Knowledge

Alexandrov topology

Source 📝

2286:
and preorders. C. Naturman observed that these spaces were the Alexandrov-discrete spaces and extended the result to a category-theoretic equivalence between the category of Alexandrov-discrete spaces and (open) continuous maps, and the category of preorders and (bounded) monotone maps, providing the
1486:
Notice however that in the case of topologies other than the Alexandrov topology, we can have a map between two topological spaces that is not continuous but which is nevertheless still a monotone function between the corresponding preordered sets. (To see this consider a non-Alexandrov-discrete
1482:
Thus a map between two preordered sets is monotone if and only if it is a continuous map between the corresponding Alexandrov-discrete spaces. Conversely a map between two Alexandrov-discrete spaces is continuous if and only if it is a monotone function between the corresponding preordered sets.
814: 994: 868: 2178:
later came to be used for topological spaces in which every subset is open and the original concept lay forgotten in the topological literature. On the other hand, Alexandrov spaces played a relevant role in
663: 2294:
A systematic investigation of these spaces from the point of view of general topology, which had been neglected since the original paper by Alexandrov was taken up by F. G. Arenas.
699: 885: 2486: 2149: 683: 2123: 2103: 2083: 2063: 2043: 2023: 2003: 3269: 3312: 2253: 3252: 2782: 2618: 2540: 3099: 822: 2244:. F. G. Arenas independently proposed this name for the general version of these topologies. McCord also showed that these spaces are 1952:
i.e. a set with relations defined on it.) The class of modal algebras that we obtain in the case of a preordered set is the class of
3235: 3094: 3089: 138: 2210:
was adopted for them. Alexandrov spaces were also rediscovered around the same time in the context of topologies resulting from
2725: 2807: 1549: 3126: 3046: 628: 2720: 2911: 2840: 1945: 2814: 2802: 2765: 2740: 2715: 2669: 2638: 1925: 2745: 2735: 3302: 3111: 2611: 3084: 2750: 2453: 2245: 2199: 1396: 123: 93: 40: 3016: 2643: 1682: 213: 108: 3264: 3247: 1021: 292: 66: 809:{\displaystyle \tau =\{\,G\subseteq X:\forall x,y\in X\ \ (x\in G\ \land \ x\leq y)\ \implies \ y\in G\,\}} 3176: 2792: 2211: 2155: 107:
the family of all finite subspaces. Alexandrov-discrete spaces can thus be viewed as a generalization of
3307: 3154: 2989: 2980: 2849: 2684: 2648: 2604: 2226: 1553: 103:
Alexandrov-discrete spaces are also called finitely generated spaces because their topology is uniquely
2730: 1985:
of compact neighbourhoods, since the smallest neighbourhood of a point is always compact. Indeed, if
1668: 1605: 3242: 3201: 3191: 3181: 2926: 2889: 2879: 2859: 2844: 2560: 2270:
that a equivalence exists between finite topological spaces and preorders on finite sets (the finite
2195: 1949: 989:{\displaystyle \{\,S\subseteq X:\forall x,y\in X\ \ (x\in S\ \land \ y\leq x)\ \implies \ y\in S\,\}} 223: 3169: 3026: 2985: 2975: 2864: 2797: 2760: 2279: 246: 119: 115: 3208: 3061: 2970: 2960: 2901: 2819: 2513: 2430: 2352: 262: 3281: 3121: 2755: 547: 532: 2225:
In 1966 Michael C. McCord and A. K. Steiner each independently observed an equivalence between
3218: 3196: 3056: 3041: 3021: 2824: 2536: 2505: 1831: 1565: 1541: 1494: 1262: 484: 104: 74: 36: 3031: 2884: 2495: 2462: 2451:
McCord, M. C. (1966). "Singular homology and homotopy groups of finite topological spaces".
2309:, a space satisfying the weaker condition that countable intersections of open sets are open 2288: 2260: 2252:
of the corresponding partially ordered set. Steiner demonstrated that the equivalence is a
2230: 2219: 2203: 2184: 2167: 1953: 1937: 1835: 1624: 1613: 1537: 134: 130: 2128: 668: 3213: 2996: 2874: 2869: 2854: 2679: 2664: 2256: 2237: 1978: 1971: 1941: 288: 2770: 122:
and intersections, the property of being an Alexandrov-discrete space is preserved under
17: 2174:, where he provided the characterizations in terms of sets and neighbourhoods. The name 1944:. (The latter construction is itself a special case of a more general construction of a 3131: 3116: 3106: 2965: 2943: 2921: 2188: 2180: 2175: 2108: 2088: 2068: 2048: 2028: 2008: 1988: 623: 51:
family of open sets is open; in Alexandrov topologies the finite qualifier is dropped.
3296: 3230: 3186: 3164: 3036: 2906: 2894: 2699: 2249: 2215: 1933: 1921:
Considering the interior operator and closure operator to be modal operators on the
3051: 2933: 2916: 2834: 2674: 2627: 2373: 2466: 1243:)) induces the same specialization preorder as the original topology of the space 2441:, Contemporary mathematics vol. 486, American Mathematical Society, 2009, p.170ff 3257: 2950: 2829: 2694: 2271: 2267: 593:
Topological spaces satisfying the above equivalent characterizations are called
3225: 3159: 3000: 1982: 387:
is in the set. (This preorder will be precisely the specialization preorder.)
359:
is in the set. (This preorder will be precisely the specialization preorder.)
