Knowledge (XXG)

Knot invariant

Source 📝

25: 1663: 90: 1675: 174:."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification, both in "enumeration" and "duplication removal". 195:
quantity defined on knot diagrams. Thus if two knot diagrams differ with respect to some knot invariant, they must represent different knots. However, as is generally the case with topological invariants, if two knot diagrams share the same values with respect to a knot invariant, then we still
224:, which are currently among the most useful invariants for distinguishing knots from one another, though currently it is not known whether there exists a knot polynomial which distinguishes all knots from each other. However, there are invariants which distinguish the 370:
There is also growing interest from both knot theorists and scientists in understanding "physical" or geometric properties of knots and relating it to topological invariants and knot type. An old result in this direction is the
343:
of the knot. It has been proven effective in deducing new results about the classical invariants. Along a different line of study, there is a combinatorially defined cohomology theory of knots called
250:
Historically, many of the early knot invariants are not defined by first selecting a diagram but defined intrinsically, which can make computing some of these invariants a challenge. For example,
239:
Other invariants can be defined by considering some integer-valued function of knot diagrams and taking its minimum value over all possible diagrams of a given knot. This category includes the
547: 464: 412: 54: 809: 312:
is an invariant for these knots and links. Volume, and other hyperbolic invariants, have proven very effective, utilized in some of the extensive efforts at
846: 363:
and Lev Rozansky have since defined several other related cohomology theories whose Euler characteristics recover other classical invariants.
128:. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a 1040: 1608: 1527: 969: 950: 931: 743: 706: 681: 653: 629: 606: 76: 1074: 688:
is a mathematical property or quantity associated with a knot that does not change as we perform triangular moves on the knot.
1517: 1522: 1393: 240: 1094: 1156: 502: 182:
is a quantity defined on the set of all knots, which takes the same value for any two equivalent knots. For example, a
37: 420: 798: 660:
is a function from the set of knots to some other set whose value depends only on the equivalence class of the knot."
47: 41: 33: 372: 278: 1162: 270: 1226: 1221: 1033: 293:
is also a complete invariant in this sense but it is difficult to determine if two quandles are isomorphic. The
58: 1701: 762: 367:
gave a representation theoretic interpretation of Khovanov homology by categorifying quantum group invariants.
309: 1354: 301: 1679: 1568: 1537: 255: 1398: 571: 568: – Numerical invariant that describes the linking of two closed curves in three-dimensional space 388: 1667: 1438: 1026: 835: 340: 336: 117: 1475: 1458: 294: 1496: 1443: 1057: 1053: 900: 757: 364: 113: 1593: 1542: 1492: 1448: 1408: 1403: 1321: 965: 946: 927: 892: 779: 739: 702: 677: 649: 625: 602: 344: 286: 266: 229: 205: 1628: 1453: 1349: 1084: 884: 771: 481: 360: 348: 324: 221: 1588: 1552: 1487: 1433: 1388: 1381: 1271: 1183: 1066: 376: 332: 320: 305: 274: 262: 217: 209: 129: 121: 254:
is particularly tricky to compute, but can be effective (for instance, in distinguishing
574: – Type of invariant in Knot theory (or Vassiliev or Vassiliev–Goussarov invariant) 1648: 1547: 1509: 1428: 1216: 1208: 1168: 1011: 565: 328: 233: 556:, which is the length of unit-diameter rope needed to realize a particular knot type. 1695: 1583: 1371: 1364: 1359: 244: 192: 125: 1598: 1578: 1482: 1465: 1261: 1198: 577: 356: 290: 201: 1281: 1120: 1112: 1104: 756:
Horner, Kate; Miller, Mark; Steedb, Jonathan; Sutcliffe, Paul (August 20, 2016).
