Knowledge (XXG)

Alkaliphile

Source đź“ť

67:, as well as other unfavorable physiological changes. Thus, to adequately circumvent these obstacles, alkaliphiles must either possess specific cellular machinery that works best in the alkaline range, or they must have methods of acidifying the cytosol in relation to the extracellular environment. To determine which of the above possibilities an alkaliphile uses, experimentation has demonstrated that alkaliphilic enzymes possess relatively normal pH optimums. The determination that these enzymes function most efficiently near physiologically neutral pH ranges (about 7.5–8.5) was one of the primary steps in elucidating how alkaliphiles survive intensely basic environments. Since the cytosolic pH must remain nearly neutral, alkaliphiles must have one or more mechanisms of acidifying the 47: 230:. It is hoped that further research into alkaliphilic enzymes will allow scientists to harvest alkaliphiles' enzymes for use in basic conditions. Research aimed at discovering alkaliphile-produced antibiotics showed some success, yet has been held at bay by the fact that some products produced at high pH are unstable and unusable at a physiological pH range. 182:– would be severely reduced. However, the opposite is true. It has been proposed that while the pH gradient has been reversed, the transmembrane electrical potential is greatly increased. This increase in charge causes the production of greater amounts of ATP by each translocated proton when driven through an ATPase. Research in this area is ongoing. 139:
counterpart. When alkaliphiles lose these acidic residues in the form of induced mutations, it has been shown that their ability to grow in alkaline conditions is severely hindered. However, it is generally agreed upon that passive methods of cytosolic acidification are not sufficient to maintain an
37:
roughly 8.5–11) environments, growing optimally around a pH of 10. These bacteria can be further categorized as obligate alkaliphiles (those that require high pH to survive), facultative alkaliphiles (those able to survive in high pH, but also grow under normal conditions) and haloalkaliphiles (those
160:
extrusion establishes a proton gradient that drives electrogenic antiporters—which drive intracellular Na out of the cell in exchange for a greater number of H ions, leading to the net accumulation of internal protons. This proton accumulation leads to a lowering of cytosolic pH. The expelled Na can
177:
In addition to the method of proton extrusion discussed above, it is believed that the general method of cellular respiration is different in obligate alkaliphiles as compared to neutrophiles. Generally, ATP production operates by establishing a proton gradient (greater H+ concentration outside the
338:
Hirabayashi, Toshikazu, Toshitaka Goto, Hajime Morimoto, Kazuaki Yoshimune, Hidetoshi Matsuyama, and Isao Yumoto. "Relationship between Rates of Respiratory Proton Extrusion and ATP Synthesis in Obligately Alkaliphilic Bacillus Clarkii DSM 8720T." J Bioenerg Biomembr 44 (2012): 265-72.
178:
membrane) and a transmembrane electrical potential (with a positive charge outside the membrane). However, since alkaliphiles have a reversed pH gradient, it would seem that ATP production—which is based on a strong
161:
be used for solute symport, which are necessary for cellular processes. It has been noted that Na/H antiport is required for alkaliphilic growth, whereas either K/H antiporters or Na/H antiporters can be utilized by
54:
Microbial growth in alkaline conditions presents several complications to normal biochemical activity and reproduction, as high pH is detrimental to normal cellular processes. For example, alkalinity can lead to
194:
and future research. Alkaliphilic methods of regulating pH and producing ATP are of interest in the scientific community. However, perhaps the greatest area of interest from alkaliphiles lies in their
320:
Higashibata, Akira, Taketomo Fujiwara, and Yoshihiro Fukumori. "Studies on the Respiratory System in Alkaliphilic Bacillus; a Proposed New Respiratory System." Extremophiles 2 (1998): 83–92. Print.
