Knowledge (XXG)

Bacterial nanowires

Source πŸ“

20: 251:
regulatory feedback or other communication between members of the same or even different microbial species. Some organisms are capable of both expelling and taking in electrons through nanowires. Those species would likely be able to oxidize extracellular metals by using them as an electron or energy source to facilitate energy consuming cellular processes. Microbes also could potentially use nanowires to temporarily store electrons on metals. Building up an electron concentration on a metal
88:. From physiological and functional perspectives, bacterial nanowires are diverse. The precise role microbial nanowires play in their biological systems has not been fully realized, but several proposed functions exist. Outside of a naturally occurring environment, bacterial nanowires have shown potential to be useful in several fields, notably the 250:
production. Aside from that, the extent of the implications brought on by the existence of bacterial nanowires is not fully realized. It has been speculated nanowires may function as conduits for electron transport between different members of a microbial community. This has potential to allow for
283:
also further promotes electrical conductivity. Additionally, these nanowires can transport electrons up to centimeter-scale distances. Long-range electron transfer via microbial nanowire networks allows viable cells that are not in direct contact with an anode to contribute to electron flow.
228:
bacteria. This was the first observed instance of EET used to draw electrons from the environment into a cell. Research persists to date to explore the mechanisms, implications, and potential applications of nanowires and the biological systems they are a part of.
271:(MFCs), bacterial nanowires generate electricity via extracellular electron transport to the MFC's anode. Nanowire networks have been shown to enhance the electricity output of MFCs with efficient and long-range conductivity. In particular, bacterial nanowires of 259:. While these potential implications provide a reasonable hypothesis towards the role of the bacterial nanowire in a biological system, more research is needed to fully understand the extent of how cellular species benefit from nanowire use. 168:
MtrC and OmcA. The reported presence of outer membrane cytochromes, and lack of conductivity in nanowires from the MtrC and OmcA-deficient mutant directly support the proposed multistep hopping mechanism for electron transport through
152:
use nanowires to transfer electrons to extracellular electron acceptors (such as Fe(III) oxides). This function was discovered through the examination of mutants, whose nanowires could attach to the iron, but would not reduce it.
133:
and OmcZ. Despite being physiologically distinct from pili, bacterial nanowires are often described as pili anyway due to the initial misconception upon their discovery. These stacked cytochrome nanowires form a seamless array of
1317:
Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (August 2011). "Tunable metallic-like conductivity in microbial nanowire networks".
287:
To date, the currency produced by bacterial nanowires is very low. Across a biofilm 7 micrometers thick, a current density of around 17 microamperes per square centimeter and a voltage of around 0.5 volts was reported.
214:
bacteria and their respective nanowires. Since their discoveries, other nanowire containing microbes have been identified, but they remain the most intensively studied. In 1998, EET was observed in a
1401:
Maruthupandy M, Anand M, Maduraiveeran G, Beevi AS, Priya RJ (September 2017). "Fabrication of CuO nanoparticles coated bacterial nanowire film for a high-performance electrochemical conductivity".
202:
The concept of electromicrobiology has been around since the early 1900s when a series of discoveries found cells capable of producing electricity. It was demonstrated for the first time in 1911 by
206:
that cells could convert chemical energy to electrical energy. It wasn't until 1988 that extracellular electron transport (EET) was observed for the first time with the independent discoveries of
319:
Further significant application of bacterial nanowires can be seen in the bioelectronics industry. With sustainable resources in mind, scientists have proposed the future use of biofilms of
1257:
Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, et al. (October 2016). "Extracellular electron transfer mechanisms between microorganisms and minerals".
275:
possess metallic-like conductivity, producing electricity at levels comparable to those of synthetic metallic nanostructures. When bacterial strains are
1182: 390:
Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (June 2005). "Extracellular electron transfer via microbial nanowires".
1001:
Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011). "On the electrical conductivity of microbial nanowires and biofilms".
