4630:arXiv 4479:JSTOR 4448:S2CID 4406:8 May 4382:8 May 4356:S2CID 4202:JSTOR 4170:S2CID 4104:JSTOR 4044:S2CID 4010:S2CID 3984:arXiv 3918:JSTOR 3793:S2CID 3674:S2CID 3643:JSTOR 3609:S2CID 3583:arXiv 3428:digon 3351:to 10 3128:prime 3119:prime 2968:is a 2898:. An 2700:with 2325:Jones 1726:links 1713:with 728:with 619:links 511:Curve 239:tying 178:links 78:of a 68:knots 5759:Wild 5724:Knot 5628:and 5615:and 5596:list 5427:Hopf 5176:and 5027:Isis 4973:ISBN 4946:ISBN 4917:ISBN 4897:ISBN 4874:ISBN 4850:ISBN 4825:ISBN 4748:PMID 4605:ISBN 4408:2013 4384:2013 4346:ISBN 4320:ISBN 4258:ISBN 4224:ISBN 4160:ISBN 4128:ISBN 4092:1982 4068:ISBN 3951:ISSN 3877:ISBN 3820:ISBN 3762:PMID 3560:ISBN 3403:The 3385:The 3314:and 3220:OEIS 3158:and 3115:. A 3111:and 3047:> 3015:> 2729:> 2550:and 2443:and 2372:The 2156:) + 2146:) = 2112:) + 2102:) = 1733:i.e. 1508:and 1461:link 1455:and 1453:knot 929:are 902:and 621:and 517:and 397:and 389:and 237:and 5744:Sum 5265:161 5263:(10 5035:doi 4768:", 4738:PMC 4730:doi 4689:doi 4506:by 4471:doi 4440:doi 4428:121 4338:doi 4302:doi 4281:doi 4250:doi 4192:doi 4152:doi 4120:doi 4096:doi 4060:doi 4036:doi 4002:doi 3943:doi 3910:doi 3850:doi 3812:doi 3785:doi 3754:doi 3742:294 3721:doi 3699:doi 3666:doi 3633:doi 3629:326 3593:doi 3359:in 3353:166 3349:162 3302:). 3259:) ( 3237:). 3226:). 3209:705 3206:388 3199:293 3197:253 3192:972 3092:or 2836:An 2833:). 2663:) ( 2423:). 2358:). 2331:). 1825:or 1721:). 1632:) ( 1628:) ( 1482:or 1308:.) 1074:to 485:) ( 440:). 420:). 410:DNA 369:by 303:'s 54:In 5818:: 5444:(4 5429:(2 5414:(0 5404:(7 5394:(5 5384:(3 5374:(0 5306:(6 5291:(5 5255:18 5253:(8 5243:(7 5217:(6 5207:(5 5197:(4 5121:— 5087:: 5049:, 5041:, 5031:54 5029:, 5018:VI 5016:, 5012:, 4967:, 4840:; 4813:; 4746:. 4736:. 4728:. 4718:13 4716:. 4712:. 4687:. 4679:. 4667:13 4665:. 4661:. 4638:, 4628:, 4603:, 4593:, 4477:, 4467:78 4446:, 4438:, 4426:, 4422:, 4399:. 4395:. 4374:. 4354:. 4344:. 4336:. 4298:25 4296:, 4277:94 4275:. 4256:. 4248:. 4234:MR 4232:, 4200:, 4188:45 4186:, 4168:, 4158:, 4126:. 4102:, 4066:. 4042:, 4032:20 4030:, 4008:, 4000:, 3992:, 3978:, 3959:MR 3957:, 3949:, 3939:80 3937:, 3916:, 3906:75 3875:, 3848:, 3838:57 3836:, 3818:, 3791:, 3781:75 3779:, 3760:, 3752:, 3740:, 3715:. 3695:34 3693:, 3672:, 3662:56 3660:, 3641:, 3627:, 3607:, 3601:MR 3599:, 3591:, 3579:24 3577:, 3558:, 3554:, 3480:. 3202:, 3195:, 3190:46 2752:. 2748:, 1663:)( 1640:. 1470:A 1411:. 777:. 401:. 381:, 326:, 319:. 269:. 169:, 86:, 58:, 5453:) 5449:1 5438:) 5434:1 5423:) 5419:1 5408:) 5406:1 5398:) 5396:1 5388:) 5386:1 5378:) 5376:1 5315:) 5311:2 5300:) 5296:1 5267:) 5257:) 5247:) 5245:4 5235:3 5233:6 5227:2 5225:6 5221:) 5219:1 5211:) 5209:2 5201:) 5199:1 5180:) 5172:( 5162:e 5155:t 5148:v 5073:) 5037:: 4858:. 