Knowledge

Beltrami's theorem

Source 📝

462: 695: 233: 218: 553: 457:{\displaystyle R_{ijkl}=(\partial _{i}\rho _{j}-\partial _{j}\rho _{i})g_{kl}+g_{jl}(\partial _{i}\rho _{k}-\rho _{i}\rho _{k})-g_{il}(\partial _{j}\rho _{k}-\rho _{j}\rho _{k}).} 108:
described Beltrami's original proof (done in the two-dimensional Riemannian case) as being much more complicated. Relative to a projectively flat chart, there are functions
100:
Beltrami's theorem asserts the converse: any connected pseudo-Riemannian manifold which is locally projectively flat must have constant curvature. With the use of
129: 750:
is constant. Substituting the above identity into the Riemann tensor as given above, it follows that the chart domain has constant sectional curvature
1167: 896: 709: 1040: 948: 1023:. Die Grundlehren der mathematischen Wissenschaften. Vol. 10 (Second edition of 1923 original ed.). Berlin–Göttingen–Heidelberg: 1081: 998: 813:: if given a geodesic map between pseudo-Riemannian manifolds, one manifold has constant curvature if and only if the other does. 86: 690:{\displaystyle \partial _{j}\rho _{k}-\rho _{j}\rho _{k}=g_{jk}{\frac {g^{il}(\partial _{i}\rho _{l}-\rho _{i}\rho _{l})}{n}}} 1074: 982: 94: 28: 70: 941: 224: 61:, there are smooth coordinates relative to which all nonconstant geodesics appear as straight lines. In the 1016: 704:
is the dimension of the manifold. It is direct to verify that the left-hand side is a (locally defined)
24: 50:, is a result on the inverse problem of determining a (pseudo-)Riemannian metric from its geodesics. 1116:
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
974: 82: 66: 54: 921: 120: 78: 58: 1140: 1077: 1036: 994: 944: 933: 32: 1119: 1095: 1054: 1028: 1004: 986: 962: 913: 905: 887: 47: 1091: 1050: 958: 1123: 1099: 1087: 1058: 1046: 1024: 1008: 966: 954: 917: 101: 705: 1143: 1161: 1112:"Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung" 925: 44: 1107: 1021:
Ricci-calculus. An introduction to tensor analysis and its geometrical applications
810: 806:. By connectedness of the manifold, this local constancy implies global constancy. 213:{\displaystyle \Gamma _{ij}^{k}=\rho _{i}\delta _{j}^{k}+\rho _{j}\delta _{i}^{k}.} 105: 20: 1066: 940:(Revised & updated second edition of 1976 original ed.). Mineola, NY: 1032: 1148: 990: 89:, these charts show that any Riemannian manifold of constant curvature is 1073:. Reprinted in 1988. (Second edition of 1950 original ed.). London: 36: 708:, using only the given form of the Christoffel symbols. It follows from 909: 891: 16:
Geodesic maps preserve the property of having constant curvature
1111: 892:"Teoria fondamentale degli spazii di curvature costante" 809:
Beltrami's theorem may be phrased in the language of
556: 236: 132: 97:
of constant curvature is locally projectively flat.
689: 456: 212: 938:Differential geometry of curves & surfaces 35:determines a certain class of paths known as 8: 1071:Lectures on classical differential geometry 845: 672: 662: 649: 639: 623: 616: 607: 594: 584: 571: 561: 555: 442: 432: 419: 409: 393: 377: 367: 354: 344: 328: 312: 299: 289: 276: 266: 241: 235: 201: 196: 186: 173: 168: 158: 145: 137: 131: 865: 849: 841: 829: 822: 223:Direct calculation then shows that the 897:Annali di Matematica Pura ed Applicata 853: 53:It is nontrivial to see that, on any 7: 869: 636: 558: 406: 341: 286: 263: 134: 14: 981:. Reprinted in 1997. Princeton: 104:, the proof is straightforward. 