329:
Krulwich, Terry A., Mashahiro Ito, Ray Gilmour, and Arthur A. Guffanti. "Mechanisms of Cytoplasmic PH Regulation in Alkaliphilic Strains of Bacillus." Extremophiles 1 (1997): 163-69. Print.
140:
internal pH 2-2.3 levels below that of external pH; there must also be active forms of acidification. The most characterized method of active acidification is in the form of Na/H
169:
or another means, the bacteria are rendered neutrophilic. The sodium required for this antiport system is the reason some alkaliphiles can only grow in saline environments.
79:
Alkaliphiles maintain cytosolic acidification through both passive and active means. In passive acidification, it has been proposed that cell walls contain acidic
304:
Horikoshi, Koki. "Alkaliphiles: Some applications of their products for biotechnology." Microbiology and Molecular Biology Reviews 63.4 (1999): 735-50. Print.
396: 362: 715: 835: 389: 56: 700: 633: 240: 551: 252: 145: 674: 667: 653: 558: 840: 382: 830: 660: 589: 582: 354: 781: 758: 705: 680: 614: 449: 179: 84: 786: 764: 626: 575: 358: 720: 518: 513: 489: 804: 740: 710: 504: 469: 104: 100: 60: 46: 16:
Extremophile microbes capable of survival in alkaline (pH roughly 8.5 – 11) environments
796: 735: 454: 116: 824: 751: 227: 191: 120: 96: 92: 88: 23: 809: 770: 745: 725: 564: 499: 405: 275: 246: 219: 153: 776: 730: 509: 494: 280: 223: 215: 211: 162: 141: 136: 132: 128: 791: 620: 484: 474: 464: 459: 429: 419: 270: 265: 203: 644: 523: 479: 439: 199: 157: 108: 50:
A typical bacillus culture. Many alkaliphiles possess a bacillus morphology.
569: 542: 444: 434: 166: 80: 30: 26: 103:. Together, these residues form an acidic matrix that helps protect the 605: 207: 195: 68: 64: 351:
Extremophiles: Sustainable Resources and Biotechnological Implications
595: 149: 112: 45: 374: 378: 34: 316: 314: 312: 310: 144:. In this model, H ions are first extruded through the 71:
when in the presence of a highly alkaline environment.
107:
from alkaline conditions by preventing the entry of
693: 643: 604: 541: 532: 412: 165:bacteria. If Na/H antiporters are disabled through 190:Alkaliphiles promise several interesting uses for 148:in respiring cells and to some extent through an 300: 298: 296: 210:; xylanases; pectinases; chitinases and their 127:has been observed to contain higher levels of 390: 8: 38:that require high salt content to survive). 538: 397: 383: 375: 173:Differences in alkaliphilic ATP production 292: 111:ions, and allowing for the uptake of 75:Mechanisms of cytosolic acidification 7: 14: 716:Acidophiles in acid mine drainage 238:Examples of alkaliphiles include 186:Applications and future research 63:and inactivation of cytosolic 1: 83:composed of residues such as 214:, including: 2-phenylamine; 202:; starch-degrading enzymes; 59:of DNA, instability of the 857: 701:Abiogenic petroleum origin 634:Thermococcus gammatolerans 241:Halorhodospira halochloris 253:Thiohalospira alkaliphila 552:Chloroflexus aurantiacus 146:electron transport chain 675:Halicephalobus mephisto 668:Paralvinella sulfincola 654:Cyanidioschyzon merolae 559:Deinococcus radiodurans 29:capable of survival in 247:Natronomonas pharaonis 51: 42:Background information 836:Biochemical reactions 661:Galdieria sulphuraria 590:Spirochaeta americana 355:John Wiley & Sons 49: 583:Thermus thermophilus 782:Radiotrophic fungus 759:Helaeomyia petrolei 706:Acidithiobacillales 615:Pyrococcus furiosus 180:proton-motive force 135:as compared to its 119:. In addition, the 357:. pp. 76–79. 52: 818: 817: 765:Hydrothermal vent 689: 688: 627:Pyrolobus fumarii 576:Thermus aquaticus 364:978-1-118-10300-5 349:Singh OV (2012). 