305: 576:"Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components" 308:. To demonstrate this, scientists compared and observed the concentration of uranium removed by piliated and nonpiliated strains of 1493:
Jiang S, Kim MG, Kim SJ, Jung HS, Lee SW, Noh DY, et al. (July 2011). "Bacterial formation of extracellular U(VI) nanowires".
222:
bacteria to reduce an Fe(III) electrode. In 2010, bacterial nanowires were shown to have facilitated the flow of electricity into
1061:
Myers CR, Nealson KH (June 1988). "Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor".
1366:
Malvankar NS, Lovley DR (June 2012). "Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics".
1207:
Rabaey K, Rozendal RA (October 2010). "Microbial electrosynthesis - revisiting the electrical route for microbial production".
78: 312:
Through a series of controlled experiments, they were able to deduce that nanowire present strains were more effective at the
242:
Microorganisms have shown to use nanowires to facilitate the use of extracellular metals as terminal electron acceptors in an
1114:"Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese" 901:
Pirbadian S, El-Naggar MY (October 2012). "Multistep hopping and extracellular charge transfer in microbial redox chains".
276: 365: 19: 1646: 203: 344:
which functions at substantially lower voltages than the ones previously described and may allow the construction of
448:"Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms" 62: 340: 243: 162: 143: 24: 1169:
Kim B (1999). "Dynamic effects of learning capabilities and profit structures on the innovation competition".
185: 139: 352:. Bacterial nanowires vary from traditionally utilized silicon nanowires by showing an increased degree of 361: 279:
to boost nanowire formation, higher electricity yields are generally observed. Coating the nanowires with
247: 194:
have been observed to form electrically conductive nanowires in response to electron-acceptor limitation.
1676: 188:
conditions to still use oxygen as their terminal electron acceptor. For example, organisms in the genus
161:
nanowires are also not technically pili, but extensions of the outer membrane that contain the decaheme
118: 246:. The high reduction potential of the metals receiving electrons is capable of driving a considerable 1600: 1541: 1530:"Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism" 1457: 1410: 1327: 1125: 1070: 957: 910: 855: 703: 587: 459: 399: 574:
Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, et al. (September 2014).
692:"Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells" 268: 215: 130: 84: 793:"Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers" 1426: 1282: 1232: 1094: 1034:
Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character
423: 1029: 842:
El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, et al. (October 2010).
1681: 1628: 1569: 1510: 1475: 1383: 1343: 1274: 1224: 1186: 1151: 1086: 983: 926: 883: 824: 773: 729: 667: 615: 553: 487: 415: 345: 313: 114: 1647:"Researchers Unveil Electronics that Mimic the Human Brain in Efficient, Biological Learning" 1618: 1608: 1559: 1549: 1502: 1465: 1418: 1375: 1335: 1266: 1216: 1178: 1141: 1133: 1078: 1041: 1010: 973: 965: 918: 873: 863: 814: 804: 763: 719: 711: 657: 649: 605: 595: 543: 535: 477: 467: 407: 353: 349: 1301:"Development of Biofilm Nanowires and Electrode for Efficient Microbial Fuel Cells (MFCs)" 446:
Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, et al. (July 2006).
223: 356:. More research is needed, but the memristors may eventually be used to directly process 1604: 1545: 1461: 1414: 1331: 1129: 1074: 961: 914: 859: 707: 591: 463: 403: 1623: 1588: 1564: 1529: 978: 945: 878: 843: 819: 792: 724: 691: 662: 637: 610: 575: 548: 523: 482: 447: 328: 93: 73: 1146: 1113: 184:
layers. By connecting to other cells around them, nanowires allow bacteria located in
1670: 1430: 59: 1286: 1236: 1137: 638:"Electric field stimulates production of highly conductive microbial OmcZ nanowires" 1098: 690:
Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (November 2006).
427: 1082: 791:
Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE, Srikanth V, et al. (April 2019).
