Knowledge (XXG)

Allosteric regulation

Source 📝

788:
receptor subtypes. Also, these modulators have a decreased potential for toxic effects, since modulators with limited co-operativity will have a ceiling level to their effect, irrespective of the administered dose. Another type of pharmacological selectivity that is unique to allosteric modulators is based on co-operativity. An allosteric modulator may display neutral co-operativity with an orthosteric ligand at all subtypes of a given receptor except the subtype of interest, which is termed "absolute subtype selectivity". If an allosteric modulator does not possess appreciable efficacy, it can provide another powerful therapeutic advantage over orthosteric ligands, namely the ability to selectively tune up or down tissue responses only when the endogenous agonist is present. Oligomer-specific small molecule binding sites are drug targets for medically relevant
839:(ASD) provides a central resource for the display, search and analysis of the structure, function and related annotation for allosteric molecules. Currently, ASD contains allosteric proteins from more than 100 species and modulators in three categories (activators, inhibitors, and regulators). Each protein is annotated with detailed description of allostery, biological process and related diseases, and each modulator with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow the prediction of allostery for unknown proteins, to be followed with experimental validation. In addition, modulators curated in ASD can be used to investigate potential allosteric targets for a query compound, and can help chemists to implement structure modifications for novel allosteric drug design. 852:. Pharmacologically important proteins with difficult-to-target sites may yield to approaches in which one alternatively targets easier-to-reach residues that are capable of allosterically regulating the primary site of interest. These residues can broadly be classified as surface- and interior-allosteric amino acids. Allosteric sites at the surface generally play regulatory roles that are fundamentally distinct from those within the interior; surface residues may serve as receptors or effector sites in allosteric signal transmission, whereas those within the interior may act to transmit such signals. 372:, and then relate specific statistical measurements of allostery to specific energy terms in the energy function (such as an intermolecular salt bridge between two domains). Ensemble models like the ensemble allosteric model and allosteric Ising model assume that each domain of the system can adopt two states similar to the MWC model. The allostery landscape model introduced by Cuendet, Weinstein, and LeVine allows for the domains to have any number of states and the contribution of a specific molecular interaction to a given allosteric coupling can be estimated using a rigorous set of rules. 305:, postulates that enzyme subunits are connected in such a way that a conformational change in one subunit is necessarily conferred to all other subunits. Thus, all subunits must exist in the same conformation. The model further holds that, in the absence of any ligand (substrate or otherwise), the equilibrium favors one of the conformational states, T or R. The equilibrium can be shifted to the R or T state through the binding of one 221: 403:. They can be positive (activating) causing an increase of the enzyme activity or negative (inhibiting) causing a decrease of the enzyme activity. The use of allosteric modulation allows the control of the effects of specific enzyme activities; as a result, allosteric modulators are very effective in pharmacology. In a biological system, allosteric modulation can be difficult to distinguish from modulation by 813:
coupling between several binding sites is in artificial systems usually much larger than in proteins with their usually larger flexibility. The parameter which determines the efficiency (as measured by the ratio of equilibrium constants Krel = KA(E)/KA in presence and absence of an effector E ) is the conformational energy needed to adopt a closed or strained conformation for the binding of a ligand A.
33: 820:
systems direct interaction between bound ligands can occur, which can lead to large cooperativities. Most common is such a direct interaction between ions in receptors for ion-pairs. This cooperativity is often also referred to as allostery, even though conformational changes here are not necessarily
659:
are heterotropic allosteric modulators of hemoglobin. Once again, in IMP/GMP specific 5' nucleotidase, binding of GTP molecule at the dimer interface in the tetrameric enzyme leads to increased affinity for substrate GMP at the active site indicating towards K-type heterotropic allosteric activation.
317:
The sequential model of allosteric regulation holds that subunits are not connected in such a way that a conformational change in one induces a similar change in the others. Thus, all enzyme subunits do not necessitate the same conformation. Moreover, the sequential model dictates that molecules of a
847:
Not all protein residues play equally important roles in allosteric regulation. The identification of residues that are essential to allostery (so-called “allosteric residues”) has been the focus of many studies, especially within the last decade. In part, this growing interest is a result of their
642:
and CO are homotropic allosteric modulators of hemoglobin. Likewise, in IMP/GMP specific 5' nucleotidase, binding of one GMP molecule to a single subunit of the tetrameric enzyme leads to increased affinity for GMP by the subsequent subunits as revealed by sigmoidal substrate versus velocity plots.
398:
binds to an allosteric site (also known as a regulatory site) of an enzyme and alters the enzyme activity. Allosteric modulators are designed to fit the allosteric site to cause a conformational change of the enzyme, in particular a change in the shape of the active site, which then causes a change
393:
is used to alter the activity of molecules and enzymes in biochemistry and pharmacology. For comparison, a typical drug is made to bind to the active site of an enzyme which thus prohibits binding of a substrate to that enzyme causing a decrease in enzyme activity. Allosteric modulation occurs when
207:
Mechanism of Action: Binding to the allosteric site induces a conformational change in the enzyme that can either reduce the affinity of the active site for the substrate or alter the enzyme's catalytic activity. This indirect interference can inhibit the enzyme's function even if the substrate is
787:
to accommodate an endogenous ligand, so are more diverse. Therefore, greater GPCR selectivity may be obtained by targeting allosteric sites. This is particularly useful for GPCRs where selective orthosteric therapy has been difficult because of sequence conservation of the orthosteric site across
680:
A non-regulatory allosteric site is any non-regulatory component of an enzyme (or any protein), that is not itself an amino acid. For instance, many enzymes require sodium binding to ensure proper function. However, the sodium does not necessarily act as a regulatory subunit; the sodium is always
349:
A morpheein is a homo-oligomeric structure that can exist as an ensemble of physiologically significant and functionally different alternate quaternary assemblies. Transitions between alternate morpheein assemblies involve oligomer dissociation, conformational change in the dissociated state, and
322:
protocol. While such an induced fit converts a subunit from the tensed state to relaxed state, it does not propagate the conformational change to adjacent subunits. Instead, substrate-binding at one subunit only slightly alters the structure of other subunits so that their binding sites are more
812:
at a second site, and negative if the affinity isn't highered. Most synthetic allosteric complexes rely on conformational reorganization upon the binding of one effector ligand which then leads to either enhanced or weakened association of second ligand at another binding site. Conformational
834:
Allostery is a direct and efficient means for regulation of biological macromolecule function, produced by the binding of a ligand at an allosteric site topographically distinct from the orthosteric site. Due to the often high receptor selectivity and lower target-based toxicity, allosteric
671:
Some allosteric activators are referred to as "essential", or "obligate" activators, in the sense that in their absence, the activity of their target enzyme activity is very low or negligible, as is the case with N-acetylglutamate's activity on carbamoyl phosphate synthetase I, for example.
293:, the allostery landscape model described by Cuendet, Weinstein, and LeVine, can be used. Allosteric regulation may be facilitated by the evolution of large-scale, low-energy conformational changes, which enables long-range allosteric interaction between distant binding sites. 681:
present and there are no known biological processes to add/remove sodium to regulate enzyme activity. Non-regulatory allostery could comprise any other ions besides sodium (calcium, magnesium, zinc), as well as other chemicals and possibly vitamins.
