Knowledge

Almost disjoint sets

Source 📝

284: 483: 357: 612: 90: 655: 746: 521: 200: 137:
sets in the collection are almost disjoint. Often the prefix 'pairwise' is dropped, and a pairwise almost disjoint collection is simply called "almost disjoint".
372: 532: 551:. Here are some alternative definitions of "almost disjoint" that are sometimes used (similar definitions apply to infinite collections): 904: 859: 896: 847: 837:
Vaughan, Jerry E. (1990). "Chapter 11: Small uncountable cardinals and topology". In van Mill, Jan; Reed, George M. (eds.).
310: 572: 50: 304: } is an almost disjoint collection consisting of more than one set, then clearly its intersection is finite: 32:
is small in some sense; different definitions of "small" will result in different definitions of "almost disjoint".
926: 503:
The possible cardinalities of a maximal almost disjoint family (commonly referred to as a MAD family) on the set
29: 627: 544: 878:(January 12, 2010). "Chapter 6 : Combinatorial Cardinal Characteristics of the Continuum". In 811:
Jech, R. (2006) "Set Theory (the third millennium edition, revised and expanded)", Springer, p. 118
710: 851: 838: 900: 855: 759: 21: 799:
Kunen, K. (1980), "Set Theory; an introduction to independence proofs", North Holland, p. 47
506: 883: 363: 279:{\displaystyle A_{i}\neq A_{j}\quad \implies \quad \left|A_{i}\cap A_{j}\right|<\infty .} 879: 820: 528: 290: 116: 108: 111:
and are almost disjoint, because their intersection is the finite set {1}. However, the
679: 524: 44:. In this case, two sets are almost disjoint if their intersection is finite, i.e. if 920: 875: 683: 619: 112: 563:
are almost disjoint if the cardinality of their intersection is less than κ, i.e. if
661:
is simply the definition of almost disjoint given above, where the intersection of
478:{\displaystyle \{\{1,2,3,\ldots \},\{2,3,4,\ldots \},\{3,4,5,\ldots \},\ldots \}} 887: 775: 548: 100: 17: 41: 543:
Sometimes "almost disjoint" is used in some other sense, or in the sense of
489: 145: 125:
This definition extends to any collection of sets. A collection of sets is
295:
is almost disjoint, because any two of them only meet at the origin. If {
122:
are not almost disjoint, because their intersection is infinite.
823:. The Integers and Topology. In K. Kunen and J.E. Vaughan (eds) 701:
are almost disjoint if their intersection is a null-set, i.e. if
527:
has been the object of intense study. The minimum infinite such
289:
For example, the collection of all lines through the origin in
713: 630: 575: 509: 375: 313: 203: 53: 618:The case of κ = 1 is simply the definition of 740: 649: 606: 515: 500:two distinct sets in this collection is infinite. 477: 352:{\displaystyle \bigcap _{i\in I}A_{i}<\infty .} 351: 278: 84: 40:The most common choice is to take "small" to mean 107:, and '< ∞' means 'finite'.) For example, the 607:{\displaystyle \left|A\cap B\right|<\kappa .} 366:is not true—the intersection of the collection 85:{\displaystyle \left|A\cap B\right|<\infty .} 496:almost disjoint; in fact, the intersection of 774:are almost disjoint if their intersection is 8: 555:Let κ be any cardinal number. Then two sets 472: 463: 439: 433: 409: 403: 379: 376: 232: 228: 712: 641: 629: 574: 533:cardinal characteristics of the continuum 508: 374: 334: 318: 312: 256: 243: 221: 208: 202: 52: 792: 182: } is almost disjoint if for any 165:be a set. Then the collection of sets { 807: 805: 7: 825:Handbook of Set-Theoretic Topology. 650:{\displaystyle \kappa =\aleph _{0}} 638: 343: 270: 76: 14: 848:North-Holland Publishing Company 827:North-Holland, Amsterdam, 1984. 233: 227: 729: 717: 229: 1: 741:{\displaystyle m(A\cap B)=0.} 943: 840:Open Problems in Topology 531:is one of the classical 492:, but the collection is 131:mutually almost disjoint 127:pairwise almost disjoint 516:{\displaystyle \omega } 889:Handbook of Set Theory 742: 651: 608: 517: 479: 353: 280: 99: |' denotes the 86: 743: 652: 609: 518: 480: 354: 281: 87: 899:. pp. 395–490. 711: 628: 573: 549:topological category 507: 373: 311: 201: 51: 762:. Then two subsets 689:. Then two subsets 738: 647: 604: 513: 475: 349: 329: 276: 82: 884:Kanamori, Akihiro 760:topological space 314: 934: 927:Families of sets 911: 910: 894: 880:Foreman, Matthew 872: 866: 865: 845: 834: 828: 818: 812: 809: 800: 797: 747: 745: 744: 739: 680:complete measure 656: 654: 653: 648: 646: 645: 613: 611: 610: 605: 594: 590: 522: 520: 519: 514: 484: 482: 481: 476: 358: 356: 355: 350: 339: 338: 328: 285: 283: 282: 277: 266: 262: 261: 260: 248: 247: 226: 225: 213: 212: 117:rational numbers 109:closed intervals 91: 89: 88: 83: 72: 68: 942: 941: 937: 936: 935: 933: 932: 931: 917: 916: 915: 914: 907: 895:. Vol. 1. 