2509: 3276: 3149: 2955: 2404: 2282:
observed that this extended to a equivalence between what he referred to as
1922: 874: 690: 340: 85: 3071: 2938: 2689: 1561: 302: 70: 44: 28: 2351:
Speer, Timothy (16 August 2007). "A Short Study of Alexandroff Spaces".
2517: 2303: 1964:
Every subspace of an Alexandrov-discrete space is Alexandrov-discrete.
84:
for which the specialization preorder is ≤. The open sets are just the
2198:
in the 1980s, Alexandrov spaces were rediscovered when the concept of
1967:
The product of two Alexandrov-discrete spaces is Alexandrov-discrete.
1385:
considered as a map between the corresponding Alexandrov spaces. Then
2374:"Are minimal neighborhoods in an Alexandrov topology path-connected?" 1166:
is recovered as the topology induced by the specialization preorder.
2500: 2481: 1820:
Relationship to the construction of modal algebras from modal frames
1631:
consisting of the Alexandrov-discrete spaces. Then the restrictions
1469:
considered as a map between the corresponding preordered sets. Then
47:
is open. It is an axiom of topology that the intersection of every
2589:. Ph.D. thesis, University of Cape Town Department of Mathematics. 2357: 863:{\displaystyle \mathbf {T} (\mathbf {X} )=\langle X,\tau \rangle } 129:
Alexandrov-discrete spaces are named after the Russian topologist
2535:(1st paperback ed.). New York: Cambridge University Press. 163:> be a topological space. Then the following are equivalent: 2600: 2596: 1932:, this construction is a special case of the construction of a 474:. (This finite subset can always be chosen to be a singleton.) 550:
of the finite spaces. (This means that there is a final sink
437:
Finite generation and category theoretic characterizations:
149:
Alexandrov topologies have numerous characterizations. Let
2482:"The Lattice of Topologies: Structure and Complementation" 54:
A set together with an Alexandrov topology is known as an
1956:—the algebraic abstractions of topological spaces. 133:. They should not be confused with the more geometrical 2236:
versions of the spaces that Alexandrov had introduced.
1071:
Equivalence between preorders and Alexandrov topologies
65:
Alexandrov topologies are uniquely determined by their
2131: 2111: 2091: 2071: 2051: 2031: 2011: 1991: 1127:) as the specialization preorder. Moreover for every 888: 825: 702: 671: 631: 371:
are precisely those that are downward closed i.e. if
2045:
itself with the subspace topology any open cover of
1225:(i.e. it will have more open sets). The topology of 658:{\displaystyle \mathbf {X} =\langle X,\leq \rangle } 255:
distributes over arbitrary intersections of subsets.
3142: 3070: 3009: 2779: 2708: 2657: 2166:Alexandrov spaces were first introduced in 1937 by 365:There is a preorder ≤ such that the closed sets of 2143: 2117: 2097: 2077: 2057: 2037: 2017: 1997: 1002:The specialization preorder on a topological space 988: 862: 808: 677: 657: 88:with respect to ≤. Thus, Alexandrov topologies on 2487:Transactions of the American Mathematical Society 1777:is an Alexandrov-discrete space, the composition 1528:Category theoretic description of the equivalence 1169:However for a topological space in general we do 333:There is a preorder ≤ such that the open sets of 238:Interior and closure algebraic characterizations: 2437:, in Frédéric Mynard, Elliott Pearl (Editors), 2266:It was also a well-known result in the field of 2105:. Such a neighbourhood is necessarily equal to 2005:is the smallest (open) neighbourhood of a point 1257:Equivalence between monotonicity and continuity 2612: 1286:between two preordered sets (i.e. a function 271:distributes over arbitrary unions of subsets. 