1613: 1376: 1150: 1130: 1049: 1018: 352: 243:, which is the minimum number of crossings for any diagram of the knot, and the 105: 101: 216:-colorability) is a particularly simple and common example. Other examples are 1633: 1618: 1573: 1470: 1423: 1418: 1413: 1243: 1140: 553: 313: 282: 251: 183: 93: 943:
The Knot Book: an Elementary Introduction to the Mathematical Theory of Knots
896: 273:
in the sense that it distinguishes the given knot from all other knots up to
200:
From the modern perspective, it is natural to define a knot invariant from a
1638: 1306: 783: 580: – Smallest number of edges of an equivalent polygonal path for a knot 1623: 1233: 204:. Of course, it must be unchanged (that is to say, invariant) under the 904: 872: 775: 89: 247:, which is the minimum number of bridges for any diagram of the knot. 1643: 1291: 1251: 987: 225: 888: 351:. This has recently been shown to be useful in obtaining bounds on 1532: 281:. Some invariants associated with the knot complement include the 88: 16:
Function of a knot that takes the same value for equivalent knots
1603: 1006: 1022: 18: 622:
An Introduction to the Geometry and Topology of Fluid Flows
269:) is known to be a "complete invariant" of the knot by the 873:"On Irreducible 3-Manifolds Which are Sufficiently Large" 964:(2nd rev. and extended ed.). New York: De Gruyter. 699:
Knots and Primes: An Introduction to Arithmetic Topology
505: 423: 391: 1561: 1505: 1340: 1242: 1207: 1065: 945:(Repr., with corr ed.). Providence, RI: AMS. 541: 458: 406: 304:, the hyperbolic structure on the complement of a 112:is a quantity (in a broad sense) defined for each 542:{\displaystyle \oint _{K}\kappa \,ds>4\pi .\,} 319:In recent years, there has been much interest in 736:Understanding Topology: A Practical Introduction 709:. "Likewise," with knot invariants, "a quantity 459:{\displaystyle \oint _{K}\kappa \,ds\leq 4\pi ,} 46:but its sources remain unclear because it lacks 672:Messer, Robert and Straffin, Philip D. (2018). 189: 176: 96:are organized by the crossing number invariant. 1034: 770:(23). Royal Society of Chemistry: 6409–6658. 496:is an unknot. Therefore, for knotted curves, 8: 196:cannot conclude that the knots are the same. 1041: 1027: 1019: 960:Burde, Gerhard; Zieschang, Heiner (2002). 738:, p.245. Johns Hopkins University Press. 668: 666: 640: 638: 538: 519: 510: 504: 437: 428: 422: 398: 394: 393: 390: 120:knots. The equivalence is often given by 77:Learn how and when to remove this message 601:, p.113. American Mathematical Society. 552:An example of a "physical" invariant is 843:www.dk-compmath.jku.at/people/mhodorog/ 676:, p.50. American Mathematical Society. 616: 614: 590: 297:can also work as a complete invariant. 852:from the original on November 19, 2022 834:Hodorog, Mădălina (February 2, 2010). 815:from the original on November 19, 2022 648:, p.7. American Mathematical Society. 986:Cha, Jae Choon; Livingston, Charles. 7: 1674: 988:"KnotInfo: Table of Knot Invariants" 136:is a rule that assigns to any knot 347:whose Euler characteristic is the 14: 758:"Knot theory in modern chemistry" 1673: 1662: 1661: 799:"An Introduction to Knot Theory" 797:Skerritt, Matt (June 27, 2003). 407:{\displaystyle \mathbb {R} ^{3}} 191:Typically a knot invariant is a 23: 1528:Dowker–Thistlethwaite notation 871:Waldhausen, Friedhelm (1968). 624:, p.67. Springer Netherlands. 355:whose earlier proofs required 228:from all other knots, such as 1: 713:for any two equivalent links 620:Ricca, Renzo L.; ed. (2012). 941:Adams, Colin Conrad (2004). 697:Morishita, Masanori (2011). 597:Schultens, Jennifer (2014). 