892: 874: 873: 869: 862: 843: 836: 835: 831: 821:Eric van Douwen 819: 815: 810: 803: 798: 794: 789: 709: 708: 637: 626: 625: 580: 576: 571: 570: 541: 525:natural numbers 505: 504: 371: 370: 330: 309: 308: 303: 252: 239: 238: 234: 217: 204: 199: 198: 173: 164: 148:, and for each 115:and the set of 58: 54: 49: 48: 38: 26:almost disjoint 12: 11: 5: 940: 938: 930: 929: 919: 918: 913: 912: 905: 876:Blass, Andreas 867: 860: 829: 813: 801: 791: 790: 788: 785: 784: 783: 751: 750: 749: 748: 737: 734: 731: 728: 725: 722: 719: 716: 703: 702: 671: 670: 659: 658: 657: 644: 640: 636: 633: 622:; the case of 616: 615: 614: 603: 600: 597: 593: 589: 586: 583: 579: 565: 564: 545:measure theory 540: 539:Other meanings 537: 512: 486: 485: 474: 471: 468: 465: 462: 459: 456: 453: 450: 447: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 381: 378: 360: 359: 348: 345: 342: 337: 333: 327: 324: 321: 317: 299: 287: 286: 275: 272: 269: 265: 259: 255: 251: 246: 242: 237: 231: 224: 220: 216: 211: 207: 169: 160: 140:Formally, let 93: 92: 81: 78: 75: 71: 67: 64: 61: 57: 37: 34: 13: 10: 9: 6: 4: 3: 2: 939: 928: 925: 924: 922: 908: 906:1-4020-4843-2 902: 898: 891: 890: 885: 881: 877: 871: 868: 863: 861:0-444-88768-7 857: 853: 849: 846:. Amsterdam: 842: 841: 833: 830: 826: 822: 817: 814: 808: 806: 802: 796: 793: 786: 781: 777: 773: 769: 765: 761: 757: 753: 752: 735: 732: 726: 723: 720: 714: 707: 706: 705: 704: 700: 696: 692: 688: 685: 684:measure space 681: 677: 673: 672: 668: 664: 660: 642: 634: 631: 624: 623: 621: 620:disjoint sets 617: 601: 598: 595: 591: 587: 584: 581: 577: 569: 568: 567: 566: 562: 558: 554: 553: 552: 550: 546: 538: 536: 534: 530: 526: 510: 501: 499: 495: 491: 469: 466: 460: 457: 454: 451: 448: 445: 442: 436: 430: 427: 424: 421: 418: 415: 412: 406: 400: 397: 394: 391: 388: 385: 382: 369: 368: 367: 365: 362:However, the 346: 340: 335: 331: 325: 322: 319: 315: 307: 306: 305: 302: 298: 294: 293: 273: 267: 263: 257: 253: 249: 244: 240: 235: 222: 218: 214: 209: 205: 197: 196: 195: 193: 189: 185: 181: 177: 172: 168: 163: 159: 155: 151: 147: 143: 138: 136: 132: 128: 123: 121: 118: 114: 113:unit interval 110: 106: 102: 98: 79: 73: 69: 65: 62: 59: 55: 47: 46: 45: 43: 35: 33: 31: 27: 23: 19: 888: 870: 839: 832: 824: 816: 795: 779: 771: 767: 763: 755: 698: 694: 690: 686: 675: 666: 662: 560: 556: 542: 502: 497: 493: 487: 361: 300: 296: 291: 288: 191: 187: 183: 179: 175: 170: 166: 161: 157: 153: 149: 141: 139: 134: 130: 126: 124: 119: 104: 96: 94: 39: 30:intersection 25: 15: 850:. pp.  133:if any two 101:cardinality 18:mathematics 787:References 669:is finite. 36:Definition 724:∩ 639:ℵ 632:κ 599:κ 585:∩ 511:ω 470:… 461:… 431:… 401:… 344:∞ 323:∈ 316:⋂ 271:∞ 250:∩ 230:⟹ 215:≠ 146:index set 95:(Here, '| 77:∞ 63:∩ 28:if their 921:Category 897:Springer 886:(eds.). 529:cardinal 364:converse 174: : 135:distinct 852:196–218 523:of the 903:  858:  776:meagre 156:, let 144:be an 42:finite 20:, two 893:(PDF) 844:(PDF) 758:be a 682:on a 678:be a 490:empty 901:ISBN 856:ISBN 766:and 754:Let 693:and 674:Let 665:and 596:< 559:and 341:< 268:< 186:and 74:< 24:are 22:sets 778:in 770:of 697:of 547:or 498:any 494:not 488:is 190:in 178:in 152:in 129:or 103:of 16:In 923:: 882:; 854:. 804:^ 736:0. 535:. 194:, 909:. 864:. 782:. 780:X 772:X 768:B 764:A 756:X 733:= 730:) 727:B 721:A 718:( 715:m 699:X 695:B 691:A 687:X 676:m 667:B 663:A 643:0 635:= 602:. 592:| 588:B 582:A 578:| 561:B 557:A 473:} 467:, 464:} 458:, 455:5 452:, 449:4 446:, 443:3 440:{ 437:, 434:} 428:, 425:4 422:, 419:3 416:, 413:2 410:{ 407:, 404:} 398:, 395:3 392:, 389:2 386:, 383:1 380:{ 377:{ 347:. 336:i 332:A 326:I 320:i 301:i 297:A 292:R 274:. 264:| 258:j 254:A 245:i 241:A 236:| 223:j 219:A 210:i 206:A 192:I 188:j 184:i 180:I 176:i 171:i 167:A 162:i 158:A 154:I 150:i 142:I 120:Q 105:X 97:X 80:. 70:| 66:B 60:A 56:|

Index

mathematics
sets
intersection
finite
cardinality
closed intervals
unit interval
rational numbers
index set
R
converse
empty
natural numbers
cardinal
cardinal characteristics of the continuum
measure theory
topological category
disjoint sets
complete measure
measure space
topological space
meagre


Eric van Douwen
Open Problems in Topology
North-Holland Publishing Company
196–218
ISBN
0-444-88768-7

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.