Knowledge (XXG)

Schur's lemma (Riemannian geometry)

Source 📝

3627:'s 1982 breakthrough on the Ricci flow was his "pinching estimate" which, informally stated, says that for a Riemannian metric which appears in a 3-manifold Ricci flow with positive Ricci curvature, the eigenvalues of the Ricci tensor are close to one another relative to the size of their sum. If one normalizes the sum, then, the eigenvalues are close to one another in an absolute sense. In this sense, each of the metrics appearing in a 3-manifold Ricci flow of positive Ricci curvature "approximately" satisfies the conditions of the Schur lemma. The Schur lemma itself is not explicitly applied, but its proof is effectively carried out through Hamilton's calculations. 3634:'s extension of Hamilton's work to higher dimensions, where the main part of the work is that the Weyl tensor and the semi-traceless Riemann tensor become zero in the long-time limit. This extends to the more general Ricci flow convergence theorems, some expositions of which directly use the Schur lemma. This includes the proof of the 4822: 1122: 5095: 4628: 966: 338: 27:
is a result that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. The proof is essentially a one-step calculation, which has only one input: the second Bianchi identity.
3544: 3417: 2466: 2662: 4949: 3266: 1748: 754: 1674: 411: 2287: 1573: 1226: 879: 832: 1358: 563: 1949: 1449: 2095: 4944: 4510: 4280: 3754: 3691: 233: 4171: 3893: 5191: 2838: 4446: 2588:
he a smooth symmetric (0,2)-tensor field whose covariant derivative, with respect to the Levi-Civita connection, is completely symmetric. The symmetry condition is an analogue of the
4336: 4050: 4221: 444: 3059: 2754: 4419: 4133: 3153: 4874: 4817:{\displaystyle \int _{M}(R-{\overline {R}})^{2}\,d\mu _{g}\leq {\frac {4n(n-1)}{(n-2)^{2}}}\int _{M}{\Big |}\operatorname {Ric} -{\frac {1}{n}}Rg{\Big |}_{g}^{2}\,d\mu _{g}.} 4623: 627: 4371: 4085: 3994: 244: 2595: 1151: 4596: 1174: 5214: 4845: 4475: 3926: 3295: 3182: 3110: 3088: 2987: 2884: 2682: 2366: 2174: 2050: 2028: 1875: 1789:
Note that the dimensional restriction is important, since every two-dimensional Riemannian manifold which does not have constant curvature would be a counterexample.
1602: 1478: 1406: 1286: 647: 491: 194: 3952: 3855: 3570: 3449: 3443: 2864: 2492: 2313: 2121: 1975: 1384: 961: 589: 6495: 4570: 4507: 3829: 3605: 2943: 2539: 2206: 1831: 1783: 1510: 1262: 704: 66: 5686: 4884:
have shown that if the traceless second fundamental form of a compact surface is approximately zero then the mean curvature is approximately constant. Precisely
3322: 2907: 2797: 2566: 777: 93: 5390: 5155: 5135: 5115: 4906: 3794: 3774: 3315: 3007: 2963: 2774: 2702: 2586: 2333: 2141: 1995: 1895: 1851: 1306: 1117:{\displaystyle |B|_{g}^{2}=\left|B-{\frac {1}{n}}\left(\operatorname {tr} ^{g}B\right)g\right|_{g}^{2}+{\frac {1}{n}}\left(\operatorname {tr} ^{g}B\right)^{2}.} 926: 906: 687: 667: 511: 471: 161: 133: 113: 2372: 6490: 3796:
is the mean curvature. The Schur lemma implies that the mean curvature is constant, and the image of this embedding then must be a standard round sphere.
5777: 5553: 5403: 3188: 1680: 5801: 5996: 2965:
be a smooth symmetric (0,2)-tensor field whose covariant derivative is totally symmetric as a (0,3)-tensor field. Then the following are equivalent:
6548: 3616:
The Schur lemmas are frequently employed to prove roundness of geometric objects. A noteworthy example is to characterize the limits of convergent
1609: 349: 5558: 3630:
In the same way, the Schur lemma for the Riemann tensor is employed to study convergence of Ricci flow in higher dimensions. This goes back to
5866: 5445: 5090:{\displaystyle \int _{\Sigma }(H-{\overline {H}})^{2}\,d\mu _{g}\leq C\int _{\Sigma }{\Big |}h-{\frac {1}{2}}Hg{\Big |}_{g}^{2}\,d\mu _{g},} 6092: 5347: 2213: 6145: 5673: 3645:, which was modeled on Hamilton's work. In the final two sentences of Huisken's paper, it is concluded that one has a smooth embedding 1518: 6429: 1785:
is a connected smooth pseudo-Riemannian manifold, then the first three conditions are equivalent, and they imply the fourth condition.