285:, tensed (T) or relaxed (R), and that relaxed subunits bind substrate more readily than those in the tense state. The two models differ most in their assumptions about subunit interaction and the preexistence of both states. For proteins in which 2510:
Ghosh A, Vishveshwara S (November 2008). "Variations in clique and community patterns in protein structures during allosteric communication: investigation of dynamically equilibrated structures of methionyl tRNA synthetase complexes".
68:, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function. In contrast, substances that bind directly to an enzyme's active site or the binding site of the 473:
oxygen affinity. Another example of allosteric activation is seen in cytosolic IMP-GMP specific 5'-nucleotidase II (cN-II), where the affinity for substrate GMP increases upon GTP binding at the dimer interface.
663:
As has been amply highlighted above, some allosteric proteins can be regulated by both their substrates and other molecules. Such proteins are capable of both homotropic and heterotropic interactions.
194:
Competitive Inhibition: Most orthosteric inhibitors compete with the substrate for the active site, which means their effectiveness can be reduced if substrate concentration increases.
617:
and maintaining balanced levels of cellular ATP. In this way, ATP serves as a negative allosteric modulator for PFK, despite the fact that it is also a substrate of the enzyme.
651:
A heterotropic allosteric modulator is a regulatory molecule that is not the enzyme's substrate. It may be either an activator or an inhibitor of the enzyme. For example, H, CO
156:), "solid (object)". This is in reference to the fact that the regulatory site of an allosteric protein is physically distinct from its active site. Allostery contrasts with 350:
reassembly to a different oligomer. The required oligomer disassembly step differentiates the morpheein model for allosteric regulation from the classic MWC and KNF models.
211:
Non-Competitive Inhibition: Allosteric inhibitors often exhibit non-competitive inhibition, meaning their inhibitory effect is not dependent on the substrate concentration.
1984: 425:
that is perfectly suited to adapt to living in the macrophages of humans. The enzyme's sites serve as a communication between different substrates. Specifically between
1998:
Takeuchi M, Ikeda M, Sugasaki A, Shinkai S (November 2001). "Molecular design of artificial molecular and ion recognition systems with allosteric guest responses".
191:
Mechanism of Action: By occupying the active site, these inhibitors prevent the substrate from binding, thereby directly blocking the enzyme's catalytic activity.
2357:
Süel GM, Lockless SW, Wall MA, Ranganathan R (January 2003). "Evolutionarily conserved networks of residues mediate allosteric communication in proteins".
494:
binds to an allosteric site on hemoglobin, the affinity for oxygen of all subunits decreases. This is when a regulator is absent from the binding site.
1096:
Koshland DE, Némethy G, Filmer D (January 1966). "Comparison of experimental binding data and theoretical models in proteins containing subunits".
204:
Binding Site: Allosteric inhibitors bind to a site on the enzyme that is distinct and separate from the active site, known as the allosteric site.
779:. There are a number of advantages in using allosteric modulators as preferred therapeutic agents over classic orthosteric ligands. For example, 469:. The binding of oxygen to one subunit induces a conformational change in that subunit that interacts with the remaining active sites to enhance 804:
binding sites, which exhibit conformational changes upon occupation of one site. Cooperativity between single binding contributions in such
2138:
Badjić JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (September 2005). "Multivalency and cooperativity in supramolecular chemistry".
1858:
Christopoulos A, May LT, Avlani VA, Sexton PM (November 2004). "G-protein-coupled receptor allosterism: the promise and the problem(s)".
2925: 1037: 1391:"AIM for Allostery: Using the Ising Model to Understand Information Processing and Transmission in Allosteric Biomolecular Systems" 376:
simulations can be used to estimate a system's statistical ensemble so that it can be analyzed with the allostery landscape model.
546:
of the glycine receptor for glycine. Thus, strychnine inhibits the action of an inhibitory transmitter, leading to convulsions.
3081: 1499:"Allosteric pyruvate kinase-based "logic gate" synergistically senses energy and sugar levels in Mycobacterium tuberculosis" 542:. Strychnine acts at a separate binding site on the glycine receptor in an allosteric manner; i.e., its binding lowers the 152: 713:
ligand, and can be thought to act like a dimmer switch in an electrical circuit, adjusting the intensity of the response.
638:, as well as a regulatory molecule of the protein's activity. It is typically an activator of the protein. For example, O 2894: 2898: 780: 701:") and enhances or inhibits the effects of the endogenous ligand. Under normal circumstances, it acts by causing a 501: 497: 417: 262: 188:
Binding Site: Orthosteric inhibitors bind directly to the enzyme's active site, where the substrate normally binds.
3066: 775:
Allosteric proteins are involved in, and are central in many diseases, and allosteric sites may represent a novel
3182: 3169: 3156: 3143: 3130: 3117: 3104: 578: 3076: 170: 142: 3209: 3030: 2973: 631: 598: 458: 353: 232: 689:
Allosteric modulation of a receptor results from the binding of allosteric modulators at a different site (a "
2978: 1898:
May LT, Leach K, Sexton PM, Christopoulos A (2007). "Allosteric modulation of G protein-coupled receptors".
725: 656: 594: 543: 491: 426: 61: 449:
enhances the attraction between substrate molecules and other binding sites. An example is the binding of
871: 606: 586: 550: 404: 400: 274: 157: 111: 1563:"Allosteric regulation and substrate activation in cytosolic nucleotidase II from Legionella pneumophila" 2918: 1978: 1020:
Bu Z, Callaway DJ (2011). "Proteins move! Protein dynamics and long-range allostery in cell signaling".
706: 702: 694: 390: 306: 88: 3071: 1698:"Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis" 1061:
Monod J, Wyman J, Changeux JP (May 1965). "On the nature of allosteric transitions:A plausible model".
759:
More recent examples of drugs that allosterically modulate their targets include the calcium-mimicking
2846: 2776:"Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation" 2728: 2559: 2413: 1817: 1709: 1510: 1402: 1296: 1206: 966: 602: 574: 385: 365: 266: 709:
of the ligand. In this way, an allosteric ligand modulates the receptor's activation by its primary
3035: 1696:
de Cima S, Polo LM, Díez-Fernández C, Martínez AI, Cervera J, Fita I, et al. (November 2015).
1561:
Srinivasan B, Forouhar F, Shukla A, Sampangi C, Kulkarni S, Abashidze M, et al. (March 2014).
876: 753: 733: 590: 554: 430: 910:
Cooper A, Dryden DT (October 1984). "Allostery without conformational change. A plausible model".
736:
regulatory binding sites. These regulatory sites can each produce positive allosteric modulation,
2968: 2836: 2718: 2382: 1807: 1230: 1196: 1002: 935: 395: 373: 1935:"Morpheeins – A New Pathway for Allosteric Drug Discovery~!2010-02-12~!2010-05-21~!2010-06-08~!" 848:
general importance in protein science, but also because allosteric residues may be exploited in
3204: 2874: 2805: 2756: 2687: 2636: 2587: 2528: 2492: 2441: 2374: 2339: 2288: 2239: 2204: 2155: 2120: 2085: 2050: 2015: 1966: 1915: 1911: 1875: 1835: 1776: 1735: 1678: 1627: 1592: 1536: 1479: 1430: 1371: 1322: 1265: 1248:
Jaffe EK (September 2005). "Morpheeins--a new structural paradigm for allosteric regulation".