8: 2138: 2132: 1709:. This means that given a topological space 983: 889: 857: 845: 803: 709: 652: 640: 423:where ≤ is the specialization preorder i.e. 1749:is continuous and for every continuous map 618:The Alexandrov topology on a preordered set 80:, there is a unique Alexandrov topology on 3270:Positive cone of a partially ordered group 2619: 2605: 2597: 2287:preorder characterizations as well as the 969: 965: 789: 785: 175:An arbitrary intersection of open sets in 145:Characterizations of Alexandrov topologies 2499: 2356: 2130: 2110: 2090: 2070: 2050: 2030: 2010: 1990: 982: 892: 887: 834: 826: 824: 802: 712: 701: 670: 632: 630: 3253:Positive cone of an ordered vector space 2554: 2552: 2429:, Duke Math. J. 10 (1943), 761–785. See 1115:is recovered from the topological space 546:is finitely generated i.e. it is in the 458:if and only if there is a finite subset 232:is closed under arbitrary intersections. 137:introduced by the Russian mathematician 2319: 2390: 2338: 1304:between the underlying sets such that 1249:and is in fact the finest topology on 873:The corresponding closed sets are the 168:Open and closed set characterizations: 2326: 1895: ∈ X : there exists a 665:we can define an Alexandrov topology 187:An arbitrary union of closed sets in 7: 1981:in the sense that every point has a 1424:between two topological spaces, let 689:by choosing the open sets to be the 448:lies within the closure of a subset 301:i.e. the finest topology giving the 2229:and spaces that were precisely the 1219:with a finer topology than that of 819:We thus obtain a topological space 2780:Properties & Types ( 1402:Conversely given a continuous map 1160:, i.e. the Alexandrov topology of 905: 725: 25: 3236:Positive cone of an ordered field 2427:Some studies on closure relations 3313:Properties of topological spaces 3090:Ordered topological vector space 1051:We thus obtain a preordered set 835: 827: 633: 613:Equivalence with preordered sets 407:if and only if there is a point 397:lies in the closure of a subset 199:Neighbourhood characterizations: 139:Aleksandr Danilovich Aleksandrov 2240:referred to such topologies as 587:is a finite topological space.) 2587:Interior Algebras and Topology 2289:interior and closure algebraic 1940:i.e. from a set with a single 1865: ∈ S : for all 1550:category of topological spaces 966: 959: 929: 839: 831: 786: 779: 749: 1: 3047:Series-parallel partial order 2467:10.1215/S0012-7094-66-03352-7 2187:and their relationships with 2154:Every Alexandrov topology is 1977:Every Alexandrov topology is 1970:Every Alexandrov topology is 487:with the finite subspaces of 339:are precisely those that are 2726:Cantor's isomorphism theorem 2263:as well as complementation. 2065:contains a neighbourhood of 2766:Szpilrajn extension theorem 2741:Hausdorff maximal principle 2716:Boolean prime ideal theorem 2568:Acta Math. Univ. Comenianae 2284:totally distributive spaces 2125:, so the open cover admits 1683:bico-reflective subcategory 525:of the finite subspaces of 277:Preorder characterizations: 3329: 3112:Topological vector lattice 2411:. New Series (in German). 2378:Mathematics Stack Exchange 1479:) is a monotone function. 1006:Given a topological space 599:Alexandrov-discrete spaces 2634: 2531:Johnstone, P. T. (1986). 2454:Duke Mathematical Journal 2261:arbitrary meets and joins 2208:finitely generated spaces 1129:Alexandrov-discrete space 1075:For every preordered set 595:finitely generated spaces 109:finite topological spaces 94:one-to-one correspondence 56:Alexandrov-discrete space 18:Alexandrov-discrete space 2721:Cantor–Bernstein theorem 2585:Naturman, C. A. (1991). 2403:Alexandroff, P. (1937). 2246:weak homotopy equivalent 2194:With the advancement of 427:lies in the closure of { 282:Specialization preorder. 67:specialization preorders 60:finitely generated space 3265:Partially ordered group 3085:Specialization preorder 2480:Steiner, A. K. (1966). 2259:isomorphism preserving 1824:Given a preordered set 1614:left and right adjoints 1560:denote the category of 1109:, i.e. the preorder of 1085:, ≤> we always have 1022:specialization preorder 470:lies in the closure of 293:specialization preorder 204:Smallest neighbourhood. 118:commute with arbitrary 2751:Kruskal's tree theorem 2746:Knaster–Tarski theorem 2736:Dushnik–Miller theorem 2559:Arenas, F. G. (1999). 2227:partially ordered sets 2212:denotational semantics 2183:pioneering studies on 2156:locally path connected 2151:as a finite subcover. 