1179: 5418: 5383: 5363: 4536:
have shown that if the traceless Ricci tensor is approximately zero then the scalar curvature is approximately constant. Precisely:
3696: 6194: 4881: 837: 5786: 6177: 2802: 782: 1311: 516: 1900: 3607:
is a connected and smooth pseudo-Riemannian manifold, then the first three are equivalent, and imply the fourth and fifth.
1411: 6543: 6389: 2055: 6538: 6374: 6097: 5871: 5480: 5376: 4911: 6419: 4517:
must be the warped product of an interval and a constant-curvature Riemannian manifold. See O'Neill (1983, page 341).
4528:
Consider the Schur lemma in the form "If the traceless Ricci tensor is zero then the scalar curvature is constant."
6424: 6394: 6102: 6058: 6039: 5806: 5750: 5501: 4525:
Recent research has investigated the case that the conditions of the Schur lemma are only approximately satisfied.
2542: 4226: 1264:
be a connected smooth Riemannian manifold whose dimension is not equal to two. Then the following are equivalent:
5961: 5826: 5630: 3648: 199: 5563: 4138: 3860: 6346: 6211: 5903: 5745: 5423: 5160: 238: 4424: 4285: 3999: 6043: 6013: 5937: 5927: 5883: 5713: 5666: 5609: 4176: 422: 5811: 5568: 3641:
The Schur lemma for Codazzi tensors is employed directly in Huisken's foundational paper on convergence of
3012: 2707: 6384: 6003: 5898: 5718: 5640: 5635: 5573: 5506: 5465: 5271:
Böhm, Christoph; Wilking, Burkhard (2008). "Manifolds with positive curvature operators are space forms".
4514: 4376: 4090: 6033: 6028: 3115: 5328:
De Lellis, Camillo; Müller, Stefan (2005). "Optimal rigidity estimates for nearly umbilical surfaces".
4850: 6364: 6302: 6150: 5854: 5844: 5816: 5791: 5701: 5470: 4601: 333:{\displaystyle \operatorname {Rm} _{p}:T_{p}M\times T_{p}M\times T_{p}M\times T_{p}M\to \mathbb {R} } 594: 6502: 6475: 6184: 6062: 6047: 5976: 5735: 5527: 5496: 5484: 5455: 5438: 5399: 4341: 4055: 3957: 3642: 3624: 140: 69: 20: 6444: 6399: 6296: 6167: 5971: 5796: 5659: 5625: 5522: 5491: 5981: 5532: 1127: 3539:{\displaystyle |h_{p}|_{g}^{2}\leq \textstyle {\frac {1}{n}}(\operatorname {tr} ^{g}h_{p})^{2}} 6379: 6359: 6354: 6261: 6172: 5986: 5966: 5821: 5760: 5537: 5359: 4877: 4575: 4529: 1156: 690: 5351:
Interscience Publishers, a division of John Wiley & Sons, New York-London 1963 xi+329 pp.
5199: 4830: 4451: 3898: 3271: 3158: 3095: 3064: 2972: 2869: 2667: 2338: 2146: 2035: 2000: 1860: 1578: 1454: 1391: 1271: 632: 476: 166: 6517: 6311: 6266: 6189: 6160: 6018: 5951: 5946: 5941: 5931: 5723: 5706: 5604: 5599: 5475: 5428: 3931: 3834: 3549: 3422: 2843: 2589: 2471: 2292: 2100: 1954: 1363: 931: 698: 568: 416: 4543: 4480: 3802: 3578: 3412:{\displaystyle |h_{p}|_{g}^{2}=\textstyle {\frac {1}{n}}(\operatorname {tr} ^{g}h_{p})^{2}} 2916: 2512: 2179: 1804: 1756: 1483: 1235: 39: 6553: 6460: 6369: 6199: 6155: 5921: 5433: 3631: 1228:{ With these observations in mind, one can restate the Schur lemma in the following form: 343: 2461:{\displaystyle |\operatorname {Rm} _{p}|_{g}^{2}=\textstyle {\frac {2}{n(n-1)}}R_{p}^{2}} 2889: 2779: 2548: 759: 75: 6326: 6251: 6221: 6119: 6112: 6052: 6023: 5893: 5888: 5849: 5358:
Pure and Applied Mathematics, 103. Academic Press, Inc. , New York, 1983. xiii+468 pp.