1222: 1165: 1113: 1078: 1043: 1033: 994: 927: 558: 369: 290: 282: 69: 835:
regulation is also expected to play an increasing role in drug discovery and bioengineering.
3014: 3009: 2983: 2911: 2864: 2854: 2795: 2787: 2746: 2736: 2705:
Negre CF, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, et al. (December 2018).
2677: 2667: 2626: 2618: 2577: 2567: 2520: 2482: 2472: 2431: 2421: 2366: 2329: 2319: 2278: 2270: 2231: 2194: 2186: 2147: 2112: 2077: 2042: 2007: 1956: 1946: 1907: 1867: 1825: 1766: 1725: 1717: 1668: 1658: 1619: 1582: 1574: 1526: 1518: 1469: 1461: 1420: 1410: 1361: 1353: 1312: 1304: 1257: 1214: 1155: 1147: 1105: 1070: 1025: 984: 974: 919: 886: 528: 516: 270: 237: 92: 3061: 3045: 2958: 1357: 891: 881: 690: 570: 466: 286: 278: 2103:
Schneider HJ (September 2016). "Efficiency parameters in artificial allosteric systems".
2850: 2732: 2563: 2417: 2068:
Kovbasyuk L, Krämer R (June 2004). "Allosteric supramolecular receptors and catalysts".
1821: 1713: 1623: 1514: 1406: 1300: 1210: 1184: 1024:. Advances in Protein Chemistry and Structural Biology. Vol. 83. pp. 163–221. 970: 3099: 3040: 2869: 2825:"Green function of correlated genes in a minimal mechanical model of protein evolution" 2824: 2800: 2775: 2751: 2706: 2682: 2655: 2631: 2606: 2582: 2547: 2487: 2461:"Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities" 2460: 2436: 2401: 2334: 2307: 2283: 2258: 2199: 2174: 1961: 1934: 1730: 1697: 1673: 1646: 1587: 1562: 1531: 1498: 1474: 1449: 1425: 1390: 1366: 1341: 1317: 1284: 1160: 1135: 1029: 989: 954: 861: 817: 805: 776: 729: 717: 462: 119: 115: 2222:
McConnell AJ, Beer PD (May 2012). "Heteroditopic receptors for ion-pair recognition".
1136:"The Allostery Landscape: Quantifying Thermodynamic Couplings in Biomolecular Systems" 1074: 220: 3198: 3004: 2963: 1234: 866: 309:(the allosteric effector or ligand) to a site that is different from the active site 258: 165: 134: 2607:"Exploring residue component contributions to dynamical network models of allostery" 2386: 939: 593:, causing a change in the enzyme's three-dimensional shape. This change causes its 2953: 1006: 589:
within the cell. When ATP levels are high, ATP will bind to an allosteric site on
504:
of thrombin have been discovered that could potentially be used as anticoagulants.
433:. Sites like these also serve as a sensing mechanism for the enzyme's performance. 45: 41: 710: 609:) at the active site to decrease, and the enzyme is deemed inactive. This causes 2426: 1830: 1795: 1218: 979: 783:(GPCR) allosteric binding sites have not faced the same evolutionary pressure as 3177: 3112: 2948: 1951: 801: 698: 549:
Another instance in which negative allosteric modulation can be seen is between
535: 319: 225: 87:. Allosteric sites allow effectors to bind to the protein, often resulting in a 65: 2829:
Proceedings of the National Academy of Sciences of the United States of America
2711:
Proceedings of the National Academy of Sciences of the United States of America
2660:
Proceedings of the National Academy of Sciences of the United States of America
2552:
Proceedings of the National Academy of Sciences of the United States of America
2465:
Proceedings of the National Academy of Sciences of the United States of America
1771: 1754: 1522: 1261: 2897:
introducing a classification system for protein allostery mechanisms from the
2791: 2459:
Gasper PM, Fuglestad B, Komives EA, Markwick PR, McCammon JA (December 2012).
760: 749: 610: 562: 539: 508: 490:
decreases the affinity for substrate at other active sites. For example, when
454: 160:
which requires no conformational change for an enzyme's activation. The term
2324: 1497:
Zhong W, Cui L, Goh BC, Cai Q, Ho P, Chionh YH, et al. (December 2017).
1226: 1151: 808:
systems is positive if occupation of one binding site enhances the affinity Δ
301:
The concerted model of allostery, also referred to as the symmetry model or
3151: 3125: 2859: 2774:
Clarke D, Sethi A, Li S, Kumar S, Chang RW, Chen J, et al. (May 2016).
2741: 2707:"Eigenvector centrality for characterization of protein allosteric pathways" 2672: 2572: 2477: 2308:"Exploiting protein flexibility to predict the location of allosteric sites" 1647:"The N-Acetylglutamate Synthase Family: Structures, Function and Mechanisms" 955:"Allostery: An Overview of Its History, Concepts, Methods, and Applications" 789: 764: 343: 302: 254: 2878: 2809: 2760: 2691: 2640: 2591: 2532: 2496: 2445: 2378: 2343: 2292: 2243: 2235: 2208: 2159: 2124: 2089: 2054: 2046: 2019: 1970: 1919: 1879: 1839: 1780: 1739: 1682: 1596: 1540: 1483: 1434: 1375: 1326: 1269: 1169: 1082: 1047: 998: 2654:
Rivalta I, Sultan MM, Lee NS, Manley GA, Loria JP, Batista VS (May 2012).
2274: 1663: 1117: 931: 364:
Ensemble models of allosteric regulation enumerate an allosteric system's
114:
from upstream substrates. Long-range allostery is especially important in
32: 17: 1631: 741: 422: 107: 2257:
Huang Z, Zhu L, Cao Y, Wu G, Liu X, Chen Y, et al. (January 2011).
1308: 1109: 2116: 1871: 1578: 923: 745: 737: 635: 614: 524: 520: 512: 106:
Allosteric regulations are a natural example of control loops, such as
2622: 2524: 2151: 2081: 2011: 1721: 1465: 1415: 1185:"Colloquium : Proteins: The physics of amorphous evolving matter" 3164: 2934: 2259:"ASD: a comprehensive database of allosteric proteins and modulators" 2190: 532: 487: 450: 446: 242: 123: 57: 2841: 2723: 2370: 1812: 1201: 95:. Effectors that enhance the protein's activity are referred to as 3138: 2033:
Kremer C, Lützen A (May 2013). "Artificial allosteric receptors".
399:
in its activity. In contrast to typical drugs, modulators are not
346:
model of allosteric regulation is a dissociative concerted model.
219: 31: 2605:
Vanwart AT, Eargle J, Luthey-Schulten Z, Amaro RE (August 2012).
2402:"Binding leverage as a molecular basis for allosteric regulation" 1796:"Known allosteric proteins have central roles in genetic disease" 500:
provides an excellent example of negative allosteric modulation.
