Knowledge

Time-domain astronomy

Source 📝

1094: 1118: 1070: 1106: 1082: 31: 903:
Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Wyder, T. K.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Price, P. A.; Tonry, J. L. (2013). "Thegalextime Domain Survey. I. Selection
407:
detectors started to be available to the astronomical community. As telescopes with larger fields of view and larger detectors come into use in the 1990s, first massive and regular survey observations were initiated - pioneered by the gravitational microlensing surveys such as
281:
became more used when digital photography eased the normalization of pairs of images. Due to large fields of view required, the time-domain work involves storing and transferring a huge amount of data. This includes
164:
or phenomena whose duration of presentation may be from milliseconds to days, weeks, or even several years. This is in contrast to the timescale of the millions or billions of years during which the
518:
satellite will observe a field of more than 200 square degrees continuously in an ultraviolet wavelength that is particularly important for detecting supernovae within minutes of their occurrence.
416:. These efforts, beside the discovery of the microlensing events itself, resulted in the orders of magnitude more variable stars known to mankind. Subsequent, dedicated sky surveys such as the 428:, focused on expanding the coverage of the sky monitoring to fainter objects, more optical filters and better positional and proper motions measurement capabilities. In 2022, the 585: 365:, who studied it until it faded after two years. Even though telescopes made it possible to see more distant events, their small fields of view – typically less than 1 650:
Graham, Matthew J.S.; G. Djorgovski; Ashish Mahabal; Ciro Donalek; Andrew Drake; Giuseppe Longo (August 2012). "Data challenges of time domain astronomy".
543: 491: 409: 330: 87: 538: 893: 111: 305:, which studies the variability of brightness and other parameters of objects in the universe in different time scales." Also the 2017 1138: 487: 425: 507: 353:
Galaxy, were very rare, and sometimes hundreds of years apart. However, such events were recorded in antiquity, such as the
695: 503: 314: 107: 1143: 467: 393: 290: 812:"The Gravitational-wave Optical Transient Observer (GOTO): Prototype performance and prospects for transient science" 1060: 533: 216: 201: 761: 626: 553: 475: 417: 322: 227: 119: 707: 528: 294: 103: 971: 429: 197: 115: 83: 62:. Changes over time may be due to movements or changes in the object itself. Common targets included are 499: 404: 748: 995: 923: 885: 594: 223: 1122: 378: 247: 161: 150: 54: 49: 1110: 1098: 1045: 1027: 939: 913: 823: 677: 659: 318: 1019: 1011: 889: 558: 483: 421: 278: 270: 219: 134: 67: 273:, automatic classification of transient events, and rapid notification of interested people. 1074: 1003: 931: 853: 833: 669: 602: 389: 274: 251: 231: 721: 548: 511: 463: 326: 306: 298: 193: 177: 459:) increases the amount of information that may be obtained when a transient is studied. 1044:
Sidoli, L. (2008). "Transient outburst mechanisms in Supergiant Fast X-ray Transients".
999: 927: 598: 735: 370: 208: 141:, and those exhibiting changing behavior or type. Other causes of time variability are 138: 17: 1132: 1031: 935: 413: 392:. Old astronomical plates exposed from the 1880s through the early 1990s held by the 366: 211:
and their changes on the timescale of minutes to decades. Variability studied can be
146: 943: 798: 786: 681: 474:
and scintillation. Projects to look for transients in X-ray and gamma rays include
357:
observed by Chinese, Japanese and Arab astronomers, and the event in 1572 known as "
309:
was awarded to the three leading researchers in the field of time-domain astronomy:
1086: 369:– meant that the chances of looking in the right place at the right time were low. 310: 263: 243: 59: 879: 452: 444: 362: 283: 277:
have long been used to detect differences between two photographic plates, and
673: 607: 580: 470:
is looking for radio transients. Radio time domain studies have long included
436: 374: 189: 126: 75: 1015: 1007: 838: 811: 440: 350: 346: 342: 259: 181: 142: 99: 95: 91: 63: 39: 1023: 958: 515: 495: 448: 173: 165: 35: 479: 358: 354: 255: 239: 52:
change with time. Though the study may be said to begin with Galileo's
797:
200 000 variables toward the Galactic bulge, P. Woźniak et al. (2002)
627:"Transient Studies have played a key role in the history of Astronomy" 514:
are a well known high energy electromagnetic transient. The proposed
1038: 904:
and Classification of over a Thousand Ultraviolet Variable Sources".
471: 384:
Historically time domain astronomy has come to include appearance of
79: 286:
techniques, classification, and the handling of heterogeneous data.
30: 1081: 828: 785:
68 000 variables in the Magellanic Clouds: K. Żebruń et al. (2001)
377:
with wide field were invented in the 20th century, but mostly used
1050: 918: 749:
Lecture by Prof. Carolin Crawford, 2014, “The Transient Universe”
664: 456: 397: 385: 289:
The importance of time-domain astronomy was recognized in 2018 by
154: 29: 185: 169: 71: 58:, the term now refers especially to variable objects beyond the 972:"possible present URL of Centre for Time-Domain Informatics" 881:
Gamma-Ray Bursts: The brightest explosions in the Universe
303:
new field of astrophysics research, time-domain astronomy
207:
Time-domain astronomy also involves long-term studies of
133:, as well as various types of variable stars, including 986:
Bernardini, E. (2011). "Astronomy in the Time Domain".
176:
have evolved. Singularly, the term is used for violent
129:
astronomical events, often shortened by astronomers to
403:
The interest in transients has intensified when large
1058: 432:
began looking for collisions between neutron stars.
430:
Gravitational-wave Optical Transient Observer (GOTO)
586:
Proceedings of the International Astronomical Union
854:"Multi-Messenger Time Domain Astronomy Conference" 27:Study of how astronomical objects change with time 816:Monthly Notices of the Royal Astronomical Society 435:The ability of modern instruments to observe in 301:for "pioneering contribution to the growth of a 269:Modern time-domain astronomy surveys often uses 762:"A Big Step Backward for Time Domain Astronomy" 620: 618: 8: 345:, transient events that were visible to the 86:. Visible light time domain studies include 544:List of exoplanets detected by microlensing 1049: 917: 878:Vedrenne, G. & Atteia, J.-L. (2009). 837: 827: 663: 606: 410:Optical Gravitational Lensing Experiment 331:Optical Gravitational Lensing Experiment 1065: 799:Acta Astronomica, Vol. 52 (2002), No. 2 787:Acta Astronomica, Vol. 51 (2001), No. 4 571: 539:List of gravitational wave observations 118:and in a near future the LSST at the 7: 959:"Centre for Time-Domain Informatics" 625:Schmidt, Brian (28 September 2011). 652:Distributed and Parallel Databases 25: 760:Drout, Maria (12 November 2012). 264:gravitational microlensing events 1116: 1104: 1092: 1080: 1068: 579:Schmidt, Brian (20 April 2012). 508:Space Variable Objects Monitor 125:Time-domain astronomy studies 1: 696:Foundation for Polish Science 504:Swift Gamma-Ray Burst Mission 315:Swift Gamma-Ray Burst Mission 1039:SIMBAD Astronomical Database 581:"Optical Transient Surveys" 396:are being digitized by the 394:Harvard College Observatory 390:Cepheid-type variable stars 388:and variable brightness of 291:German Astronomical Society 1160: 936:10.1088/0004-637X/766/1/60 534:Gravitational microlensing 349:, from within or near the 202:gravitational microlensing 906:The Astrophysical Journal 810:Steeghs, D. T. H (2022). 