2145: 2119: 2099: 2079: 2059: 2039: 2019: 1999: 1043:is in the closure of { 990: 864: 810: 679: 659: 317:is in the closure of { 2242:Alexandrov topologies 2146: 2144:{\displaystyle \{U\}} 2120: 2100: 2080: 2060: 2040: 2020: 2000: 1881: ∈ S }, and 1669:concrete isomorphisms 991: 865: 811: 680: 678:{\displaystyle \tau } 660: 497:Finite inclusion map. 220:Neighbourhood filter. 114:Due to the fact that 3243:Ordered vector space 2561:"Alexandroff spaces" 2274:for the modal logic 2196:categorical topology 2129: 2109: 2089: 2069: 2049: 2029: 2009: 1989: 1950:relational structure 1899: ∈ S with 1689:with bico-reflector 1253:with that property. 886: 823: 700: 669: 629: 291:consistent with the 224:neighbourhood filter 69:. Indeed, given any 3081:Alexandrov topology 3027:Lexicographic order 2986:Well-quasi-ordering 2291:characterizations. 1715:, the identity map 1465:be the same map as 1381:be the same map as 1215:)) will be the set 607:Alexandrov topology 601:and their topology 499:The inclusion maps 43:of every family of 33:Alexandrov topology 3062:Transitive closure 3022:Converse/Transpose 2731:Dilworth's theorem 2141: 2115: 2095: 2075: 2055: 2035: 2015: 1995: 1566:monotone functions 986: 860: 806: 675: 655: 539:Finite generation. 375:is in the set and 347:is in the set and 243:Interior operator. 226:of every point in 96:with preorders on 3303:Closure operators 3290: 3289: 3248:Partially ordered 3057:Symmetric closure 3042:Reflexive closure 2785: 2542:978-0-521-33779-3 2200:finite generation 2118:{\displaystyle U} 2098:{\displaystyle U} 2078:{\displaystyle x} 2058:{\displaystyle U} 2038:{\displaystyle U} 2018:{\displaystyle x} 1998:{\displaystyle U} 1954:interior algebras 1832:interior operator 1606:concrete functors 1493:and consider the 1263:monotone function 972: 964: 949: 943: 928: 925: 792: 784: 769: 763: 748: 745: 391:Downward closure. 259:Closure operator. 247:interior operator 135:Alexandrov spaces 16:(Redirected from 3320: 3032:Linear extension 2781: 2761:Mirsky's theorem 2621: 2614: 2607: 2598: 2591: 2590: 2582: 2576: 2575: 2565: 2556: 2547: 2546: 2528: 2522: 2521: 2503: 2477: 2471: 2470: 2448: 2442: 2423: 2417: 2416: 2405:"Diskrete Räume" 2400: 2394: 2388: 2382: 2381: 2370: 2364: 2362: 2360: 2348: 2342: 2336: 2330: 2324: 2220:computer science 2204:general topology 2168:P. S. Alexandrov 2150: 2148: 2147: 2142: 2124: 2122: 2121: 2116: 2104: 2102: 2101: 2096: 2084: 2082: 2081: 2076: 2064: 2062: 2061: 2056: 2044: 2042: 2041: 2036: 2024: 2022: 2021: 2016: 2004: 2002: 2001: 1996: 1869: ∈ X, 1850:) are given by: 1836:closure operator 1625:full subcategory 1538:category of sets 995: 993: 992: 987: 970: 962: 947: 941: 926: 923: 869: 867: 866: 861: 838: 830: 815: 813: 812: 807: 790: 782: 767: 761: 746: 743: 684: 682: 681: 676: 664: 662: 661: 656: 636: 478:Finite subspace. 363:Closed down-set. 263:closure operator 131:Pavel Alexandrov 21: 3328: 3327: 3323: 3322: 3321: 3319: 3318: 3317: 3293: 3292: 3291: 3286: 3282:Young's lattice 3138: 3066: 3005: 2855:Heyting algebra 2803:Boolean algebra 2775: 2756:Laver's theorem 2704: 2670:Boolean algebra 2665:Binary relation 2653: 2630: 2625: 2595: 2594: 2584: 2583: 2579: 2563: 2558: 2557: 2550: 2543: 2530: 2529: 2525: 2501:10.2307/1994555 2479: 2478: 2474: 2450: 2449: 2445: 2439:Beyond Topology 2424: 2420: 2402: 2401: 2397: 2389: 2385: 2372: 2371: 2367: 2350: 2349: 2345: 2337: 2333: 2325: 2321: 2316: 2300: 2238:P. T. Johnstone 2234: 2202:was applied to 2185:closure systems 2176:discrete spaces 2172:discrete spaces 2170:under the name 2164: 2127: 2126: 2107: 2106: 2087: 2086: 2067: 2066: 2047: 2046: 2027: 2026: 2007: 2006: 1987: 1986: 1979:locally compact 1972:first countable 1962: 1946:complex algebra 1942:binary relation 1926:Boolean algebra 1822: 1816:is continuous. 1562:preordered sets 1554:continuous maps 1530: 1259: 1073: 1039:if and only if 1028:is defined by: 1004: 884: 883: 821: 820: 698: 697: 667: 666: 627: 626: 620: 615: 586: 569: 558: 518: 507: 442:Finite closure. 