569:) is an enzyme that catalyses the third step of glycolysis: the 99:, whereas those that decrease the protein's activity are called 2907: 1610:
Edelstein SJ (1975). "Cooperative interactions of hemoglobin".
2656:"Allosteric pathways in imidazole glycerol phosphate synthase" 1450:"Allosteric modulators: an emerging concept in drug discovery" 836: 613:
to cease when ATP levels are high, thus conserving the body's
582: 566: 118:. Allosteric regulation is also particularly important in the 2546:
Sethi A, Eargle J, Black AA, Luthey-Schulten Z (April 2009).
2903: 461:
and the effector. The allosteric, or "other", site is the
705:
in a receptor molecule, which results in a change in the
333:
conformational changes are not propagated to all subunits
748:
at the benzodiazepine regulatory site, and its antidote
246:
This is a diagram of allosteric regulation of an enzyme.
174:) meaning “straight”, “upright”, “right” or “correct”. 2823:
Dutta S, Eckmann JP, Libchaber A, Tlusty T (May 2018).
800:
There are many synthetic compounds containing several
849: 515:
poison, which acts as an allosteric inhibitor of the
1283:
Motlagh HN, Wrabl JO, Li J, Hilser VJ (April 2014).
1134:
Cuendet MA, Weinstein H, LeVine MV (December 2016).
330:
molecules of substrate bind via induced-fit protocol
3090: 3054: 3023: 2992: 2941: 1183:Eckmann JP, Rougemont J, Tlusty T (July 30, 2019). 79:The site to which the effector binds is termed the 585:can be allosterically inhibited by high levels of 565:. Phosphofructokinase (generally referred to as 250:Many allosteric effects can be explained by the 327:subunits need not exist in the same conformation 2400:Mitternacht S, Berezovsky IN (September 2011). 1556: 1554: 1552: 1550: 724:has two active sites that the neurotransmitter 2548:"Dynamical networks in tRNA:protein complexes" 1129: 1127: 482:Negative allosteric modulation (also known as 441:Positive allosteric modulation (also known as 2919: 1983:: CS1 maint: DOI inactive as of March 2024 ( 1342:"Structural and energetic basis of allostery" 8: 1900:Annual Review of Pharmacology and Toxicology 1755:"Allostery in disease and in drug discovery" 277:, Nemethy, and Filmer. Both postulate that 56:) is a substance that binds to a site on an 1651:International Journal of Molecular Sciences 1645:Shi D, Allewell NM, Tuchman M (June 2015). 273:(also known as the KNF model) described by 2926: 2912: 2904: 2611:Journal of Chemical Theory and Computation 1140:Journal of Chemical Theory and Computation 415:An example of this model is seen with the 2868: 2858: 2840: 2799: 2750: 2740: 2722: 2681: 2671: 2630: 2581: 2571: 2486: 2476: 2435: 2425: 2333: 2323: 2282: 2198: 1960: 1950: 1912:10.1146/annurev.pharmtox.47.120505.105159 1829: 1811: 1770: 1729: 1672: 1662: 1586: 1530: 1473: 1424: 1414: 1365: 1316: 1200: 1159: 988: 978: 1340:Hilser VJ, Wrabl JO, Motlagh HN (2012). 843:Allosteric residues and their prediction 1939:The Open Conference Proceedings Journal 1794:Abrusan G, Ascher DB, Inouye M (2022). 902: 630:A homotropic allosteric modulator is a 457:, where oxygen is effectively both the 2306:Panjkovich A, Daura X (October 2012). 1976: 323:receptive to substrate. To summarize: 1893: 1891: 1889: 1853: 1851: 1849: 1358:10.1146/annurev-biophys-050511-102319 7: 2105:Organic & Biomolecular Chemistry 2173:Kim SK, Sessler JL (October 2010). 1624:10.1146/annurev.bi.44.070175.001233 1389:LeVine MV, Weinstein H (May 2015). 356:(PBGS) is the prototype morpheein. 1285:"The ensemble nature of allostery" 1030:10.1016/B978-0-12-381262-9.00005-7 36:Allosteric regulation of an enzyme 25: 486:) occurs when the binding of one 445:) occurs when the binding of one 1860:Biochemical Society Transactions 1448:Abdel-Magid AF (February 2015). 771:Allosteric sites as drug targets 1454:ACS Medicinal Chemistry Letters 953:Liu J, Nussinov R (June 2016). 178:Ortho vs. allosteric inhibitors 1250:Trends in Biochemical Sciences 1022:Protein Structure and Diseases 1: 2140:Accounts of Chemical Research 2035:Chemistry: A European Journal 2000:Accounts of Chemical Research 1612:Annual Review of Biochemistry 1075:10.1016/s0022-2836(65)80285-6 746:positive allosteric modulator 27:Regulation of enzyme activity 2427:10.1371/journal.pcbi.1002148 1831:10.1371/journal.pcbi.1009806 1219:10.1103/RevModPhys.91.031001 1063:Journal of Molecular Biology 980:10.1371/journal.pcbi.1004966 796:Synthetic allosteric systems 110:from downstream products or 1955:(inactive March 11, 2024). 1952:10.2174/2210289201001010001 1753:Nussinov R, Tsai C (2013). 1346:Annual Review of Biophysics 912:European Biophysics Journal 821:triggering binding events. 728:(GABA) binds, but also has 3226: 2899:Royal Society of Chemistry 2406:PLOS Computational Biology 2269:(Database issue): D663–9. 1800:PLOS Computational Biology 1772:10.1016/j.cell.2013.03.034 1523:10.1038/s41467-017-02086-y 1262:10.1016/j.tibs.2005.07.003 959:PLOS Computational Biology 781:G protein-coupled receptor 498:Direct thrombin inhibitors 418:Mycobacterium tuberculosis 383: 169: 151: 141: 76:regulators or modulators. 