5140: 5120: 5100: 4891: 4876:
whose traceless second fundamental form is zero, then its mean curvature is constant."
3779: 3759: 3635: 3617: 3300: 2992: 2948: 2759: 2687: 2571: 2318: 2126: 1980: 1880: 1836: 1291: 911: 891: 672: 652: 496: 456: 146: 118: 98: 16:
Whenever certain curvatures are pointwise constant then they must be globally constant
6532: 6512: 6336: 6331: 6316: 6306: 6256: 6233: 6107: 6067: 6008: 5956: 5755: 5460: 5252:
Huisken, Gerhard (1985). "Ricci deformation of the metric on a Riemannian manifold".
4533: 2657:{\displaystyle \operatorname {div} ^{g}h=d{\big (}\operatorname {tr} ^{g}h{\big )}.} 6439: 6434: 6276: 6243: 6216: 6124: 5765: 5290:
Huisken, Gerhard (1984). "Flow by mean curvature of convex surfaces into spheres".
2945:
be a connected smooth Riemannian manifold whose dimension is not equal to one. Let
2496:
the sum of the Weyl curvature and semi-traceless part of the Riemann tensor is zero
3261:{\displaystyle h_{p}={\frac {1}{n}}\left(\operatorname {tr} ^{g}h_{p}\right)g_{p}} 2499:
both the Weyl curvature and the semi-traceless part of the Riemann tensor are zero
1743:{\displaystyle |\operatorname {Ric} |_{g}^{2}\leq \textstyle {\frac {1}{n}}R^{2}.} 5368: 1797:
The following is an immediate corollary of the Schur lemma for the Ricci tensor.
6282: 6271: 6228: 6129: 5730: 4572:
is a closed Riemannian manifold with nonnegative Ricci curvature and dimension
6507: 6465: 6291: 6204: 5836: 5740: 5578: 5233:
Hamilton, Richard S. (1982). "Three-manifolds with positive Ricci curvature".
749:{\displaystyle \operatorname {div} _{g}\operatorname {Ric} ={\frac {1}{2}}dR.} 1669:{\displaystyle |\operatorname {Ric} |_{g}^{2}=\textstyle {\frac {1}{n}}R^{2}} 6321: 6286: 5991: 5878: 3831:
is a connected thrice-differentiable Riemannian manifold, and that for each
406:{\displaystyle \operatorname {Ric} _{p}:T_{p}M\times T_{p}M\to \mathbb {R} } 4509:
has constant curvature. A particularly notable application of this is that
669:; this could also be phrased as asserting that each connected component of 6485: 6480: 6470: 5861: 5682: 5450: 697:
The Schur lemma is a simple consequence of the "twice-contracted second
5651: 3799:
Another application relates full isotropy and curvature. Suppose that
6077: 5309:
De Lellis, Camillo; Topping, Peter M. (2012). "Almost-Schur lemma".
2282:{\displaystyle \operatorname {sec} _{p}(V)={\frac {1}{n(n-1)}}R_{p}} 4421:
Since isometries preserve sectional curvature, this implies that
1568:{\displaystyle \operatorname {Ric} _{p}={\frac {1}{n}}R_{p}g_{p}} 5655: 5372: 1221:{\displaystyle \kappa ={\frac {1}{n}}\operatorname {tr} ^{g}B.} 2909:
As above, one can then state the Schur lemma in this context:
4908:
such that, for any smooth compact connected embedded surface
4625:
denotes the average value of the scalar curvature, one has
874:{\displaystyle \textstyle d\kappa ={\frac {n}{2}}d\kappa .} 5356:
Semi-Riemannian geometry. With applications to relativity.