87:projective differential geometry 1168:Theorems in Riemannian geometry 519:. The other curvature symmetry 678: 632: 448: 402: 383: 337: 305: 259: 1: 1075:Addison-Wesley Publishing Co. 69:, this is justified by the 1184: 983:Princeton University Press 95:pseudo-Riemannian manifold 91:locally projectively flat. 1033:10.1007/978-3-662-12927-2 975:Eisenhart, Luther Pfahler 81:, it is justified by the 942:Dover Publications, Inc. 225:Riemann curvature tensor 467:The curvature symmetry 691: 458: 214: 991:10.1515/9781400884216 934:do Carmo, Manfredo P. 872:, Footnote on p. 110. 692: 459: 215: 85:. In the language of 25:differential geometry 1144:"Beltrami's theorem" 554: 234: 130: 93:More generally, any 71:Beltrami–Klein model 43:, named for Italian 979:Riemannian geometry 206: 178: 150: 121:Christoffel symbols 83:gnomonic projection 67:hyperbolic geometry 55:Riemannian manifold 1141:Weisstein, Eric W. 910:10.1007/BF02419615 687: 547:, then says that 454: 210: 192: 164: 133: 79:spherical geometry 75:positive curvature 63:negative curvature 59:constant curvature 41:Beltrami's theorem 1042:978-3-540-01805-6 950:978-0-486-80699-0 888:Beltrami, Eugenio 685: 33:Riemannian metric 1175: 1154: 1153: 1127: 1103: 1062: 1012: 970: 929: 873: 863: 857: 852:, Section VI.2; 839: 833: 827: 805: 769: 767: 766: 761: 758: 749: 703: 696: 694: 693: 688: 686: 681: 677: 676: 667: 666: 654: 653: 644: 643: 631: 630: 617: 615: 614: 599: 598: 589: 588: 576: 575: 566: 565: 546: 542: 538: 518: 487: 463: 461: 460: 455: 447: 446: 437: 436: 424: 423: 414: 413: 401: 400: 382: 381: 372: 371: 359: 358: 349: 348: 336: 335: 320: 319: 304: 303: 294: 293: 281: 280: 271: 270: 255: 254: 219: 217: 216: 211: 205: 200: 191: 190: 177: 172: 163: 162: 149: 144: 118: 48:Eugenio Beltrami 1183: 1182: 1178: 1177: 1176: 1174: 1173: 1172: 1158: 1157: 1139: 1138: 1135: 1130: 1106: 1084: 1067:Struik, Dirk J. 1065: 1043: 1025:Springer-Verlag 1017:Schouten, J. A. 1015: 1001: 973: 951: 932: 886: 877: 876: 864: 860: 844:, p. 301; 840: 836: 828: 824: 819: 803: 795: 786: 778: 762: 759: 756: 755: 753: 751: 747: 739: 730: 722: 713: 701: 668: 658: 645: 635: 619: 618: 603: 590: 580: 567: 557: 552: 551: 544: 540: 537: 528: 520: 517: 509: 503: 495: 489: 485: 476: 468: 438: 428: 415: 405: 389: 373: 363: 350: 340: 324: 308: 295: 285: 272: 262: 237: 232: 231: 182: 154: 128: 127: 117: 109: 102:tensor calculus 17: 12: 11: 5: 1181: 1179: 1171: 1170: 1160: 1159: 1156: 1155: 1134: 1133:External links 1131: 1129: 1128: 1104: 1082: 1063: 1041: 1013: 999: 971: 949: 930: 904:(1): 232–255. 883: 875: 874: 858: 856:, Section 5-3. 848:, Section 40; 846:Eisenhart 1926 834: 832:, p. 292. 821: 820: 818: 815: 799: 791: 782: 774: 743: 735: 726: 718: 706:Codazzi tensor 698: 697: 684: 680: 675: 671: 665: 661: 657: 652: 648: 642: 638: 634: 629: 626: 622: 613: 610: 606: 602: 597: 593: 587: 583: 579: 574: 570: 564: 560: 539:, traced over 533: 524: 513: 505: 499: 491: 481: 472: 465: 464: 453: 450: 445: 441: 435: 431: 427: 422: 418: 412: 408: 404: 399: 396: 392: 388: 385: 380: 376: 370: 366: 362: 357: 353: 347: 343: 339: 334: 331: 327: 323: 318: 315: 311: 307: 302: 298: 292: 288: 284: 279: 275: 269: 265: 261: 258: 253: 250: 247: 244: 240: 221: 220: 209: 204: 199: 195: 189: 185: 181: 176: 171: 167: 161: 157: 153: 148: 143: 140: 136: 123:take the form 119:such that the 113: 15: 13: 10: 9: 6: 4: 3: 2: 1180: 1169: 1166: 1165: 1163: 1151: 1150: 1145: 1142: 1137: 1136: 1132: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1083:0-486-65609-8 1079: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 1000:0-691-02353-0 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 956: 952: 946: 943: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 898: 893: 889: 885: 884: 882: 881: 871: 867: 866:Beltrami 1868 862: 859: 855: 851: 850:Schouten 