3082:Michaelis–Menten kinetics 2792:10.1016/j.str.2016.03.008 2359:Nature Structural Biology 1189:Reviews of Modern Physics 734:general anaesthetic agent 579:fructose 1,6-bisphosphate 370:potential energy function 72:of a receptor are called 2974:Diffusion-limited enzyme 2325:10.1186/1471-2105-13-273 2179:Chemical Society Reviews 1152:10.1021/acs.jctc.6b00841 676:Non-regulatory allostery 354:Porphobilinogen synthase 2860:10.1073/pnas.1716215115 2742:10.1073/pnas.1810452115 2673:10.1073/pnas.1120536109 2573:10.1073/pnas.0810961106 2478:10.1073/pnas.1218414109 837:The AlloSteric Database 726:gamma-aminobutyric acid 657:2,3-bisphosphoglycerate 289:exist in more than two 2263:Nucleic Acids Research 2236:10.1002/anie.201107244 2047:10.1002/chem.201203814 872:Competitive inhibition 763:and the HIV treatment 740:the activity of GABA. 405:substrate presentation 401:competitive inhibitors 318:substrate bind via an 247: 158:substrate presentation 37: 3067:Eadie–Hofstee diagram 3000:Allosteric regulation 2717:(52): E12201–E12208. 1664:10.3390/ijms160613004 1503:Nature Communications 703:conformational change 502:Allosteric inhibitors 484:allosteric inhibition 443:allosteric activation 391:Allosteric modulation 380:Allosteric modulation 368:as a function of its 223: 101:allosteric inhibitors 97:allosteric activators 89:conformational change 35: 3077:Lineweaver–Burk plot 2175:"Ion pair receptors" 816:In many multivalent 693:") from that of the 667:Essential activators 603:fructose-6-phosphate 575:fructose-6-phosphate 561:loop that regulates 411:Energy sensing model 386:Allosteric modulator 366:statistical ensemble 281:exist in one of two 54:allosteric modulator 50:allosteric regulator 2851:2018PNAS..115E4559D 2835:(20): E4559–E4568. 2733:2018PNAS..11512201N 2564:2009PNAS..106.6620S 2418:2011PLSCB...7E2148M 2275:10.1093/nar/gkq1022 1822:2022PLSCB..18E9806A 1714:2015NatSR...516950D 1515:2017NatCo...8.1986Z 1407:2015Entrp..17.2895L 1309:10.1038/nature13001 1301:2014Natur.508..331M 1211:2019RvMP...91c1001E 1110:10.1021/bi00865a047 971:2016PLSCB..12E4966L 877:Cooperative binding 850:biomedical contexts 830:Allosteric Database 754:receptor antagonist 591:phosphofructokinase 555:phosphofructokinase 507:Another example is 478:Negative modulation 437:Positive modulation 229:B – Allosteric site 91:and/or a change in 3036:Enzyme superfamily 2969:Enzyme promiscuity 2312:BMC Bioinformatics 2117:10.1039/c6ob01303a 1872:10.1042/BST0320873 1702:Scientific Reports 1579:10.1111/febs.12727 924:10.1007/BF00276625 374:Molecular dynamics 248: 122:ability to adjust 64:distinct from the 38: 3192: 3191: 2623:10.1021/ct300377a 2525:10.1021/bi8007559 2519:(44): 11398–407. 2224:Angewandte Chemie 2152:10.1021/ar040223k 2111:(34): 7994–8001. 2082:10.1021/cr030673a 2012:10.1021/ar0000410 1933:Jaffe EK (2010). 1722:10.1038/srep16950 1466:10.1021/ml5005365 1416:10.3390/e17052895 1146:(12): 5758–5767. 785:orthosteric sites 716:For example, the 695:endogenous ligand 559:negative feedback 70:endogenous ligand 40:In the fields of 16:(Redirected from 3217: 3072:Hanes–Woolf plot 3015:Enzyme activator 3010:Enzyme inhibitor 2984:Enzyme catalysis 2928: 2921: 2914: 2905: 2883: 2882: 2872: 2862: 2844: 2820: 2814: 2813: 2803: 2771: 2765: 2764: 2754: 2744: 2726: 2702: 2696: 2695: 2685: 2675: 2666:(22): E1428–36. 2651: 2645: 2644: 2634: 2617:(8): 2949–2961. 2602: 2596: 2595: 2585: 2575: 2543: 2537: 2536: 2507: 2501: 2500: 2490: 2480: 2471:(52): 21216–22. 2456: 2450: 2449: 2439: 2429: 2397: 2391: 2390: 2354: 2348: 2347: 2337: 2327: 2303: 2297: 2296: 2286: 2254: 2248: 2247: 2219: 2213: 2212: 2202: 2191:10.1039/c002694h 2185:(10): 3784–809. 2170: 2164: 2163: 2135: 2129: 2128: 2100: 2094: 2093: 2070:Chemical Reviews 2065: 2059: 2058: 2030: 2024: 2023: 1995: 1989: 1988: 1982: 1974: 1964: 1954: 1930: 1924: 1923: 1895: 1884: 1883: 1855: 1844: 1843: 1833: 1815: 1791: 1785: 1784: 1774: 1750: 1744: 1743: 1733: 1693: 1687: 1686: 1676: 1666: 1642: 1636: 1635: 1607: 1601: 1600: 1590: 1573:(6): 1613–1628. 1567:The FEBS Journal 1558: 1545: 1544: 1534: 1494: 1488: 1487: 1477: 1445: 1439: 1438: 1428: 1418: 1401:(5): 2895–2918. 1386: 1380: 1379: 1369: 1337: 1331: 1330: 1320: 1280: 1274: 1273: 1245: 1239: 1238: 1204: 1180: 1174: 1173: 1163: 1131: 1122: 1121: 1093: 1087: 1086: 1058: 1052: 1051: 1017: 1011: 1010: 992: 982: 950: 944: 943: 907: 887:Protein dynamics 825:Online resources 707:binding affinity 529:neurotransmitter 523:is a major post- 517:glycine receptor 465:of an adjoining 313:Sequential model 279:protein subunits 271:sequential model 173: 155: 146:), "other", and 145: 93:protein dynamics 21: 3225: 3224: 3220: 3219: 3218: 3216: 3215: 3214: 3210:Enzyme kinetics 3195: 3194: 3193: 3188: 3100:Oxidoreductases 3086: 3062:Enzyme kinetics 3050: 3046:List of enzymes 3019: 2988: 2959:Catalytic triad 2937: 2932: 2895:Instant insight 2891: 2886: 2822: 2821: 2817: 2773: 2772: 2768: 2704: 2703: 2699: 2653: 2652: 2648: 2604: 2603: 2599: 2545: 2544: 2540: 2509: 2508: 2504: 2458: 2457: 2453: 2412:(9): e1002148. 2399: 2398: 2394: 2356: 2355: 2351: 2305: 2304: 2300: 2256: 2255: 2251: 2230:(21): 5052–61. 2221: 2220: 2216: 2172: 2171: 2167: 2137: 2136: 2132: 2102: 2101: 2097: 2067: 2066: 2062: 2041:(20): 6162–96. 