674:10.1007/s10619-012-7101-7 608:10.1017/S1743921312000129 554:Cataclysmic variable star 476:Cherenkov Telescope Array 418:Palomar Transient Factory 323:Palomar Transient Factory 120:Vera C. Rubin Observatory 529:List of gamma-ray bursts 381:the unchanging heavens. 341:Before the invention of 295:Karl Schwarzschild Medal 215:, including periodic or 160:Transients characterize 1139:Observational astronomy 1008:10.1126/science.1201365 694:Press release from the 198:tidal disruption events 84:active galactic nuclei 42: 18:Astronomical transient 839:10.1093/mnras/stac013 238:, which results from 224:young stellar objects 46:Time-domain astronomy 33: 722:"Shrinivas Kulkarni" 228:stars with outbursts 168:and their component 162:astronomical objects 50:astronomical objects 48:is the study of how 1144:Astronomical events 1000:2011Sci...331..686B 928:2013ApJ...766...60G 599:2012IAUS..285....9S 55:Letters on Sunspots 319:Shrinivas Kulkarni 271:robotic telescopes 248:planetary transits 151:planetary transits 43: 994:(6018): 686–687. 895:978-3-540-39085-5 738:. 17 August 2021. 736:"Andrzej Udalski" 724:. 17 August 2021. 710:. 17 August 2021. 559:Stellar pulsation 439:invisible to the 420:, the spacecraft 359:Tycho's Supernova 355:supernova in 1054 279:image subtraction 275:Blink comparators 16:(Redirected from 1151: 1121: 1120: 1119: 1109: 1108: 1107: 1097: 1096: 1095: 1085: 1084: 1073: 1072: 1071: 1064: 1055: 1053: 1035: 982: 980: 978: 969: 967: 965: 947: 921: 899: 865: 864: 862: 860: 850: 844: 843: 841: 831: 822:(2): 2405–2422. 807: 801: 795: 789: 783: 777: 776: 774: 772: 757: 751: 746: 740: 739: 732: 726: 725: 718: 712: 711: 704: 698: 692: 686: 685: 667: 658:(5–6): 371–384. 647: 641: 640: 638: 636: 631: 622: 613: 612: 610: 576: 512:Gamma ray bursts 252:stellar rotation 232:asteroseismology 194:gamma-ray bursts 180:events, such as 21: 1159: 1158: 1154: 1153: 1152: 1150: 1149: 1148: 1129: 1128: 1127: 1117: 1115: 1105: 1103: 1093: 1091: 1079: 1069: 1067: 1059: 1043: 985: 976: 974: 970: 963: 961: 957: 954: 902: 896: 877: 874: 872:Further reading 869: 868: 858: 856: 852: 851: 847: 809: 808: 804: 796: 792: 784: 780: 770: 768: 759: 758: 754: 747: 743: 734: 733: 729: 720: 719: 715: 706: 705: 701: 693: 689: 649: 648: 644: 634: 632: 629: 624: 623: 616: 578: 577: 573: 568: 563: 549:X-ray transient 524: 464:radio astronomy 371:Schmidt cameras 339: 327:Andrzej Udalski 307:Dan David Prize 299:Andrzej Udalski 220:pulsating stars 68:pulsating stars 34:Light curve of 28: 23: 22: 15: 12: 11: 5: 1157: 1155: 1147: 1146: 1141: 1131: 1130: 1126: 1125: 1113: 1101: 1089: 1077: 1057: 1056: 1041: 1036: 983: 953: 952:External links 950: 949: 948: 900: 894: 873: 870: 867: 866: 845: 802: 790: 778: 752: 741: 727: 713: 708:"Neil Gehrels" 699: 687: 642: 614: 593:(S285): 9–10. 570: 569: 567: 564: 562: 561: 556: 551: 546: 541: 536: 531: 525: 523: 520: 338: 335: 293:by awarding a 209:variable stars 139:quasi-periodic 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1156: 1145: 1142: 1140: 1137: 1136: 1134: 1124: 1114: 1112: 1102: 1100: 1090: 1088: 1083: 1078: 1076: 1066: 1062: 1052: 1047: 1042: 1040: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 984: 973: 960: 956: 955: 951: 945: 941: 937: 933: 929: 925: 920: 915: 911: 907: 901: 897: 891: 887: 883: 882: 876: 875: 871: 855: 849: 846: 840: 835: 830: 825: 821: 817: 813: 806: 803: 800: 794: 791: 788: 782: 779: 767: 763: 756: 753: 750: 745: 742: 737: 731: 728: 723: 717: 714: 709: 703: 700: 697: 691: 688: 683: 679: 675: 671: 666: 661: 657: 653: 646: 643: 628: 