313:if and only if 289:finest topology 212:has a smallest 206:Every point of 147: 23: 22: 15: 12: 11: 5: 3326: 3324: 3316: 3315: 3310: 3305: 3295: 3294: 3288: 3287: 3285: 3284: 3279: 3274: 3273: 3272: 3262: 3261: 3260: 3255: 3250: 3240: 3239: 3238: 3228: 3223: 3222: 3221: 3216: 3209:Order morphism 3206: 3205: 3204: 3194: 3189: 3184: 3179: 3174: 3173: 3172: 3162: 3157: 3152: 3146: 3144: 3140: 3139: 3137: 3136: 3135: 3134: 3129: 3127:Locally convex 3124: 3119: 3109: 3107:Order topology 3104: 3103: 3102: 3100:Order topology 3097: 3087: 3077: 3075: 3068: 3067: 3065: 3064: 3059: 3054: 3049: 3044: 3039: 3034: 3029: 3024: 3019: 3013: 3011: 3007: 3006: 3004: 3003: 2993: 2983: 2978: 2973: 2968: 2963: 2958: 2953: 2948: 2947: 2946: 2936: 2931: 2930: 2929: 2924: 2919: 2914: 2912:Chain-complete 2904: 2899: 2898: 2897: 2892: 2887: 2882: 2877: 2867: 2862: 2857: 2852: 2847: 2837: 2832: 2827: 2822: 2817: 2812: 2811: 2810: 2800: 2795: 2789: 2787: 2777: 2776: 2774: 2773: 2768: 2763: 2758: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2712: 2710: 2706: 2705: 2703: 2702: 2697: 2692: 2687: 2682: 2677: 2672: 2667: 2661: 2659: 2655: 2654: 2652: 2651: 2646: 2641: 2635: 2632: 2631: 2626: 2624: 2623: 2616: 2609: 2601: 2593: 2592: 2577: 2548: 2541: 2523: 2494:(2): 379–398. 2472: 2461:(3): 465–474. 2443: 2418: 2395: 2393:, Theorem 2.8. 2383: 2365: 2343: 2341:, Theorem 2.2. 2331: 2318: 2317: 2315: 2312: 2311: 2310: 2299: 2296: 2280:A. Grzegorczyk 2232: 2191:and topology. 2189:lattice theory 2163: 2160: 2140: 2137: 2134: 2114: 2094: 2074: 2054: 2034: 2014: 1994: 1961: 1958: 1909: 1908: 1882: 1821: 1818: 1814: 1813: 1769: 1768: 1747: 1746: 1665: 1664: 1649: 1616:respectively. 1602: 1601: 1586: 1529: 1526: 1463: 1462: 1437:) :  1422: 1421: 1397:continuous map 1379: 1378: 1353:) :  1326:) ≤  1302: 1301: 1284: 1283: 1258: 1255: 1072: 1069: 1049: 1048: 1003: 1000: 999: 998: 997: 996: 985: 981: 978: 975: 968: 961: 958: 955: 952: 946: 940: 937: 934: 931: 922: 919: 916: 913: 910: 907: 904: 901: 898: 895: 891: 859: 856: 853: 850: 847: 844: 841: 837: 833: 829: 817: 816: 805: 801: 798: 795: 788: 781: 778: 775: 772: 766: 760: 757: 754: 751: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 711: 708: 705: 674: 654: 651: 648: 645: 642: 639: 635: 624:preordered set 619: 616: 614: 611: 591: 590: 589: 588: 582: 565: 554: 536: 514: 503: 494: 475: 434: 433: 432: 388: 360: 328: 274: 273: 272: 256: 235: 234: 233: 217: 196: 195: 194: 182: 146: 143: 116:inverse images 24: 14: 13: 10: 9: 6: 4: 3: 2: 3325: 3314: 3311: 3309: 3306: 3304: 3301: 3300: 3298: 3283: 3280: 3278: 3275: 3271: 3268: 3267: 3266: 3263: 3259: 3256: 3254: 3251: 3249: 3246: 3245: 3244: 3241: 3237: 3234: 3233: 3232: 3231:Ordered field 3229: 3227: 3224: 3220: 3217: 3215: 3212: 3211: 3210: 3207: 3203: 3200: 3199: 3198: 3195: 3193: 3190: 3188: 3187:Hasse diagram 3185: 3183: 3180: 3178: 3175: 3171: 3168: 3167: 3166: 3165:Comparability 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3147: 3145: 3141: 3133: 3130: 3128: 3125: 3123: 3120: 3118: 3115: 3114: 3113: 3110: 3108: 3105: 3101: 3098: 3096: 3093: 3092: 3091: 3088: 3086: 3082: 3079: 3078: 3076: 3073: 3069: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3037:Product order 3035: 3033: 3030: 3028: 3025: 3023: 3020: 3018: 3015: 3014: 3012: 3010:Constructions 3008: 3002: 2998: 2994: 2991: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2969: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2945: 2942: 2941: 2940: 2937: 2935: 2932: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2909: 2908: 2907:Partial order 2905: 2903: 2900: 2896: 2895:Join and meet 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2872: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2842: 2838: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2809: 2806: 2805: 2804: 2801: 2799: 2796: 2794: 2793:Antisymmetric 2791: 2790: 2788: 2784: 2778: 2772: 2769: 2767: 2764: 2762: 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2734: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2713: 2711: 2707: 2701: 2700:Weak ordering 2698: 2696: 2693: 2691: 2688: 2686: 2685:Partial order 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2662: 2660: 2656: 2650: 2647: 2645: 2642: 2640: 2637: 2636: 2633: 2629: 2622: 2617: 2615: 2610: 2608: 2603: 2602: 2599: 2588: 2581: 2578: 2573: 2569: 2562: 2555: 2553: 2549: 2544: 2538: 2534: 2527: 