2032: 2031: 2027: 1997: 1996: 1992: 1975: 1932: 1931: 1927: 1897: 1896: 1887: 1866:(Pt 5): 873–7. 1857: 1856: 1847: 1806:(2): e1009806. 1793: 1792: 1788: 1752: 1751: 1747: 1695: 1694: 1690: 1657:(6): 13004–22. 1644: 1643: 1639: 1609: 1608: 1604: 1560: 1559: 1548: 1496: 1495: 1491: 1447: 1446: 1442: 1388: 1387: 1383: 1339: 1338: 1334: 1295:(7496): 331–9. 1282: 1281: 1277: 1247: 1246: 1242: 1182: 1181: 1177: 1133: 1132: 1125: 1095: 1094: 1090: 1060: 1059: 1055: 1040: 1019: 1018: 1014: 965:(6): e1004966. 952: 951: 947: 909: 908: 904: 900: 892:Receptor theory 882:Enzyme kinetics 858: 845: 832: 827: 798: 773: 721: 691:regulatory site 687: 678: 669: 654: 649: 641: 634:for its target 628: 623: 571:phosphorylation 553:and the enzyme 480: 467:protein subunit 439: 413: 388: 382: 362: 360:Ensemble models 340: 338:Morpheein model 315: 299: 297:Concerted model 245: 240: 235: 230: 228: 218: 201: 185: 180: 164:comes from the 133:comes from the 85:regulatory site 81:allosteric site 28: 23: 22: 15: 12: 11: 5: 3223: 3221: 3213: 3212: 3207: 3197: 3196: 3190: 3189: 3187: 3186: 3173: 3160: 3147: 3134: 3121: 3108: 3094: 3092: 3088: 3087: 3085: 3084: 3079: 3074: 3069: 3064: 3058: 3056: 3052: 3051: 3049: 3048: 3043: 3038: 3033: 3027: 3025: 3024:Classification 3021: 3020: 3018: 3017: 3012: 3007: 3002: 2996: 2994: 2990: 2989: 2987: 2986: 2981: 2976: 2971: 2966: 2961: 2956: 2951: 2945: 2943: 2939: 2938: 2933: 2931: 2930: 2923: 2916: 2908: 2902: 2901: 2890: 2889:External links 2887: 2885: 2884: 2815: 2786:(5): 826–837. 2766: 2697: 2646: 2597: 2558:(16): 6620–5. 2538: 2502: 2451: 2392: 2371:10.1038/nsb881 2349: 2298: 2249: 2214: 2165: 2130: 2095: 2076:(6): 3161–87. 2060: 2025: 2006:(11): 865–73. 1990: 1925: 1885: 1845: 1786: 1765:(2): 293–305. 1745: 1688: 1637: 1602: 1546: 1489: 1440: 1381: 1332: 1275: 1240: 1175: 1123: 1088: 1053: 1038: 1012: 945: 918:(2): 103–109. 901: 899: 896: 895: 894: 889: 884: 879: 874: 869: 864: 857: 854: 844: 841: 831: 828: 826: 823: 818:supramolecular 806:supramolecular 797: 794: 772: 769: 730:benzodiazepine 719: 686: 683: 677: 674: 668: 665: 652: 648: 645: 639: 627: 624: 622: 619: 479: 476: 438: 435: 412: 409: 384:Main article: 381: 378: 361: 358: 339: 336: 335: 334: 331: 328: 314: 311: 298: 295: 217: 214: 213: 212: 209: 205: 200: 197: 196: 195: 192: 189: 184: 181: 179: 176: 116:cell signaling 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3222: 3211: 3208: 3206: 3203: 3202: 3200: 3184: 3180: 3179: 3174: 3171: 3167: 3166: 3161: 3158: 3154: 3153: 3148: 3145: 3141: 3140: 3135: 3132: 3128: 3127: 3122: 3119: 3115: 3114: 3109: 3106: 3102: 3101: 3096: 3095: 3093: 3089: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3059: 3057: 3053: 3047: 3044: 3042: 3041:Enzyme family 3039: 3037: 3034: 3032: 3029: 3028: 3026: 3022: 3016: 3013: 3011: 3008: 3006: 3005:Cooperativity 3003: 3001: 2998: 2997: 2995: 2991: 2985: 2982: 2980: 2977: 2975: 2972: 2970: 2967: 2965: 2964:Oxyanion hole 2962: 2960: 2957: 2955: 2952: 2950: 2947: 2946: 2944: 2940: 2936: 2929: 2924: 2922: 2917: 2915: 2910: 2909: 2906: 2900: 2896: 2893: 2892: 2888: 2880: 2876: 2871: 2866: 2861: 2856: 2852: 2848: 2843: 2838: 2834: 2830: 2826: 2819: 2816: 2811: 2807: 2802: 2797: 2793: 2789: 2785: 2781: 2777: 2770: 2767: 2762: 2758: 2753: 2748: 2743: 2738: 2734: 2730: 2725: 2720: 2716: 2712: 2708: 2701: 2698: 2693: 2689: 2684: 2679: 2674: 2669: 2665: 2661: 2657: 2650: 2647: 2642: 2638: 2633: 2628: 2624: 2620: 2616: 2612: 2608: 2601: 2598: 2593: 2589: 2584: 2579: 2574: 2569: 2565: 2561: 2557: 2553: 2549: 2542: 2539: 2534: 2530: 2526: 2522: 2518: 2514: 2506: 2503: 2498: 2494: 2489: 2484: 2479: 2474: 2470: 2466: 2462: 2455: 2452: 2447: 2443: 2438: 2433: 2428: 2423: 2419: 2415: 2411: 2407: 2403: 2396: 2393: 2388: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2353: 2350: 2345: 2341: 2336: 2331: 2326: 2321: 2317: 2313: 2309: 2302: 2299: 2294: 2290: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2253: 2250: 2245: 2241: 2237: 2233: 2229: 2225: 2218: 2215: 2210: 2206: 2201: 2196: 2192: 2188: 2184: 2180: 2176: 2169: 2166: 2161: 2157: 2153: 2149: 2146:(9): 723–32. 2145: 2141: 2134: 2131: 2126: 2122: 2118: 2114: 2110: 2106: 2099: 2096: 2091: 2087: 2083: 2079: 2075: 2071: 2064: 2061: 2056: 2052: 2048: 2044: 2040: 2036: 2029: 2026: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1991: 1986: 1980: 1972: 1968: 1963: 1958: 1953: 1948: 1944: 1940: 1936: 1929: 1926: 1921: 1917: 1913: 1909: 1905: 1901: 1894: 1892: 1890: 1886: 1881: 1877: 1873: 1869: 1865: 1861: 1854: 1852: 1850: 1846: 1841: 1837: 1832: 1827: 1823: 1819: 1814: 1809: 1805: 1801: 1797: 1790: 1787: 1782: 1778: 1773: 1768: 1764: 1760: 1756: 1749: 1746: 1741: 1737: 1732: 1727: 1723: 1719: 1715: 1711: 1707: 1703: 1699: 1692: 1689: 1684: 1680: 1675: 1670: 1665: 1660: 1656: 1652: 1648: 1641: 1638: 1633: 1629: 1625: 1621: 1617: 1613: 1606: 1603: 1598: 1594: 1589: 1584: 1580: 1576: 1572: 1568: 1564: 1557: 1555: 1553: 1551: 1547: 1542: 1538: 1533: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1493: 1490: 1485: 1481: 1476: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1441: 1436: 1432: 1427: 1422: 1417: 1412: 1408: 1404: 1400: 1396: 1392: 1385: 1382: 1377: 1373: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1333: 1328: 1324: 1319: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1203: 1198: 1195:(3): 031001. 