178:
Additionally, nanowires can facilitate long-range electron transfer across thick
636:
Yalcin SE, O'Brien JP, Gu Y, Reiss K, Yi SM, Jain R, et al. (October 2020).
844:"Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1" 126: 69: 1613: 1534:
Proceedings of the National Academy of Sciences of the United States of America
848:
Proceedings of the National Academy of Sciences of the United States of America
809: 580:
Proceedings of the National Academy of Sciences of the United States of America
452:
Proceedings of the National Academy of Sciences of the United States of America
1528:
Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (September 2011).
1470: 1445: 1422: 653: 324: 256: 190: 171: 165: 157: 54: 39: 36: 1190: 1183:
10.1002/(SICI)1099-1514(199905/06)20:3<127::AID-OCA650>3.0.CO;2-I
1554: 1300: 1270: 868: 600: 539: 472: 357: 335: 148: 105: 89: 48: 1632: 1573: 1514: 1479: 1387: 1379: 1347: 1339: 1278: 1228: 1155: 1090: 1046: 987: 930: 887: 828: 777: 733: 671: 619: 557: 491: 419: 768: 751: 715: 524:"Electromicrobiology: realities, grand challenges, goals and predictions" 43: 1444:
Liu X, Gao H, Ward JE, Liu X, Yin B, Fu T, et al. (February 2020).
1220: 1030:"Electrical effects accompanying the decomposition of organic compounds" 411: 1506: 1014: 969: 922: 750:
Sure S, Ackland ML, Torriero AA, Adholeya A, Kochar M (December 2016).
255:
would create a battery of sorts that the cells could later use to fuel
180: 1202: 1200: 946:"Physical constraints on charge transport through bacterial nanowires" 58:
genera. Conductive nanowires have also been confirmed in the oxygenic
1587:
Fu T, Liu X, Gao H, Ward JE, Liu X, Yin B, et al. (April 2020).
16:
Electrically conductive appendages produced by a number of bacteria
280: 252: 110: 1446:"Power generation from ambient humidity using protein nanowires" 135: 1299:
Kodesia, A.; Ghosh, M.; Chatterjee, A. (September 5, 2017).
334:
On 20 April 2020, researchers demonstrated a diffusive
35:(also known as microbial nanowires) are electrically 1651:
Office of News & Media Relations | UMass Amherst
338:fabricated from protein nanowires of the bacterium 316:of uranium as compared to nanowire absent mutants. 306:bioremediation of uranium contaminated groundwater 109:nanowires were originally thought to be modified 1361: 1359: 1357: 385: 383: 381: 263:Bioenergy applications in microbial fuel cells 113:, which are used to establish connections to 8: 944:Polizzi NF, Skourtis SS, Beratan DN (2012). 366:direct communication with biological neurons 1305:Thapar University Digital Repository (TuDR) 752:"Microbial nanowires: an electrifying tale" 441: 439: 437: 1622: 1612: 1563: 1553: 1469: 1145: 1045: 977: 877: 867: 818: 808: 767: 723: 661: 609: 599: 547: 481: 471: 348:which function at voltages of biological 323:as a platform for functional under water 1171:Optimal Control Applications and Methods 18: 745: 743: 377: 233:Implications and potential applications 85:Methanothermobacter thermoautotrophicus 1118:Applied and Environmental Microbiology 696:Applied and Environmental Microbiology 522:Nealson KH, Rowe AR (September 2016). 