2524: 2519: 2515: 2511: 2507: 2502: 2497: 2493: 2489: 2488: 2483: 2476: 2473: 2468: 2464: 2460: 2456: 2455: 2447: 2444: 2440: 2436: 2432: 2428: 2422: 2419: 2414: 2410: 2406: 2399: 2396: 2392: 2387: 2384: 2379: 2375: 2369: 2366: 2359: 2354: 2347: 2344: 2340: 2335: 2332: 2328: 2323: 2320: 2313: 2308: 2306: 2302: 2301: 2297: 2295: 2292: 2290: 2285: 2281: 2277: 2273: 2269: 2264: 2262: 2258: 2255: 2254:contravariant 2251: 2250:order complex 2247: 2243: 2239: 2235: 2228: 2223: 2221: 2217: 2216:domain theory 2213: 2209: 2206:and the name 2205: 2201: 2197: 2192: 2190: 2186: 2182: 2177: 2173: 2169: 2161: 2159: 2157: 2152: 2135: 2112: 2092: 2072: 2052: 2032: 2012: 1992: 1984: 1980: 1975: 1973: 1968: 1965: 1959: 1957: 1955: 1951: 1947: 1943: 1939: 1935: 1934:modal algebra 1931: 1927: 1924: 1919: 1918: 1915: ⊆  1914: 1906: 1903: ≤  1902: 1898: 1894: 1890: 1886: 1883: 1880: 1876: 1873: ≤  1872: 1868: 1864: 1860: 1856: 1853: 1852: 1851: 1849: 1848: 1843: 1842: 1837: 1833: 1829: 1828: 1819: 1817: 1811: 1810: 1805: 1804: 1799: 1798: 1793: 1792: 1788: :  1787: 1783: 1780: 1779: 1778: 1776: 1775: 1767: 1766: 1761: 1760: 1756: :  1755: 1752: 1751: 1750: 1745: 1744: 1739: 1738: 1733: 1732: 1727: 1726: 1722: :  1721: 1718: 1717: 1716: 1714: 1713: 1708: 1704: 1701: :  1700: 1699: 1694: 1693: 1688: 1684: 1681:is in fact a 1680: 1676: 1674: 1670: 1663: 1659: 1656: :  1655: 1654: 1650: 1647: 1643: 1640: :  1639: 1638: 1634: 1633: 1632: 1630: 1626: 1622: 1617: 1615: 1611: 1607: 1600: 1596: 1593: :  1592: 1591: 1587: 1584: 1580: 1577: :  1576: 1575: 1571: 1570: 1569: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1527: 1525: 1523: 1522: 1517: 1516: 1511: 1510: 1505: 1504: 1500: :  1499: 1496: 1492: 1491: 1484: 1480: 1478: 1474: 1473: 1468: 1460: 1459: 1454: 1453: 1448: 1447: 1442: 1441: 1436: 1432: 1431: 1427: 1426: 1425: 1420: 1419: 1414: 1413: 1408: 1405: 1404: 1403: 1400: 1398: 1394: 1390: 1389: 1384: 1376: 1375: 1370: 1369: 1364: 1363: 1358: 1357: 1352: 1348: 1347: 1343: 1342: 1341: 1339: 1338: 1333: 1329: 1325: 1321: 1317: 1316: 1311: 1308: ≤  1307: 1300: 1296: 1293: :  1292: 1289: 1288: 1287: 1282: 1281: 1276: 1275: 1271: :  1270: 1267: 1266: 1265: 1264: 1256: 1254: 1252: 1248: 1247: 1242: 1241: 1236: 1235: 1230: 1229: 1224: 1223: 1218: 1214: 1213: 1208: 1207: 1202: 1201: 1196: 1195: 1190: 1189: 1184: 1183: 1178: 1177: 1172: 1167: 1165: 1164: 1159: 1158: 1153: 1152: 1147: 1146: 1141: 1140: 1135: 1134: 1130: 1126: 1125: 1120: 1119: 1114: 1113: 1108: 1107: 1102: 1101: 1096: 1095: 1090: 1089: 1084: 1080: 1079: 1070: 1068: 1066: 1062: 1061: 1056: 1055: 1046: 1042: 1038: 1034: 1031: 1030: 1029: 1027: 1023: 1019: 1015: 1011: 1010: 1001: 979: 976: 973: 956: 953: 950: 944: 938: 935: 932: 920: 917: 914: 911: 908: 902: 899: 896: 893: 882: 881: 880: 879: 878: 876: 871: 854: 851: 848: 842: 799: 796: 793: 776: 773: 770: 764: 758: 755: 752: 740: 737: 734: 731: 728: 722: 719: 716: 713: 706: 703: 696: 695: 694: 692: 688: 672: 649: 646: 643: 637: 625: 617: 612: 610: 608: 605:is called an 604: 600: 596: 585: 581: 580: 575: 574: 568: 564: 563: 557: 553: 549: 545: 544: 540: 537: 534: 530: 529: 524: 523: 517: 513: 512: 506: 502: 498: 495: 492: 491: 486: 482: 479: 476: 473: 469: 465: 461: 457: 456: 451: 447: 443: 440: 439: 438: 435: 430: 426: 422: 418: 414: 410: 406: 405: 400: 396: 392: 389: 386: 382: 378: 374: 370: 369: 364: 361: 358: 354: 350: 346: 342: 341:upward closed 338: 337: 332: 329: 326: 325: 320: 316: 312: 308: 305:≤ satisfying 304: 300: 299: 294: 290: 286: 283: 280: 279: 278: 275: 270: 269: 264: 260: 257: 254: 253: 248: 244: 241: 240: 239: 236: 231: 230: 225: 221: 218: 215: 214:neighbourhood 211: 210: 205: 202: 201: 200: 197: 192: 191: 186: 183: 180: 179: 174: 171: 170: 169: 166: 165: 164: 162: 158: 154: 153: 144: 142: 140: 136: 132: 127: 125: 121: 117: 112: 110: 106: 105:determined by 101: 99: 95: 91: 87: 83: 79: 76: 72: 68: 63: 61: 57: 52: 50: 46: 42: 39:in which the 38: 34: 30: 19: 3308:Order theory 3080: 3074:& Orders 3052:Star product 2981:Well-founded 2934:Prefix order 2890:Distributive 2880:Complemented 2850:Foundational 2815:Completeness 2771:Zorn's lemma 2675:Cyclic order 2658:Key concepts 2628:Order theory 2586: 2580: 2571: 2567: 2533:Stone spaces 2532: 2526: 2491: 2485: 2475: 2458: 2452: 2446: 2438: 2434: 2426: 2421: 2412: 2408: 2398: 2386: 2377: 2368: 2346: 2334: 2329:, Theorem 7. 