1954 847: 843: 842:do Carmo 2016 838: 835: 831: 830:Schouten 1954 826: 823: 816: 814: 812: 811:geodesic maps 807: 802: 798: 794: 790: 785: 781: 777: 772: 765: 746: 742: 738: 734: 729: 725: 721: 716: 711: 710:Schur's lemma 707: 682: 673: 669: 663: 659: 655: 650: 646: 640: 627: 624: 620: 611: 608: 604: 600: 595: 591: 585: 581: 577: 572: 568: 562: 550: 549: 548: 536: 532: 527: 523: 516: 512: 508: 502: 498: 494: 488:implies that 484: 480: 475: 471: 451: 443: 439: 433: 429: 425: 420: 416: 410: 397: 394: 390: 386: 378: 374: 368: 364: 360: 355: 351: 345: 332: 329: 325: 321: 316: 313: 309: 300: 296: 290: 282: 277: 273: 267: 256: 251: 248: 245: 242: 238: 230: 229: 228: 226: 207: 202: 197: 193: 187: 183: 179: 174: 169: 165: 159: 155: 151: 146: 141: 138: 126: 125: 124: 122: 116: 112: 107: 103: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 51: 49: 46: 45:mathematician 42: 38: 34: 30: 26: 22: 1147: 1115: 1070: 1020: 978: 937: 901: 900:. Serie II. 895: 879: 878: 861: 837: 825: 808: 800: 796: 792: 788: 783: 779: 775: 770: 763: 744: 740: 736: 732: 727: 723: 719: 714: 699: 534: 530: 525: 521: 514: 510: 506: 500: 496: 492: 482: 478: 473: 469: 466: 227:is given by 222: 114: 110: 106:Hermann Weyl 99: 90: 74: 62: 52: 40: 21:mathematical 18: 854:Struik 1961 1124:48.0844.04 1118:: 99–112. 1100:0105.14707 1059:0057.37803 1009:52.0721.01 967:1352.53002 918:01.0208.03 817:References 1149:MathWorld 926:120773141 870:Weyl 1921 670:ρ 660:ρ 656:− 647:ρ 637:∂ 592:ρ 582:ρ 578:− 569:ρ 559:∂ 440:ρ 430:ρ 426:− 417:ρ 407:∂ 387:− 375:ρ 365:ρ 361:− 352:ρ 342:∂ 297:ρ 287:∂ 283:− 274:ρ 264:∂ 194:δ 184:ρ 166:δ 156:ρ 135:Γ 73:. In the 37:geodesics 23:field of 1162:Category 1110:(1921). 1108:Weyl, H. 1069:(1961). 1019:(1954). 977:(1926). 936:(2016). 890:(1868). 880:Sources. 77:case of 65:case of 1092:0939369 1051:0066025 959:3837152 768:⁠ 754:⁠ 27:, any ( 19:In the 1122:  1098:  1090:  1080:  1057:  1049:  1039:  1007:  997:  965:  957:  947:  924:  916:  797:ρ 789:ρ 780:ρ 741:ρ 733:ρ 724:ρ 700:where 511:ρ 497:ρ 111:ρ 29:pseudo 922:S2CID 712:that 1078:ISBN 1037:ISBN 995:ISBN 945:ISBN 543:and 535:klij 526:ijkl 483:jikl 474:ijkl 1120:JFM 1096:Zbl 1055:Zbl 1029:doi 1005:JFM 987:doi 963:Zbl 914:JFM 906:doi 504:= ∂ 486:= 0 57:of 1164:: 1146:. 1114:. 1094:. 1088:MR 1086:. 1053:. 1047:MR 1045:. 1035:. 1027:. 1003:. 993:. 985:. 961:. 955:MR 953:. 920:. 912:. 894:. 868:; 787:− 773:(∂ 731:− 717:(∂ 529:= 477:+ 39:. 31:-) 1152:. 1126:. 1102:. 1061:. 1031:: 1011:. 989:: 969:. 928:. 908:: 902:2 804:) 801:l 793:i 784:l 776:i 771:g 764:n 760:/ 757:1 752:− 748:) 745:l 737:i 728:l 720:i 715:g 702:n 683:n 679:) 674:l 664:i 651:l 641:i 633:( 628:l 625:i 621:g 612:k 609:j 605:g 601:= 596:k 586:j 573:k 563:j 545:l 541:i 531:R 522:R 515:i 507:j 501:j 493:i 490:∂ 479:R 470:R 452:. 449:) 444:k 434:j 421:k 411:j 403:( 398:l 395:i 391:g 384:) 379:k 369:i 356:k 346:i 338:( 333:l 330:j 326:g 322:+ 317:l 314:k 310:g 306:) 301:i 291:j 278:j 268:i 260:( 257:= 252:l 249:k 246:j 243:i 239:R 208:. 203:k 198:i 188:j 180:+ 175:k 170:j 160:i 152:= 147:k 142:j 139:i 115:i

Index

mathematical
differential geometry
pseudo
Riemannian metric
geodesics
mathematician
Eugenio Beltrami
Riemannian manifold
constant curvature
hyperbolic geometry
Beltrami–Klein model
spherical geometry
gnomonic projection
projective differential geometry
pseudo-Riemannian manifold
tensor calculus
Hermann Weyl
Christoffel symbols
Riemann curvature tensor
Codazzi tensor
Schur's lemma
geodesic maps
Schouten 1954
do Carmo 2016
Eisenhart 1926
Schouten 1954
Struik 1961
Beltrami 1868
Weyl 1921
Beltrami, Eugenio

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.