1252: 1250: 1248: 1246: 7: 1589:"Bioinspired bio-voltage memristors" 1112:Lovley DR, Phillips EJ (June 1988). 685: 683: 681: 631: 629: 569: 567: 517: 515: 513: 511: 509: 507: 505: 503: 501: 1028:Potter MC, Waller AD (1911-09-14). 903:Physical Chemistry Chemical Physics 331:, capable of self-renewing energy. 125:nanowires are composed of stacked 121:. Further research has shown that 14: 218:setting for the first time using 138:which stabilize the nanowire via 1138:10.1128/aem.54.6.1472-1480.1988 79:Pelotomaculum thermopropionicum 292:Other significant applications 1: 1083:10.1126/science.240.4857.1319 1403:Journal of Materials Science 1259:Nature Reviews. Microbiology 1209:Nature Reviews. Microbiology 956:: 43–62, discussion 103–14. 115:terminal electron acceptors 1698: 1614:10.1038/s41467-020-15759-y 810:10.1016/j.cell.2019.03.029 304:have been shown to aid in 1471:10.1038/s41586-020-2010-9 1423:10.1007/s10853-017-1248-6 654:10.1038/s41589-020-0623-9 341:Geobacter sulfurreducens 273:Geobacter sulfurreducens 244:electron transport chain 76:coculture consisting of 42:produced by a number of 25:Geobacter sulfurreducens 1555:10.1073/pnas.1108616108 1495:Chemical Communications 1271:10.1038/nrmicro.2016.93 869:10.1073/pnas.1004880107 642:Nature Chemical Biology 601:10.1073/pnas.1410551111 540:10.1111/1751-7915.12400 528:Microbial Biotechnology 473:10.1073/pnas.0604517103 296:Microbial nanowires of 277:genetically manipulated 238:Biological implications 146:. Species of the genus 142:and provide a path for 1380:10.1002/cssc.201100733 1340:10.1038/nnano.2011.119 1047:10.1098/rspb.1911.0073 362:neuromorphic computing 46:most notably from the 29: 1593:Nature Communications 1320:Nature Nanotechnology 204:Michael CressΓ© Potter 119:anaerobic respiration 117:during some types of 22: 769:10.1099/mic.0.000382 716:10.1128/aem.01444-06 269:microbial fuel cells 1605:2020NatCo..11.1861F 1546:2011PNAS..10815248C 1462:2020Natur.578..550L 1415:2017JMatS..5210766M 1332:2011NatNa...6..573M 1221:10.1038/nrmicro2422 1130:1988ApEnM..54.1472L 1075:1988Sci...240.1319M 962:2012FaDi..155...43P 950:Faraday Discussions 915:2012PCCP...1413802P 860:2010PNAS..10718127E 708:2006ApEnM..72.7345R 592:2014PNAS..11112883P 464:2006PNAS..10311358G 412:10.1038/nature03661 404:2005Natur.435.1098R 216:microbial fuel cell 33:Bacterial nanowires 1507:10.1039/C1CC12554K 1015:10.1039/C1EE01753E 1003:Energy Environ Sci 970:10.1039/C1FD00098E 923:10.1039/C2CP41185G 803:(2): 361–369.e10. 398:(7045): 1098–101. 358:biosensing signals 346:artificial neurons 257:metabolic activity 144:electron transport 30: 1456:(7796): 550–554. 1069:(4857): 1319–21. 1009:(11): 4366–4379. 762:(12): 2017–2028. 648:(10): 1136–1142. 