2322: 2304: 2293: 2283: 2275: 2272:modal frames 2265: 2241: 2224: 2207: 2193: 2171: 2165: 2153: 2085:included in 1976: 1969: 1966: 1963: 1929: 1920: 1916: 1912: 1910: 1904: 1900: 1896: 1892: 1888: 1884: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1846: 1845: 1840: 1839: 1826: 1825: 1823: 1815: 1808: 1807: 1802: 1801: 1796: 1795: 1790: 1789: 1785: 1781: 1773: 1772: 1770: 1764: 1763: 1758: 1757: 1753: 1748: 1742: 1741: 1736: 1735: 1730: 1729: 1724: 1723: 1719: 1711: 1710: 1706: 1702: 1697: 1696: 1691: 1690: 1686: 1678: 1677: 1672: 1667:are inverse 1666: 1661: 1657: 1652: 1651: 1645: 1641: 1636: 1635: 1628: 1620: 1618: 1609: 1603: 1598: 1594: 1589: 1588: 1582: 1578: 1573: 1572: 1557: 1545: 1533: 1531: 1520: 1519: 1514: 1513: 1508: 1507: 1502: 1501: 1497: 1495:identity map 1489: 1488: 1485: 1481: 1476: 1471: 1470: 1466: 1464: 1457: 1456: 1451: 1450: 1445: 1444: 1439: 1438: 1434: 1429: 1428: 1423: 1417: 1416: 1411: 1410: 1406: 1401: 1392: 1387: 1386: 1382: 1380: 1373: 1372: 1367: 1366: 1361: 1360: 1355: 1354: 1350: 1345: 1344: 1336: 1335: 1331: 1327: 1323: 1319: 1314: 1313: 1309: 1305: 1303: 1298: 1294: 1290: 1285: 1279: 1278: 1273: 1272: 1268: 1260: 1250: 1245: 1244: 1239: 1238: 1233: 1232: 1227: 1226: 1221: 1220: 1216: 1211: 1210: 1205: 1204: 1199: 1198: 1193: 1192: 1187: 1186: 1181: 1180: 1175: 1174: 1170: 1168: 1162: 1161: 1156: 1155: 1150: 1149: 1144: 1143: 1138: 1137: 1132: 1131: 1128: 1123: 1122: 1117: 1116: 1111: 1110: 1105: 1104: 1099: 1098: 1093: 1092: 1087: 1086: 1082: 1077: 1076: 1074: 1064: 1059: 1058: 1053: 1052: 1050: 1044: 1040: 1036: 1032: 1025: 1017: 1013: 1008: 1007: 1005: 872: 818: 686: 621: 606: 602: 598: 594: 592: 583: 578: 577: 572: 571: 566: 561: 560: 555: 551: 542: 541: 538: 527: 526: 521: 520: 515: 510: 509: 504: 500: 496: 489: 488: 480: 477: 471: 467: 463: 459: 454: 453: 449: 445: 441: 436: 428: 424: 420: 416: 412: 408: 403: 402: 398: 394: 390: 384: 380: 376: 372: 367: 366: 362: 356: 352: 348: 344: 335: 334: 331:Open up-set. 330: 323: 322: 318: 314: 310: 306: 297: 296: 284: 281: 276: 267: 266: 258: 251: 250: 242: 237: 228: 227: 219: 208: 207: 203: 198: 189: 188: 184: 177: 176: 172: 167: 160: 156: 151: 150: 148: 128: 113: 102: 97: 89: 81: 77: 64: 59: 55: 53: 48: 41:intersection 32: 26: 3258:Riesz space 3219:Isomorphism 3095:Normal cone 3017:Composition 2951:Semilattice 2860:Homogeneous 2845:Equivalence 2695:Total order 2574:(1): 17–25. 2431:Marcel Erné 2391:Arenas 1999 2339:Arenas 1999 2268:modal logic 2181:Øystein Ore 1938:modal frame 1623:denote the 1548:denote the 1536:denote the 576:where each 185:Closed set. 3297:Categories 3226:Order type 3160:Cofinality 3001:Well-order 2976:Transitive 2865:Idempotent 2798:Asymmetric 2415:: 501–518. 2327:Speer 2007 2314:References 1983:local base 1960:Properties 1556:; and let 1136:, we have 875:lower sets 691:upper sets 548:final hull 533:final sink 466:such that 415:such that 193:is closed. 86:upper sets 3277:Upper set 3214:Embedding 3150:Antichain 2971:Tolerance 2961:Symmetric 2956:Semiorder 2902:Reflexive 2820:Connected 2510:0002-9947 2363:Theorem 5 2358:0708.2136 1923:power set 1612:that are 1197:. Rather 1067:, ≤>. 1020:> the 977:∈ 967:⟹ 954:≤ 945:∧ 936:∈ 918:∈ 906:∀ 897:⊆ 858:⟩ 855:τ 846:⟨ 797:∈ 787:⟹ 774:≤ 765:∧ 756:∈ 738:∈ 726:∀ 717:⊆ 704:τ 673:τ 653:⟩ 650:≤ 641:⟨ 173:Open set. 124:quotients 45:open sets 3072:Topology 2939:Preorder 2922:Eulerian 2885:Complete 2835:Directed 2825:Covering 2690:Preorder 2649:Category 2644:Glossary 2425:O. Ore, 2298:See also 1911:for all 1877:implies 1318:implies 1261:Given a 1063:) = < 622:Given a 559: : 508: : 485:coherent 444:A point 393:A point 343:i.e. if 303:preorder 181:is open. 71:preorder 37:topology 29:topology 3177:Duality 3155:Cofinal 3143:Related 3122:Fréchet 2999:)  2875:Bounded 2870:Lattice 2843:)  2841:Partial 2709:Results 2680:Lattice 2518:1994555 2435:Closure 2409:Mat. Sb 2257:lattice 2248:to the 2162:History 1948:from a 1936:from a 1784: ◦ 1568:. Then 1409::  1395:) is a 1340:), let 531:form a 287:is the 92:are in 73:≤ on a 3202:Subnet 3182:Filter 3132:Normed 3117:Banach 3083:& 2990:Better 2927:Strict 2917:Graded 2808:topics 2639:Topics 2539:  2516:  2508:  2307:-space 1891:) = { 1861:) = { 1830:, the 1771:where 1544:. Let 1487:space 1081:= < 1012:= < 971:  963:  948:  942:  927:  924:  791:  783:  768:  762:  747:  744:  155:= < 120:unions 49:finite 3192:Ideal 3170:Graph 2966:Total 2944:Total 2830:Dense 2564:(PDF) 2514:JSTOR 2353:arXiv 2025:, in 1671:over 1608:over 1524:)).) 