85:galacturonic acid 848: 721:Archaeoglobaceae 694:Related articles 539: 519:Thermoacidophile 514:Hyperthermophile 490:Polyextremophile 399: 392: 385: 376: 369: 368: 346: 340: 336: 330: 327: 321: 318: 305: 302: 226:derivatives and 123:in alkaliphilic 856: 855: 851: 850: 849: 847: 846: 845: 821: 820: 819: 814: 805:Thermostability 741:Grylloblattidae 711:Acidobacteriota 685: 639: 600: 534: 528: 470:Metallotolerant 408: 403: 373: 372: 365: 348: 347: 343: 337: 333: 328: 324: 319: 308: 303: 294: 289: 262: 236: 188: 175: 105:plasma membrane 101:phosphoric acid 77: 61:plasma membrane 44: 22:are a class of 17: 12: 11: 5: 854: 852: 844: 843: 838: 833: 823: 822: 816: 815: 813: 812: 807: 802: 794: 789: 784: 779: 774: 767: 762: 755: 748: 743: 738: 736:Thermoproteota 733: 728: 723: 718: 713: 708: 703: 697: 695: 691: 690: 687: 686: 684: 683: 678: 671: 664: 657: 649: 647: 641: 640: 638: 637: 630: 623: 618: 610: 608: 602: 601: 599: 598: 593: 586: 579: 572: 567: 562: 555: 547: 545: 536: 530: 529: 527: 526: 521: 516: 507: 505:Radioresistant 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 455:Lithoautotroph 452: 447: 442: 437: 432: 427: 422: 416: 414: 410: 409: 404: 402: 401: 394: 387: 379: 371: 370: 363: 341: 331: 322: 306: 291: 290: 288: 285: 284: 283: 278: 273: 268: 261: 258: 235: 232: 187: 184: 174: 171: 117:hydronium ions 76: 73: 43: 40: 15: 13: 10: 9: 6: 4: 3: 2: 853: 842: 841:Extremophiles 839: 837: 834: 832: 829: 828: 826: 811: 808: 806: 803: 801: 799: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 772: 768: 766: 763: 761: 760: 756: 754: 753: 752:Halobacterium 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 698: 696: 692: 682: 679: 677: 676: 672: 670: 669: 665: 663: 662: 658: 656: 655: 651: 650: 648: 646: 642: 636: 635: 631: 629: 628: 624: 622: 619: 617: 616: 612: 611: 609: 607: 603: 597: 594: 592: 591: 587: 585: 584: 580: 578: 577: 573: 571: 568: 566: 563: 561: 560: 556: 554: 553: 549: 548: 546: 544: 540: 537: 535:extremophiles 531: 525: 522: 520: 517: 515: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 417: 415: 411: 407: 406:Extremophiles 400: 395: 393: 388: 386: 381: 380: 377: 366: 360: 356: 352: 345: 342: 335: 332: 326: 323: 317: 315: 313: 311: 307: 301: 299: 297: 293: 286: 282: 279: 277: 274: 272: 269: 267: 264: 263: 259: 257: 255: 254: 249: 248: 243: 242: 233: 231: 229: 228:organic acids 225: 221: 217: 213: 209: 205: 201: 197: 193: 192:biotechnology 185: 183: 181: 172: 170: 168: 164: 159: 155: 151: 147: 143: 138: 134: 130: 126: 122: 121:peptidoglycan 118: 114: 110: 106: 102: 98: 97:aspartic acid 94: 93:glutamic acid 90: 89:gluconic acid 86: 82: 74: 72: 70: 66: 62: 58: 48: 41: 39: 36: 32: 28: 25: 24:extremophilic 21: 831:Alkaliphiles 810:Thermotogota 797: 771:Methanopyrus 769: 757: 750: 746:Halobacteria 726:Berkeley Pit 681:Pompeii worm 673: 666: 659: 652: 632: 625: 613: 588: 581: 574: 565:Deinococcota 557: 550: 512: / 500:Psychrophile 424: 350: 344: 334: 325: 276:Extremophile 251: 245: 239: 237: 220:siderophores 189: 176: 163:neutrophilic 156:cells. This 154:fermentative 137:neutrophilic 124: 78: 57:denaturation 53: 20:Alkaliphiles 19: 18: 777:Movile Cave 731:Blood Falls 510:Thermophile 495:Psammophile 425:Alkaliphile 281:Neutrophile 224:cholic acid 216:carotenoids 212:metabolites 198:: alkaline 142:antiporters 133:amino acids 129:hexosamines 125:B. subtilis 825:Categories 800:polymerase 792:Tardigrade 621:Strain 121 485:Piezophile 475:Oligotroph 465:Methanogen 460:Lithophile 430:Capnophile 420:Acidophile 287:References 271:Acidophobe 266:Acidophile 204:cellulases 787:Rio Tinto 645:Eukaryota 524:Xerophile 480:Osmophile 450:Lipophile 440:Halophile 200:proteases 109:hydroxide 570:Snottite 543:Bacteria 445:Hypolith 435:Endolith 260:See also 234:Examples 167:mutation 81:polymers 31:alkaline 27:microbes 606:Archaea 533:Notable 208:lipases 196:enzymes 69:cytosol 65:enzymes 596:GFAJ-1 361:  339:Print. 250:, and 158:proton 150:ATPase 113:sodium 99:, and 413:Types 359:ISBN 131:and 115:and 798:Taq 152:in 827:: 353:. 309:^ 295:^ 256:. 244:, 222:; 218:; 206:; 95:, 91:, 87:, 35:pH 398:e 391:t 384:v 367:. 33:(

Index

extremophilic
microbes
alkaline
pH

denaturation
plasma membrane
enzymes
cytosol
polymers
galacturonic acid
gluconic acid
glutamic acid
aspartic acid
phosphoric acid
plasma membrane
hydroxide
sodium
hydronium ions
peptidoglycan
hexosamines
amino acids
neutrophilic
antiporters
electron transport chain
ATPase
fermentative
proton
neutrophilic
mutation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