350:action potentials 28:and its nanowires 1689: 1661: 1660: 1658: 1657: 1643: 1637: 1636: 1626: 1616: 1584: 1578: 1577: 1567: 1557: 1540:(37): 15248–52. 1525: 1519: 1518: 1490: 1484: 1483: 1473: 1441: 1435: 1434: 1409:(18): 10766–78. 1398: 1392: 1391: 1363: 1352: 1351: 1314: 1308: 1297: 1291: 1290: 1254: 1241: 1240: 1204: 1195: 1194: 1166: 1160: 1159: 1149: 1109: 1103: 1102: 1058: 1052: 1051: 1049: 1040:(571): 260–276. 1025: 1019: 1018: 998: 992: 991: 981: 941: 935: 934: 898: 892: 891: 881: 871: 854:(42): 18127–31. 839: 833: 832: 822: 812: 788: 782: 781: 771: 747: 738: 737: 727: 687: 676: 675: 665: 633: 624: 623: 613: 603: 571: 562: 561: 551: 519: 496: 495: 485: 475: 458:(30): 11358–63. 443: 432: 431: 387: 354:biocompatibility 1697: 1696: 1692: 1691: 1690: 1688: 1687: 1686: 1667: 1666: 1665: 1664: 1655: 1653: 1645: 1644: 1640: 1586: 1585: 1581: 1527: 1526: 1522: 1492: 1491: 1487: 1443: 1442: 1438: 1400: 1399: 1395: 1365: 1364: 1355: 1316: 1315: 1311: 1298: 1294: 1256: 1255: 1244: 1206: 1205: 1198: 1168: 1167: 1163: 1111: 1110: 1106: 1060: 1059: 1055: 1027: 1026: 1022: 1000: 999: 995: 943: 942: 938: 909:(40): 13802–8. 900: 899: 895: 841: 840: 836: 790: 789: 785: 749: 748: 741: 689: 688: 679: 635: 634: 627: 586:(35): 12883–8. 573: 572: 565: 521: 520: 499: 445: 444: 435: 389: 388: 379: 374: 329:supercapacitors 294: 265: 240: 235: 200: 102: 17: 12: 11: 5: 1695: 1693: 1685: 1684: 1679: 1669: 1668: 1663: 1662: 1638: 1579: 1520: 1501:(28): 8076–8. 1485: 1436: 1393: 1374:(6): 1039–46. 1353: 1309: 1292: 1265:(10): 651–62. 1242: 1215:(10): 706–16. 1196: 1177:(3): 127–144. 1161: 1124:(6): 1472–80. 1104: 1053: 1020: 993: 936: 893: 834: 783: 739: 702:(11): 7345–8. 677: 625: 563: 534:(5): 595–600. 497: 433: 376: 375: 373: 370: 314:mineralization 293: 290: 264: 261: 239: 236: 234: 231: 199: 196: 163:outer membrane 101: 98: 94:bioremediation 60:cyanobacterium 15: 13: 10: 9: 6: 4: 3: 2: 1694: 1683: 1680: 1678: 1675: 1674: 1672: 1652: 1648: 1642: 1639: 1634: 1630: 1625: 1620: 1615: 1610: 1606: 1602: 1598: 1594: 1590: 1583: 1580: 1575: 1571: 1566: 1561: 1556: 1551: 1547: 1543: 1539: 1535: 1531: 1524: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1489: 1486: 1481: 1477: 1472: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1437: 1432: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1397: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1360: 1358: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1313: 1310: 1306: 1302: 1296: 1293: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1253: 1251: 1249: 1247: 1243: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1201: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1165: 1162: 1157: 1153: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1105: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1057: 1054: 1048: 1043: 1039: 1035: 1031: 1024: 1021: 1016: 1012: 1008: 1004: 997: 994: 989: 985: 980: 975: 971: 967: 963: 959: 955: 951: 