1194: 1190: 1186: 1179: 1176: 1171: 1167: 1162: 1157: 1153: 1149: 1145: 1141: 1137: 1130: 1128: 1124: 1119: 1115: 1111: 1107: 1104:(1): 365–85. 1103: 1099: 1092: 1089: 1084: 1080: 1076: 1072: 1068: 1064: 1057: 1054: 1049: 1045: 1041: 1039:9780123812629 1035: 1031: 1027: 1023: 1016: 1013: 1008: 1004: 1000: 996: 991: 986: 981: 976: 972: 968: 964: 960: 956: 949: 946: 941: 937: 933: 929: 925: 921: 917: 913: 906: 903: 897: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 867:Anharmonicity 865: 863: 860: 859: 855: 853: 851: 842: 840: 838: 829: 824: 822: 819: 814: 811: 807: 803: 795: 793: 791: 786: 782: 778: 770: 768: 766: 762: 757: 755: 751: 747: 743: 739: 735: 731: 727: 723: 714: 712: 708: 704: 700: 696: 692: 684: 682: 675: 673: 666: 664: 661: 658: 646: 644: 637: 633: 625: 620: 618: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 560: 556: 552: 547: 545: 541: 537: 534: 530: 526: 522: 518: 514: 510: 505: 503: 499: 495: 493: 489: 485: 477: 475: 472: 468: 464: 460: 456: 453:molecules to 452: 448: 444: 436: 434: 432: 428: 424: 420: 419: 410: 408: 406: 402: 397: 392: 387: 379: 377: 375: 371: 367: 359: 357: 355: 351: 347: 345: 337: 332: 329: 326: 325: 324: 321: 312: 310: 308: 304: 296: 294: 292: 291:conformations 288: 284: 283:conformations 280: 276: 272: 268: 264: 260: 257:put forth by 256: 253: 244: 239: 234: 227: 222: 215: 210: 206: 203: 202: 198: 193: 190: 187: 186: 182: 177: 175: 172: 167: 166:Ancient Greek 163: 159: 154: 149: 144: 139: 136: 135:Ancient Greek 132: 127: 125: 121: 117: 113: 109: 104: 102: 98: 94: 90: 86: 82: 77: 75: 71: 67: 63: 59: 55: 51: 47: 43: 34: 30: 19: 3178:Translocases 3175: 3162: 3149: 3136: 3123: 3113:Transferases 3110: 3097: 2999: 2954:Binding site 2832: 2828: 2818: 2783: 2779: 2769: 2714: 2710: 2700: 2663: 2659: 2649: 2614: 2610: 2600: 2555: 2551: 2541: 2516: 2513:Biochemistry 2512: 2505: 2468: 2464: 2454: 2409: 2405: 2395: 2365:(1): 59–69. 2362: 2358: 2352: 2315: 2311: 2301: 2266: 2262: 2252: 2227: 2223: 2217: 2182: 2178: 2168: 2143: 2139: 2133: 2108: 2104: 2098: 2073: 2069: 2063: 2038: 2034: 2028: 2003: 1999: 1993: 1979:cite journal 1942: 1938: 1928: 1903: 1899: 1863: 1859: 1803: 1799: 1789: 1762: 1758: 1748: 1708:(1): 16950. 1705: 1701: 1691: 1654: 1650: 1640: 1615: 1611: 1605: 1570: 1566: 1506: 1502: 1492: 1460:(2): 104–7. 1457: 1453: 1443: 1398: 1394: 1384: 1349: 1345: 1335: 1292: 1288: 1278: 1256:(9): 490–7. 1253: 1249: 1243: 1192: 1188: 1178: 1143: 1139: 1101: 1098:Biochemistry 1097: 1091: 1066: 1062: 1056: 1021: 1015: 962: 958: 948: 915: 911: 905: 862:ASD database 846: 833: 815: 809: 799: 784: 774: 758: 738:potentiating 715: 688: 685:Pharmacology 679: 670: 662: 650: 647:Heterotropic 629: 548: 506: 496: 483: 481: 470: 442: 440: 416: 414: 389: 363: 352: 348: 341: 316: 300: 269:, or by the 251: 249: 161: 147: 137: 130: 128: 105: 100: 96: 84: 80: 78: 73: 53: 49: 46:pharmacology 42:biochemistry 39: 29: 2949:Active site 1509:(1): 1986. 1352:: 585–609. 802:noncovalent 777:drug target 711:orthosteric 699:active site 557:within the 536:spinal cord 527:inhibitory 463:active site 320:induced fit 226:Active site 183:Orthosteric 112:feedforward 74:orthosteric 66:active site 3199:Categories 3152:Isomerases 3126:Hydrolases 2993:Regulation 2842:1801.03681 2724:1706.02327 1813:2107.04318 1618:: 209–32. 1202:1907.13371 1069:: 88–118. 898:References 790:morpheeins 761:cinacalcet 750:flumazenil 626:Homotropic 611:glycolysis 563:glycolysis 540:brain stem 513:convulsant 509:strychnine 455:hemoglobin 199:Allosteric 162:orthostery 126:activity. 18:Allosteric 3031:EC number 2780:Structure 1235:199001124 1227:0034-6861 765:maraviroc 632:substrate 599:substrate 533:mammalian 459:substrate 423:bacterium 344:morpheein 303:MWC model 255:MWC model 252:concerted 238:Inhibitor 233:Substrate 131:allostery 129:The term 3205:Proteins 3055:Kinetics 2979:Cofactor 2942:Activity 2879:29712824 2810:27066750 2761:30530700 2692:22586084 2641:23139645 2592:19351898 2533:18842003 2497:23197839 2446:21935347 2387:67749580 2379:12483203 2344:23095452 2293:21051350 2244:22419667 2209:20737073 2160:16171315 2125:27431438 2090:15186190 2055:23463705 2020:11714258 1971:21643557 1920:17009927 1906:: 1–51. 1880:15494038 1840:10138267 1781:23582321 1740:26592762 1683:26068232 1597:24456211 1541:29215013 1484:25699154 1435:26594108 1376:22577828 1327:24740064 1270:16023348 1170:27766843 1083:14343300 1048:21570668 999:27253437 940:12591175 856:See also 742:Diazepam 722:receptor 595:affinity 544:affinity 525:synaptic 396:effector 287:subunits 275:Koshland 267:Changeux 208:present. 168:orthós ( 108:feedback 62:receptor 3165:Ligases 2935:Enzymes 2870:5960285 2847:Bibcode 2801:4883016 2752:6310864 2729:Bibcode 2683:3365145 2632:3489502 2583:2672494 2560:Bibcode 2488:3535651 2437:3174156 2414:Bibcode 2335:3562710 2318:: 273. 2284:3013650 2200:3016456 1962:3107518 1945:: 1–6. 