599:Introduction to 3-manifolds 308:is unique, which means the 1718: 323:invariants of knots which 1657: 1518:Alexander–Briggs notation 701:, p.16. Springer London. 644:Purcell, Jessica (2020). 763:Chemical Society Reviews 32:This article includes a 1609:List of knots and links 1157:Kinoshita–Terasaka knot 926:. Providence, RI: AMS. 734:Ault, Shaun V. (2018). 329:Heegaard Floer homology 327:well-known invariants. 289:of the complement. The 61:more precise citations. 922:Rolfsen, Dale (2003). 646:Hyperbolic Knot Theory 543: 460: 408: 302:Mostow–Prasad rigidity 208:("triangular moves"). 198: 188: 116:which is the same for 97: 1399:Finite type invariant 877:Annals of Mathematics 572:Finite type invariant 544: 461: 409: 271:Gordon–Luecke theorem 92: 503: 421: 389: 341:Alexander polynomial 337:Euler characteristic 263:complement of a knot 186:is a knot invariant. 162:are equivalent then 124:but can be given by 1569:Alexander's theorem 836:"Basic Knot Theory" 375:states that if the 373:Fáry–Milnor theorem 295:peripheral subgroup 234:knot Floer homology 776:10.1039/c6cs00448b 539: 456: 404: 365:Catharina Stroppel 285:which is just the 206:Reidemeister moves 98: 34:list of references 1689: 1688: 1543:Reidemeister move 1409:Khovanov homology 1404:Hyperbolic volume 345:Khovanov homology 310:hyperbolic volume 287:fundamental group 267:topological space 230:Khovanov homology 132:(for example, "a 87: 86: 79: 1709: 1677: 1676: 1665: 1664: 1629:Tait conjectures 1332: 1331: 1317: 1316: 1302: 1301: 1194: 1193: 1179: 1178: 1163:(−2,3,7) pretzel 1043: 1036: 1029: 1020: 1002: 1000: 998: 975: 956: 937: 909: 908: 868: 862: 861: 859: 857: 851: 840: 831: 825: 824: 822: 820: 814: 803: 794: 788: 787: 753: 747: 732: 726: 724: 718: 712: 711:inv(L) = inv(L') 695: 689: 670: 661: 642: 633: 618: 609: 595: 560:Other invariants 548: 546: 545: 540: 515: 514: 495: 489: 479: 465: 463: 462: 457: 433: 432: 413: 411: 410: 405: 403: 402: 397: 384: 361:Mikhail Khovanov 349:Jones polynomial 222:Jones polynomial 218:knot polynomials 173: 161: 155: 149: 141: 82: 75: 71: 68: 62: 57:this article by 48:inline citations 27: 26: 19: 1717: 1716: 1712: 1711: 1710: 1708: 1707: 1706: 1702:Knot invariants 1692: 1691: 1690: 1685: 1653: 1557: 1523:Conway notation 1507: 1501: 1488:Tricolorability 1336: 1330: 1327: 1326: 1325: 1315: 1312: 1311: 1310: 1300: 1297: 1296: 1295: 1287: 1277: 1267: 1257: 1238: 1217:Composite knots 1203: 1192: 1189: 1188: 1187: 1184:Borromean rings 1177: 1174: 1173: 1172: 1146: 1136: 1126: 1116: 1108: 1100: 1090: 1080: 1061: 1047: 996: 994: 985: 982: 972: 959: 953: 940: 934: 924:Knots and Links 921: 918: 916:Further reading 913: 912: 889:10.2307/1970594 870: 869: 865: 855: 853: 849: 838: 833: 832: 828: 818: 816: 812: 801: 796: 795: 791: 755: 754: 750: 733: 729: 720: 714: 710: 696: 692: 671: 664: 643: 636: 619: 612: 596: 592: 587: 562: 506: 501: 500: 491: 485: 470: 424: 419: 418: 392: 387: 386: 380: 377:total curvature 333:homology theory 314:knot tabulation 306:hyperbolic link 275:ambient isotopy 241:crossing number 210:Tricolorability 163: 157: 151: 143: 137: 130:homology theory 122:ambient isotopy 83: 72: 66: 63: 52: 38:related reading 28: 24: 17: 12: 11: 5: 1715: 1713: 1705: 1704: 1694: 1693: 1687: 1686: 1684: 1683: 1671: 1658: 1655: 1654: 1652: 1651: 1649:Surgery theory 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1571: 1565: 1563: 1559: 1558: 1556: 1555: 1550: 1548:Skein relation 1545: 1540: 1535: 1530: 1525: 1520: 1514: 1512: 1503: 1502: 1500: 1499: 1493:Unknotting no. 1490: 1485: 1480: 1479: 1478: 1468: 1463: 1462: 1461: 1456: 1451: 1446: 1441: 1431: 1426: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1385: 