947: 940: 937: 932: 928: 924: 920: 916: 912: 908: 904: 897: 894: 889: 885: 880: 875: 870: 865: 861: 857: 853: 849: 845: 838: 835: 830: 826: 821: 816: 811: 806: 802: 798: 794: 787: 784: 779: 775: 770: 765: 761: 757: 753: 746: 744: 740: 735: 731: 726: 721: 717: 713: 709: 705: 701: 697: 693: 686: 684: 682: 678: 673: 669: 664: 659: 655: 651: 647: 643: 639: 632: 630: 626: 621: 617: 612: 607: 602: 597: 593: 589: 585: 581: 577: 570: 568: 564: 559: 555: 550: 545: 541: 537: 533: 529: 525: 518: 516: 514: 512: 510: 508: 506: 504: 502: 498: 493: 489: 484: 479: 474: 469: 465: 461: 457: 453: 449: 442: 440: 438: 434: 429: 425: 421: 417: 413: 409: 405: 401: 397: 393: 386: 384: 382: 378: 371: 369: 367: 363: 359: 355: 351: 347: 343: 342: 337: 332: 330: 326: 322: 317: 315: 311: 307: 303: 299: 291: 289: 285: 282: 278: 274: 270: 262: 260: 258: 254: 249: 245: 237: 232: 230: 227: 226: 221: 217: 213: 209: 205: 197: 195: 193: 192: 187: 183: 182: 176: 174: 173: 167: 164: 160: 159: 154: 151: 150: 145: 141: 137: 132: 128: 124: 120: 116: 112: 108: 107: 99: 97: 95: 91: 87: 86: 81: 80: 75: 71: 67: 65: 64:Synechocystis 61: 57: 56: 51: 50: 45: 41: 38: 34: 27: 26: 21: 1677:Bacteriology 1654:. Retrieved 1650: 1641: 1596: 1592: 1582: 1537: 1533: 1523: 1498: 1494: 1488: 1453: 1449: 1439: 1406: 1402: 1396: 1371: 1367: 1326:(9): 573–9. 1323: 1319: 1312: 1304: 1295: 1262: 1258: 1212: 1208: 1174: 1170: 1164: 1121: 1117: 1107: 1066: 1062: 1056: 1037: 1033: 1023: 1006: 1002: 996: 953: 949: 939: 906: 902: 896: 851: 847: 837: 800: 796: 786: 759: 756:Microbiology 755: 699: 695: 645: 641: 583: 579: 531: 527: 455: 451: 395: 391: 339: 333: 320: 318: 309: 301: 297: 295: 286: 281:metal oxides 272: 266: 241: 224: 219: 211: 207: 201: 189: 179: 177: 170: 156: 155: 147: 122: 104: 103: 96:industries. 83: 77: 74:methanogenic 70:thermophilic 63: 53: 47: 32: 31: 23: 1599:(1): 1861. 1368:ChemSusChem 325:transistors 175:nanowires. 166:cytochromes 140:pi-stacking 127:cytochromes 1671:Categories 1656:2021-04-20 372:References 310:Geobacter. 298:Shewanella 220:Shewanella 212:Shewanella 191:Shewanella 172:Shewanella 158:Shewanella 100:Physiology 55:Shewanella 40:appendages 37:conductive 1431:103105219 1191:1099-1514 336:memristor 321:Geobacter 302:Geobacter 225:Sporomusa 208:Geobacter 149:Geobacter 129:, namely 123:Geobacter 106:Geobacter 90:bioenergy 49:Geobacter 1682:Nanowire 1633:32313096 1574:21896750 1515:21681306 1480:32066937 1388:22614997 1348:21822253 1287:20626915 1279:27573579 1237:11417035 1229:20844557 1156:16347658 1091:17815852 988:22470966 931:22797729 888:20937892 829:30951668 778:27902405 734:16936064 672:32807967 620:25143589 558:27506517 492:16849424 420:15973408 44:bacteria 1624:7171104 1601:Bibcode 1565:3174638 1542:Bibcode 1458:Bibcode 1411:Bibcode 1328:Bibcode 1126:Bibcode 1099:9662366 1071:Bibcode 1063:Science 979:3392031 958:Bibcode 911:Bibcode 879:2964190 856:Bibcode 820:6720112 725:1636155 704:Bibcode 