4764:" 4754:. 4732:: 4724:: 4697:. 4691:: 4683:: 4673:: 4642:: 4632:: 4575:. 4563:. 4551:. 4473:: 4442:: 4434:: 4410:. 4386:. 4362:. 4340:: 4304:: 4287:. 4283:: 4266:. 4252:: 4194:: 4154:: 4136:. 4122:: 4098:: 4076:. 4062:: 4038:: 4004:: 3996:: 3986:: 3980:9 3945:: 3912:: 3898:k 3894:k 3852:: 3844:: 3814:: 3787:: 3756:: 3748:: 3729:. 3723:: 3701:: 3668:: 3635:: 3595:: 3585:: 3415:( 3343:1 3336:1 3271:( 3255:( 3204:1 3050:1 3044:n 3024:2 3021:+ 3018:n 3012:m 2992:2 2989:+ 2986:n 2983:= 2980:m 2966:k 2950:m 2945:R 2921:n 2916:S 2904:k 2900:n 2884:m 2879:R 2855:n 2850:S 2838:n 2829:( 2815:1 2812:+ 2809:n 2804:R 2776:n 2771:S 2758:n 2732:0 2726:3 2720:k 2717:3 2711:n 2708:2 2686:n 2681:R 2669:k 2659:( 2645:6 2640:R 2628:k 2614:) 2611:1 2605:k 2602:4 2599:( 2585:n 2579:n 2571:n 2567:m 2563:m 2559:n 2532:4 2527:R 2503:4 2498:R 2474:2 2469:S 2459:( 2264:2 2260:z 2256:+ 2253:1 2250:= 2247:) 2244:z 2241:+ 2238:0 2235:( 2232:z 2229:+ 2226:1 2223:= 2220:) 2216:l 2213:i 2210:o 2207:f 2204:e 2201:r 2198:t 2194:( 2191:C 2175:C 2169:) 2163:( 2161:C 2158:z 2150:( 2148:C 2140:( 2138:C 2125:) 2119:( 2117:C 2114:z 2106:( 2104:C 2096:( 2094:C 2081:) 2075:( 2073:C 2070:z 2062:( 2060:C 2052:( 2050:C 2019:. 2016:) 2011:0 2007:L 2003:( 2000:C 1997:z 1994:+ 1991:) 1982:L 1978:( 1975:C 1972:= 1969:) 1964:+ 1960:L 1956:( 1953:C 1943:) 1927:O 1907:1 1904:= 1901:) 1898:O 1895:( 1892:C 1869:) 1866:z 1863:( 1860:C 1834:L 1811:+ 1807:L 1774:0 1770:L 1766:, 1757:L 1753:, 1748:+ 1744:L 1711:z 1356:1 1353:= 1350:t 1327:3 1322:R 1292:H 1270:2 1266:K 1262:= 1259:) 1256:1 1253:, 1248:1 1244:K 1240:( 1237:H 1215:3 1210:R 1202:x 1182:x 1179:= 1176:) 1173:0 1170:, 1167:x 1164:( 1161:H 1139:3 1134:R 1110:3 1105:R 1097:) 1094:t 1091:, 1088:x 1085:( 1082:H 1060:3 1055:R 1047:x 1027:] 1024:1 1021:, 1018:0 1015:[ 1009:t 987:3 982:R 974:] 971:1 968:, 965:0 962:[ 954:3 949:R 944:: 941:H 915:2 911:K 888:1 884:K 863:} 860:1 854:t 848:0 841:r 838:o 835:f 826:3 821:R 811:3 806:R 801:: 796:t 792:h 788:{ 763:2 759:K 755:= 752:) 747:1 743:K 739:( 736:h 714:3 709:R 699:3 694:R 686:h 658:2 654:K 650:, 645:1 641:K 605:) 602:1 599:( 596:K 593:= 590:) 587:0 584:( 581:K 559:3 554:R 546:] 543:1 540:, 537:0 534:[ 528:K 497:K 436:( 295:( 206:n 200:n 130:3 125:R 101:3 96:E 20:)

Index

Alexander–Briggs notation

trivial knot
trefoil knot

topology
mathematical knots
knots
unknot
embedding
circle
Euclidean space
ambient isotopy
complexity
knot invariant
knot polynomials
knot groups
links
have been tabulated
three-dimensional spaces
knot (mathematics)
n-dimensional sphere
History of knot theory

Book of Kells
recording information
tying
Chinese knotting
endless knot
Tibetan Buddhism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