1384: 1374: 1369: 1368: 1367: 1357: 1352: 1346: 1344: 1338: 1337: 1335: 1334: 1328: 1319: 1313: 1304: 1298: 1289: 1285: 1279: 1275: 1269: 1265: 1259: 1255: 1248: 1246: 1240: 1239: 1237: 1236: 1231: 1230: 1229: 1224: 1213: 1211: 1205: 1204: 1202: 1201: 1196: 1190: 1181: 1175: 1166: 1160: 1154: 1148: 1144: 1138: 1134: 1128: 1124: 1118: 1114: 1110: 1106: 1102: 1098: 1092: 1088: 1082: 1078: 1071: 1069: 1063: 1062: 1048: 1046: 1045: 1038: 1031: 1023: 1017: 1016: 1012:The Knot Atlas 1003: 981: 980:External links 978: 977: 976: 970: 957: 951: 938: 932: 917: 914: 911: 910: 863: 845:. p. 47. 826: 808:. p. 22. 806:carmamaths.org 789: 748: 727: 723: 690: 686:knot invariant 662: 658:knot invariant 634: 610: 589: 588: 586: 583: 582: 581: 575: 569: 566:Linking number 561: 558: 550: 549: 537: 534: 531: 528: 525: 522: 518: 513: 509: 467: 466: 455: 452: 449: 446: 443: 440: 436: 431: 427: 401: 396: 220:, such as the 180:knot invariant 171: 160: 134:knot invariant 110:knot invariant 85: 84: 42:external links 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1714: 1703: 1700: 1699: 1697: 1682: 1681: 1672: 1670: 1669: 1660: 1659: 1656: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1584:Conway sphere 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1566: 1564: 1560: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1515: 1513: 1511: 1504: 1498: 1494: 1491: 1489: 1486: 1484: 1481: 1477: 1474: 1473: 1472: 1469: 1467: 1464: 1460: 1457: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1436: 1435: 1432: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1383: 1380: 1379: 1378: 1375: 1373: 1370: 1366: 1363: 1362: 1361: 1358: 1356: 1355:Arf invariant 1353: 1351: 1348: 1347: 1345: 1343: 1339: 1323: 1320: 1308: 1305: 1293: 1290: 1283: 1280: 1273: 1270: 1263: 1260: 1253: 1250: 1249: 1247: 1245: 1241: 1235: 1232: 1228: 1225: 1223: 1220: 1219: 1218: 1215: 1214: 1212: 1210: 1206: 1200: 1197: 1185: 1182: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1142: 1139: 1132: 1129: 1122: 1119: 1117: 1111: 1109: 1103: 1096: 1093: 1086: 1083: 1076: 1073: 1072: 1070: 1068: 1064: 1059: 1055: 1051: 1044: 1039: 1037: 1032: 1030: 1025: 1024: 1021: 1014: 1013: 1008: 1004: 993: 989: 984: 983: 979: 973: 971:3-11-017005-1 967: 963: 958: 954: 952:0-8218-3678-1 948: 944: 939: 935: 933:0-8218-3436-3 929: 925: 920: 919: 915: 906: 902: 898: 894: 890: 886: 882: 878: 874: 867: 864: 848: 844: 837: 830: 827: 811: 807: 800: 793: 790: 785: 781: 777: 773: 769: 765: 764: 759: 752: 749: 745: 744:9781421424071 741: 737: 731: 728: 721: 717: 708: 707:9781447121589 704: 700: 694: 691: 687: 683: 682:9781470447816 679: 675: 674:Topology Now! 669: 667: 663: 659: 655: 654:9781470454999 651: 647: 641: 639: 635: 631: 630:9789401004466 627: 623: 617: 615: 611: 608: 607:9781470410209 604: 600: 594: 591: 584: 579: 576: 573: 570: 567: 564: 563: 559: 557: 555: 535: 532: 529: 526: 523: 520: 516: 511: 507: 499: 498: 497: 494: 488: 483: 477: 473: 453: 450: 447: 444: 441: 438: 434: 429: 425: 417: 416: 415: 399: 383: 378: 374: 368: 366: 362: 358: 354: 350: 346: 342: 338: 334: 330: 326: 322: 317: 315: 311: 307: 303: 298: 296: 292: 288: 284: 280: 276: 272: 268: 265:itself (as a 264: 259: 257: 253: 248: 246: 245:bridge number 242: 237: 235: 231: 227: 223: 219: 215: 211: 207: 203: 197: 194: 193:combinatorial 187: 185: 181: 175: 169: 167: 158: 154: 150:such that if 147: 140: 135: 131: 127: 126:homeomorphism 123: 119: 115: 111: 107: 103: 95: 91: 81: 78: 70: 60: 56: 50: 49: 43: 39: 35: 30: 21: 20: 1678: 1666: 1594:Double torus 1579:Braid theory 1394:Crossing no. 1389:Crosscap no. 1341: 1075:Figure-eight 1010: 995:. Retrieved 991: 961: 942: 923: 883:(1): 56–88. 