1818:Bibcode 1731:4655335 1710:Bibcode 1674:4490483 1588:3982195 1532:5719368 1511:Bibcode 1475:4329591 1426:4652859 1403:Bibcode 1395:Entropy 1367:3935618 1318:4224315 1297:Bibcode 1207:Bibcode 1161:5156960 1118:5938952 1007:3610740 990:4890769 967:Bibcode 932:6544679 636:protein 615:glucose 521:Glycine 492:2,3-BPG 153:στερεός 148:stereos 3139:Lyases 2877:  2867:  2808:  2798:  2759:  2749:  2690:  2680:  2639:  2629:  2590:  2580:  2531:  2495:  2485:  2444:  2434:  2385:  2377:  2342:  2332:  2291:  2281:  2242:  2207:  2197:  2158:  2123:  2088:  2053:  2018:  1969:  1959:  1918:  1878:  1838:  1779:  1738:  1728:  1681:  1671:  1632:237460 1630:  1595:  1585:  1539:  1529:  1482:  1472:  1433:  1423:  1374:  1364:  1325:  1315:  1289:Nature 1268:  1233:  1225:  1168:  1158:  1116:  1081:  1046:  1036:  1005:  997:  987:  938:  930:  655:, and 488:ligand 451:oxygen 447:ligand 307:ligand 265:, and 243:Enzyme 216:Models 124:enzyme 120:cell's 58:enzyme 3091:Types 2837:arXiv 2719:arXiv 2383:S2CID 1808:arXiv 1231:S2CID 1197:arXiv 1003:S2CID 936:S2CID 752:is a 744:is a 697:(an " 621:Types 577:into 471:their 263:Wyman 259:Monod 171:ὀρθός 143:ἄλλος 138:allos 3183:list 3176:EC7 3170:list 3163:EC6 3157:list 3150:EC5 3144:list 3137:EC4 3131:list 3124:EC3 3118:list 3111:EC2 3105:list 3098:EC1 2875:PMID 2806:PMID 2757:PMID 2688:PMID 2637:PMID 2588:PMID 2529:PMID 2493:PMID 2442:PMID 2375:PMID 2340:PMID 2289:PMID 2240:PMID 2205:PMID 2156:PMID 2121:PMID 2086:PMID 2051:PMID 2016:PMID 1985:link 1967:PMID 1916:PMID 1876:PMID 1836:PMID 1777:PMID 1759:Cell 1736:PMID 1679:PMID 1628:PMID 1593:PMID 1537:PMID 1480:PMID 1431:PMID 1372:PMID 1323:PMID 1266:PMID 1223:ISSN 1166:PMID 1114:PMID 1079:PMID 1044:PMID 1034:ISBN 995:PMID 928:PMID 732:and 718:GABA 605:and 597:for 538:and 511:, a 429:and 421:, a 342:The 241:E – 236:D – 231:C – 224:A – 52:(or 44:and 2865:PMC 2855:doi 2833:115 2796:PMC 2788:doi 2747:PMC 2737:doi 2715:115 2678:PMC 2668:doi 2664:109 2627:PMC 2619:doi 2578:PMC 2568:doi 2556:106 2521:doi 2483:PMC 2473:doi 2469:109 2432:PMC 2422:doi 2367:doi 2330:PMC 2320:doi 2279:PMC 2271:doi 2232:doi 2195:PMC 2187:doi 2148:doi 2113:doi 2078:doi 2074:104 2043:doi 2008:doi 1957:PMC 1947:doi 1908:doi 1868:doi 1826:doi 1767:doi 1763:153 1726:PMC 1718:doi 1669:PMC 1659:doi 1620:doi 1583:PMC 1575:doi 1571:281 1527:PMC 1519:doi 1470:PMC 1462:doi 1421:PMC 1411:doi 1362:PMC 1354:doi 1313:PMC 1305:doi 1293:508 1258:doi 1215:doi 1156:PMC 1148:doi 1106:doi 1071:doi 1026:doi 985:PMC 975:doi 920:doi 607:ATP 587:ATP 583:PFK 581:. 573:of 567:PFK 551:ATP 531:in 431:G6P 427:AMP 394:an 83:or 60:or 48:an 3201:: 2873:. 2863:. 2853:. 2845:. 2831:. 2827:. 2804:. 2794:. 2784:24 2782:. 2778:. 2755:. 2745:. 2735:. 2727:. 2713:. 2709:. 2686:. 2676:. 2662:. 2658:. 2635:. 2625:. 2613:. 2609:. 2586:. 2576:. 2566:. 2554:. 2550:. 2527:. 2517:47 2515:. 2491:. 2481:. 2467:. 2463:. 2440:. 2430:. 2420:. 2408:. 2404:. 2381:. 2373:. 2363:10 2361:. 2338:. 2328:. 2316:13 2314:. 2310:. 2287:. 2277:. 2267:39 2265:. 2261:. 2238:. 2228:51 2226:. 2203:. 2193:. 2183:39 2181:. 2177:. 2154:. 2144:38 2142:. 2119:. 2109:14 2107:. 2084:. 2072:. 2049:. 2039:19 2037:. 2014:. 2004:34 2002:. 1981:}} 1977:{{ 1965:. 1941:. 1937:. 1914:. 1904:47 1902:. 1888:^ 1874:. 1864:32 1862:. 1848:^ 1834:. 1824:. 1816:. 1804:18 1802:. 1798:. 1775:. 1761:. 1757:. 1734:. 1724:. 1716:. 1704:. 1700:. 1677:. 1667:. 1655:16 1653:. 1649:. 1626:. 1616:44 1614:. 1591:. 1581:. 1569:. 1565:. 1549:^ 1535:. 1525:. 1517:. 1505:. 1501:. 1478:. 1468:. 1456:. 1452:. 1429:. 1419:. 1409:. 1399:17 1397:. 1393:. 1370:. 1360:. 1350:41 1348:. 1344:. 1321:. 1311:. 1303:. 1291:. 1287:. 1264:. 1254:30 1252:. 1229:. 1221:. 1213:. 1205:. 1193:91 1191:. 1187:. 1164:. 1154:. 1144:12 1142:. 1138:. 1126:^ 1112:. 1100:. 1077:. 1067:12 1065:. 1042:. 1032:. 1001:. 993:. 983:. 973:. 963:12 961:. 957:. 934:. 926:. 916:11 914:. 792:. 767:. 756:. 519:. 407:. 261:, 103:. 3185:) 3181:( 3172:) 3168:( 3159:) 3155:( 3146:) 3142:( 3133:) 3129:( 3120:) 3116:( 3107:) 3103:( 2927:e 2920:t 2913:v 2881:. 2857:: 2849:: 2839:: 2812:. 2790:: 2763:. 2739:: 2731:: 2721:: 2694:. 2670:: 2643:. 2621:: 2615:8 2594:. 2570:: 2562:: 2535:. 2523:: 2499:. 2475:: 2448:. 2424:: 2416:: 2410:7 2389:. 2369:: 2346:. 2322:: 2295:. 2273:: 2246:. 2234:: 2211:. 2189:: 2162:. 2150:: 2127:. 2115:: 2092:. 2080:: 2057:. 2045:: 2022:. 2010:: 1987:) 1973:. 1949:: 1943:1 1922:. 1910:: 1882:. 1870:: 1842:. 1828:: 1820:: 1810:: 1783:. 1769:: 1742:. 1720:: 1712:: 1706:5 1685:. 1661:: 1634:. 1622:: 1599:. 1577:: 1543:. 1521:: 1513:: 1507:8 1486:. 1464:: 1458:6 1437:. 1413:: 1405:: 1378:. 1356:: 1329:. 1307:: 1299:: 1272:. 1260:: 1237:. 1217:: 1209:: 1199:: 1172:. 1150:: 1120:. 1108:: 1102:5 1085:. 1073:: 1050:. 1028:: 1009:. 977:: 969:: 942:. 922:: 810:G 720:A 653:2 640:2 601:( 150:( 140:( 20:)

Index

Allosteric

biochemistry
pharmacology
enzyme
receptor
active site
endogenous ligand
conformational change
protein dynamics
feedback
feedforward
cell signaling
cell's
enzyme
Ancient Greek
ἄλλος
στερεός
substrate presentation
Ancient Greek
ὀρθός

Active site
Substrate
Inhibitor
Enzyme
MWC model
Monod
Wyman
Changeux

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.