1334:) in 1191:)) = 1173:have 1154:)) = 1103:)) = 383:then 355:then 321:} in 35:is a 31:, an 2783:list 2537:ISBN 2506:ISSN 2214:and 1834:and 1619:Let 1604:are 1564:and 1552:and 1542:maps 1540:and 1532:Let 261:The 245:The 222:The 3197:Net 2997:Pre 2496:doi 2492:122 2463:doi 2278:). 2218:in 1928:of 1855:Int 1838:of 1740:))→ 1707:Alx 1703:Top 1687:Top 1685:of 1679:Alx 1673:Set 1662:Pro 1658:Alx 1648:and 1646:Alx 1642:Pro 1629:Top 1627:of 1621:Alx 1610:Set 1599:Pro 1595:Top 1585:and 1583:Top 1579:Pro 1558:Pro 1546:Top 1534:Set 1312:in 1171:not 1024:on 685:on 597:or 483:is 462:of 452:of 411:in 401:of 295:of 265:of 249:of 75:set 58:or 27:In 3299:: 2572:68 2570:. 2566:. 2551:^ 2512:. 2504:. 2490:. 2484:. 2459:33 2457:. 2433:, 2407:. 2376:. 2276:S4 2222:. 2158:. 1974:. 1917:X. 1885:Cl 1812:)) 1675:. 1449:)→ 1399:. 1365:)→ 1047:}. 1035:≤ 1016:, 877:: 870:. 693:: 609:. 570:→ 519:→ 431:}. 419:≤ 379:≤ 351:≤ 309:≤ 159:, 141:. 126:. 111:. 100:. 62:. 2995:( 2992:) 2988:( 2839:( 2786:) 2620:e 2613:t 2606:v 2545:. 2520:. 2498:: 2469:. 2465:: 2413:2 2380:. 2361:. 2355:: 2305:P 2233:0 2231:T 2139:} 2136:U 2133:{ 2113:U 2093:U 2073:x 2053:U 2033:U 2013:x 1993:U 1930:X 1913:S 1907:} 1905:y 1901:x 1897:y 1893:x 1889:S 1887:( 1879:y 1875:y 1871:x 1867:y 1863:x 1859:S 1857:( 1847:X 1844:( 1841:T 1827:X 1809:X 1806:( 1803:W 1800:( 1797:T 1794:→ 1791:Y 1786:f 1782:i 1774:Y 1765:X 1762:→ 1759:Y 1754:f 1743:X 1737:X 1734:( 1731:W 1728:( 1725:T 1720:i 1712:X 1705:→ 1698:W 1695:◦ 1692:T 1660:→ 1653:W 1644:→ 1637:T 1597:→ 1590:W 1581:→ 1574:T 1521:X 1518:( 1515:W 1512:( 1509:T 1506:→ 1503:X 1498:i 1490:X 1477:g 1475:( 1472:W 1467:f 1461:) 1458:Y 1455:( 1452:W 1446:X 1443:( 1440:W 1435:g 1433:( 1430:W 1418:Y 1415:→ 1412:X 1407:g 1393:f 1391:( 1388:T 1383:f 1377:) 1374:Y 1371:( 1368:T 1362:X 1359:( 1356:T 1351:f 1349:( 1346:T 1337:Y 1332:y 1330:( 1328:f 1324:x 1322:( 1320:f 1315:X 1310:y 1306:x 1299:Y 1297:→ 1295:X 1291:f 1280:Y 1277:→ 1274:X 1269:f 1251:X 1246:X 1240:X 1237:( 1234:W 1231:( 1228:T 1222:X 1217:X 1212:X 1209:( 1206:W 1203:( 1200:T 1194:X 1188:X 1185:( 1182:W 1179:( 1176:T 1163:X 1157:X 1151:X 1148:( 1145:W 1142:( 1139:T 1133:X 1124:X 1121:( 1118:T 1112:X 1106:X 1100:X 1097:( 1094:T 1091:( 1088:W 1083:X 1078:X 1065:X 1060:X 1057:( 1054:W 1045:y 1041:x 1037:y 1033:x 1026:X 1018:T 1014:X 1009:X 984:} 980:S 974:y 960:) 957:x 951:y 939:S 933:x 930:( 921:X 915:y 912:, 909:x 903:: 900:X 894:S 890:{ 852:, 849:X 843:= 840:) 836:X 832:( 828:T 804:} 800:G 794:y 780:) 777:y 771:x 759:G 753:x 750:( 741:X 735:y 732:, 729:x 723:: 720:X 714:G 710:{ 707:= 687:X 647:, 644:X 638:= 634:X 603:T 584:i 579:X 573:X 567:i 562:X 556:i 552:f 543:X 535:. 528:X 522:X 516:i 511:X 505:i 501:f 493:. 490:X 481:T 472:F 468:x 464:S 460:F 455:X 450:S 446:x 429:y 425:x 421:y 417:x 413:S 409:y 404:X 399:S 395:x 385:y 381:x 377:y 373:x 368:X 357:y 353:y 349:x 345:x 336:X 327:. 324:X 319:y 315:x 311:y 307:x 298:X 285:T 268:X 252:X 229:X 216:. 209:X 190:X 178:X 161:T 157:X 152:X 98:X 90:X 82:X 78:X 20:)

Index

Alexandrov-discrete space
topology
topology
intersection
open sets
specialization preorders
preorder
set
upper sets
one-to-one correspondence
determined by
finite topological spaces
inverse images
unions
quotients
Pavel Alexandrov
Alexandrov spaces
Aleksandr Danilovich Aleksandrov
neighbourhood
neighbourhood filter
interior operator
closure operator
finest topology
specialization preorder
preorder
upward closed
coherent
final sink
final hull
preordered set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.