880: 876: 866: 856:November 19, 854:. Retrieved 842: 829: 819:November 19, 817:. Retrieved 805: 792: 767: 761: 751: 735: 730: 715: 698: 693: 685: 673: 657: 645: 621: 598: 593: 578:Stick number 551: 492: 486: 475: 471: 468: 381: 369: 357:gauge theory 318: 299: 291:knot quandle 279:mirror image 260: 249: 238: 213: 202:knot diagram 199: 190: 179: 177: 165: 152: 145: 138: 133: 109: 102:mathematical 99: 73: 64: 53:Please help 45: 1429:Linking no. 1350:Alternating 1151:Conway knot 1131:Carrick mat 1085:Three-twist 1050:Knot theory 992:Indiana.edu 353:slice genus 321:homological 142:a quantity 106:knot theory 94:Prime knots 59:introducing 1589:Complement 1553:Tabulation 1510:operations 1434:Polynomial 1424:Link group 1419:Knot group 1382:Invertible 1360:Bridge no. 1342:Invariants 1272:Cinquefoil 1141:Perko pair 1067:Hyperbolic 1007:Invariants 554:ropelength 414:satisfies 379:of a knot 325:categorify 283:knot group 252:knot genus 184:knot group 118:equivalent 1483:Stick no. 1439:Alexander 1377:Chirality 1322:Solomon's 1282:Septafoil 1209:Satellite 1169:Whitehead 1095:Stevedore 997:17 August 897:0003-486X 533:π 517:κ 508:∮ 482:curvature 451:π 445:≤ 435:κ 426:∮ 104:field of 1696:Category 1668:Category 1538:Mutation 1506:Notation 1459:Kauffman 1372:Brunnian 1365:2-bridge 1234:Knot sum 1165:(12n242) 847:Archived 810:Archived 784:27868114 67:May 2019 1680:Commons 1599:Fibered 1497:problem 1466:Pretzel 1444:Bracket 1262:Trefoil 1199:L10a140 1159:(11n42) 1153:(11n34) 1121:Endless 905:1970594 585:Sources 490:, then 480:is the 339:is the 256:mutants 100:In the 55:improve 1644:Writhe 1614:Ribbon 1449:HOMFLY 1292:Unlink 1252:Unknot 1227:Square 1222:Granny 968:  949:  930:  903:  895:  782:  742:  705:  680:  652:  628:  605:  469:where 335:whose 226:unknot 168:) = φ( 1634:Twist 1619:Slice 1574:Berge 1562:Other 1533:Flype 1471:Prime 1454:Jones 1414:Genus 1244:Torus 1058:links 1054:knots 962:Knots 901:JSTOR 850:(PDF) 839:(PDF) 813:(PDF) 802:(PDF) 331:is a 212:(and 40:, or 1639:Wild 1604:Knot 1508:and 1495:and 1476:list 1307:Hopf 1056:and 999:2021 966:ISBN 947:ISBN 928:ISBN 893:ISSN 858:2022 821:2022 780:PMID 740:ISBN 719:and 703:ISBN 678:ISBN 650:ISBN 626:ISBN 603:ISBN 527:> 277:and 261:The 232:and 156:and 114:knot 108:, a 1624:Sum 1145:161 1143:(10 1009:", 885:doi 772:doi 684:"A 656:"A 484:at 385:in 300:By 258:). 1698:: 1324:(4 1309:(2 1294:(0 1284:(7 1274:(5 1264:(3 1254:(0 1186:(6 1171:(5 1135:18 1133:(8 1123:(7 1097:(6 1087:(5 1077:(4 990:. 899:. 891:. 881:87 879:. 875:. 841:. 804:. 778:. 768:45 766:. 760:. 725:." 722:L' 665:^ 637:^ 613:^ 359:. 316:. 236:. 178:A 170:K' 164:φ( 159:K' 144:φ( 44:, 36:, 1333:) 1329:1 1318:) 1314:1 1303:) 1299:1 1288:) 1286:1 1278:) 1276:1 1268:) 1266:1 1258:) 1256:1 1195:) 1191:2 1180:) 1176:1 1147:) 1137:) 1127:) 1125:4 1115:3 1113:6 1107:2 1105:6 1101:) 1099:1 1091:) 1089:2 1081:) 1079:1 1060:) 1052:( 1042:e 1035:t 1028:v 1015:. 1005:" 1001:. 974:. 955:. 936:. 907:. 887:: 860:. 823:. 786:. 774:: 746:. 716:L 632:. 536:. 530:4 524:s 521:d 512:K 493:K 487:p 478:) 476:p 474:( 472:κ 454:, 448:4 442:s 439:d 430:K 400:3 395:R 382:K 214:n 172:) 166:K 153:K 148:) 146:K 139:K 80:) 74:( 69:) 65:( 51:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message

Prime knots
mathematical
knot theory
knot
equivalent
ambient isotopy
homeomorphism
homology theory
knot group
combinatorial
knot diagram
Reidemeister moves
Tricolorability
knot polynomials
Jones polynomial
unknot
Khovanov homology
knot Floer homology
crossing number
bridge number
knot genus
mutants

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.