663:7502555 611:4156777 588:Bibcode 549:4993177 483:1544091 460:Bibcode 428:4425287 400:Bibcode 364:and/or 198:History 181:biofilm 66:PCC6803 1631:  1621:  1572:  1562:  1513:  1478:  1450:Nature 1429:  1386:  1346:  1285:  1277:  1235:  1227:  1189:  1154:  1147:202682 1144:  1097:  1089:  986:  976:  929:  886:  876:  827:  817:  776:  732:  722:  670:  660:  618:  608:  556:  546:  490:  480:  426:  418:  392:Nature 360:, for 186:anoxic 68:and a 1427:S2CID 1283:S2CID 1233:S2CID 1095:S2CID 424:S2CID 253:anode 136:hemes 1629:PMID 1570:PMID 1511:PMID 1476:PMID 1384:PMID 1344:PMID 1275:PMID 1225:PMID 1187:ISSN 1152:PMID 1087:PMID 984:PMID 927:PMID 884:PMID 825:PMID 797:Cell 774:PMID 730:PMID 668:PMID 616:PMID 554:PMID 488:PMID 416:PMID 327:and 300:and 210:and 131:OmcS 111:pili 92:and 82:and 52:and 1619:PMC 1609:doi 1560:PMC 1550:doi 1538:108 1503:doi 1466:doi 1454:578 1419:doi 1376:doi 1336:doi 1267:doi 1217:doi 1179:doi 1142:PMC 1134:doi 1079:doi 1067:240 1042:doi 1011:doi 974:PMC 966:doi 954:155 919:doi 874:PMC 864:doi 852:107 815:PMC 805:doi 801:177 764:doi 760:162 720:PMC 712:doi 658:PMC 650:doi 606:PMC 596:doi 584:111 544:PMC 536:doi 478:PMC 468:doi 456:103 408:doi 396:435 267:In 248:ATP 1673:: 1649:. 1627:. 1617:. 1607:. 1597:11 1595:. 1591:. 1568:. 1558:. 1548:. 1536:. 1532:. 1509:. 1499:47 1497:. 1474:. 1464:. 1452:. 1448:. 1425:. 1417:. 1407:52 1405:. 1382:. 1370:. 1356:^ 1342:. 1334:. 1322:. 1303:. 1281:. 1273:. 1263:14 1261:. 1245:^ 1231:. 1223:. 1211:. 1199:^ 1185:. 1175:20 1173:. 1150:. 1140:. 1132:. 1122:54 1120:. 1116:. 1093:. 1085:. 1077:. 1065:. 1038:84 1036:. 1032:. 1005:. 982:. 972:. 964:. 952:. 948:. 925:. 917:. 907:14 905:. 882:. 872:. 862:. 850:. 846:. 823:. 813:. 799:. 795:. 772:. 758:. 754:. 742:^ 728:. 718:. 710:. 700:72 698:. 694:. 680:^ 666:. 656:. 646:16 644:. 640:. 628:^ 614:. 604:. 594:. 582:. 578:. 566:^ 552:. 542:. 530:. 526:. 500:^ 486:. 476:. 466:. 454:. 450:. 436:^ 422:. 414:. 406:. 394:. 380:^ 368:. 72:, 1659:. 1635:. 1611:: 1603:: 1576:. 1552:: 1544:: 1517:. 1505:: 1482:. 1468:: 1460:: 1433:. 1421:: 1413:: 1390:. 1378:: 1372:5 1350:. 1338:: 1330:: 1324:6 1307:. 1289:. 1269:: 1239:. 1219:: 1213:8 1193:. 1181:: 1158:. 1136:: 1128:: 1101:. 1081:: 1073:: 1050:. 1044:: 1017:. 1013:: 1007:4 990:. 968:: 960:: 933:. 921:: 913:: 890:. 866:: 858:: 831:. 807:: 780:. 766:: 736:. 714:: 706:: 674:. 652:: 622:. 598:: 590:: 560:. 538:: 532:9 494:. 470:: 462:: 430:. 410:: 402::

Index


Geobacter sulfurreducens
conductive
appendages
bacteria
Geobacter
Shewanella
cyanobacterium
Synechocystis PCC6803
thermophilic
methanogenic
Pelotomaculum thermopropionicum
Methanothermobacter thermoautotrophicus
bioenergy
bioremediation
Geobacter
pili
terminal electron acceptors
anaerobic respiration
cytochromes
OmcS
hemes
pi-stacking
electron transport
Geobacter
Shewanella
outer membrane
cytochromes
Shewanella
biofilm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