621: 619: 615: 609: 604: 600: 596: 592: 588: 587: 582: 575: 572: 565: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 526: 521: 519: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 469: 465: 460: 458: 454: 450: 446: 442: 438: 433: 431: 427: 423: 419: 415: 414:MACHO Project 411: 406: 401: 399: 395: 391: 387: 382: 380: 376: 372: 368: 367:square degree 364: 360: 356: 352: 348: 344: 336: 334: 332: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 287: 285: 280: 276: 272: 267: 265: 261: 257: 253: 249: 245: 241: 237: 233: 229: 225: 221: 218: 214: 210: 205: 203: 200:, as well as 199: 195: 191: 187: 183: 179: 175: 171: 167: 163: 158: 156: 152: 148: 147:proper motion 144: 140: 136: 132: 128: 123: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 56: 51: 47: 41: 37: 32: 19: 1123:Solar System 991: 987: 975:. Retrieved 962:. Retrieved 909: 905: 880: 857:. Retrieved 848: 819: 815: 805: 793: 781: 769:. Retrieved 765: 755: 744: 730: 716: 702: 690: 655: 651: 645: 633:. Retrieved 590: 584: 574: 461: 434: 402: 383: 340: 311:Neil Gehrels 302: 288: 268: 244:binary stars 235: 234:studies; or 217:semi-regular 212: 206: 159: 130: 124: 60:Solar System 53: 45: 44: 1111:Outer space 1099:Spaceflight 977:4 September 453:ultraviolet 445:radio waves 437:wavelengths 375:astrographs 363:Tycho Brahe 284:data mining 262:stars), or 192:outbursts, 76:flare stars 1133:Categories 829:2110.05539 766:Astrobites 566:References 373:and other 343:telescopes 190:dwarf nova 182:supernovae 131:transients 64:supernovae 1075:Astronomy 1051:0809.3157 1032:206531635 1016:0036-8075 919:1302.1581 912:(1): 60. 665:1208.2480 441:human eye 400:project. 379:to survey 351:Milky Way 347:naked eye 236:extrinsic 213:intrinsic 143:asteroids 127:transient 100:SkyMapper 96:PanSTARRS 92:HAT-South 40:supernova 1024:21212319 944:13841776 886:Springer 682:11166899 522:See also 516:ULTRASAT 496:INTEGRAL 449:infrared 424:and the 412:and the 361:" after 240:eclipses 178:deep-sky 174:universe 166:galaxies 135:periodic 38:after a 36:NGC 2525 1061:Portals 996:Bibcode 988:Science 924:Bibcode 595:Bibcode 480:eROSITA 472:pulsars 337:History 260:spotted 256:pulsars 172:in our 149:stars, 145:, high 80:blazars 1030:  1022:  1014:  942:  892:  680:  386:comets 196:, and 155:comets 1087:Stars 1046:arXiv 1028:S2CID 964:5 May 940:S2CID 914:arXiv 859:5 May 824:arXiv 771:5 May 678:S2CID 660:arXiv 635:5 May 630:(PDF) 488:Fermi 484:AGILE 468:LOFAR 457:X-ray 398:DASCH 186:novae 170:stars 72:novas 1020:PMID 1012:ISSN 979:2022 966:2013 890:ISBN 861:2013 773:2013 637:2013 506:and 500:MAXI 492:HAWC 466:the 426:LSST 422:Gaia 254:(in 242:(in 153:and 116:GOTO 112:CRTS 108:WASP 104:ASAS 88:OGLE 82:and 1004:doi 992:331 932:doi 910:766 834:doi 820:511 670:doi 603:doi 510:. 462:In 405:CCD 333:). 325:), 317:), 297:to 250:), 1135:: 1026:. 1018:. 1010:. 1002:. 990:. 938:. 930:. 922:. 908:. 888:. 884:. 832:. 818:. 814:. 764:. 676:. 668:. 656:30 654:. 617:^ 601:. 589:. 583:. 502:, 498:, 494:, 490:, 486:, 482:, 478:, 455:, 451:, 447:, 266:. 258:, 246:, 230:, 226:, 222:, 204:. 188:, 184:, 157:. 137:, 122:. 114:, 110:, 106:, 102:, 98:, 94:, 90:, 78:, 74:, 70:, 66:, 1063:: 1054:. 1048:: 1034:. 1006:: 998:: 981:. 968:. 946:. 934:: 926:: 916:: 898:. 863:. 842:. 836:: 826:: 775:. 684:. 672:: 662:: 639:. 611:. 605:: 597:: 591:7 443:( 329:( 321:( 313:( 20:)

Index

Astronomical transient

NGC 2525
supernova
astronomical objects
Letters on Sunspots
Solar System
supernovae
pulsating stars
novas
flare stars
blazars
active galactic nuclei
OGLE
HAT-South
PanSTARRS
SkyMapper
ASAS
WASP
CRTS
GOTO
Vera C. Rubin Observatory
transient
periodic
quasi-periodic
asteroids
proper motion
planetary transits
comets
astronomical objects

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.