1833:
be a connected smooth Riemannian manifold whose dimension
2592:; continuing the analogy, one takes a trace to find that 827:{\displaystyle \operatorname {Ric} _{p}=\kappa (p)g_{p},} 1853:
is not equal to two. Then the following are equivalent:
1353:{\displaystyle \operatorname {Ric} _{p}=\kappa (p)g_{p}} 558:{\displaystyle \operatorname {Ric} _{p}=\kappa (p)g_{p}} 4827:
Next, consider the Schur lemma in the special form "If
143:, which assigns to every 2-dimensional linear subspace 3488: 3361: 2414: 1944:{\displaystyle \operatorname {sec} _{p}(V)=\kappa (p)} 1715: 1644: 841: 5202: 5163: 5143: 5123: 5103: 4952: 4914: 4894: 4853: 4833: 4631: 4604: 4578: 4546: 4483: 4454: 4427: 4379: 4344: 4288: 4229: 4179: 4141: 4093: 4058: 4002: 3960: 3934: 3901: 3863: 3837: 3805: 3782: 3762: 3699: 3651: 3581: 3552: 3452: 3425: 3325: 3303: 3274: 3191: 3161: 3118: 3098: 3067: 3015: 2995: 2975: 2951: 2919: 2892: 2872: 2846: 2805: 2782: 2762: 2710: 2690: 2670: 2598: 2574: 2551: 2515: 2474: 2375: 2341: 2321: 2295: 2216: 2182: 2149: 2129: 2103: 2058: 2038: 2003: 1983: 1957: 1903: 1883: 1863: 1839: 1807: 1759: 1683: 1612: 1581: 1521: 1486: 1457: 1444:{\displaystyle \operatorname {Ric} _{p}=\kappa g_{p}} 1414: 1394: 1366: 1314: 1294: 1274: 1238: 1182: 1159: 1130: 969: 934: 914: 894: 840: 785: 762: 707: 675: 655: 635: 597: 571: 519: 499: 479: 459: 425: 352: 247: 202: 169: 149: 121: 101: 78: 42: 6453: 6412: 6345: 6242: 6138: 6085: 6076: 5912: 5835: 5774: 5694: 5618: 5592: 5546: 5515: 5411: 2090:{\displaystyle \operatorname {sec} _{p}(V)=\kappa } 5208: 5185: 5149: 5129: 5109: 5089: 4939:{\displaystyle \Sigma \subseteq \mathbb {R} ^{3},} 4938: 4900: 4868: 4839: 4816: 4617: 4590: 4564: 4501: 4469: 4440: 4413: 4365: 4330: 4274: 4215: 4165: 4127: 4079: 4044: 3988: 3946: 3920: 3887: 3849: 3823: 3788: 3768: 3748: 3685: 3599: 3564: 3538: 3437: 3411: 3309: 3289: 3260: 3176: 3147: 3104: 3082: 3053: 3001: 2981: 2957: 2937: 2901: 2878: 2858: 2832: 2791: 2768: 2748: 2696: 2676: 2656: 2580: 2560: 2533: 2486: 2460: 2360: 2327: 2307: 2281: 2200: 2168: 2135: 2115: 2089: 2044: 2022: 1989: 1969: 1943: 1889: 1869: 1845: 1825: 1777: 1742: 1668: 1596: 1567: 1504: 1472: 1443: 1400: 1378: 1352: 1300: 1280: 1256: 1220: 1168: 1145: 1116: 955: 920: 900: 873: 826: 771: 748: 681: 661: 641: 621: 583: 557: 505: 485: 465: 438: 405: 332: 227: 188: 155: 127: 107: 87: 60: 5054: 5024: 4781: 4751: 2911: 1799: 1230: 756:understood as an equality of smooth 1-forms on 451: 5667: 5384: 5348:Foundations of differential geometry. Vol. I. 2646: 2623: 8: 4275:{\displaystyle P,Q\in {\text{Gr}}(2,T_{p}M)} 3749:{\displaystyle |h|^{2}={\frac {1}{n}}H^{2},} 473:is not equal to two. If there is a function 3686:{\displaystyle S^{n}\to \mathbb {R} ^{n+1}} 2886:is constant on each connected component of 1604:that is, the traceless Ricci tensor is zero 884:Alternative formulations of the assumptions 649:is constant on each connected component of 228:{\displaystyle \operatorname {sec} _{p}(V)} 6082: 5674: 5660: 5652: 5554:Fundamental theorem of Riemannian geometry 5391: 5377: 5369: 4166:{\displaystyle \operatorname {Isom} (M,g)} 3888:{\displaystyle \operatorname {Isom} (M,g)} 95:Recall that this defines for each element 5311:Calc. Var. Partial Differential Equations 5201: 5196:As an application, one can conclude that 5186:{\displaystyle \operatorname {tr} _{g}h.} 5168: 5162: 5142: 5122: 5102: 5078: 5070: 5064: 5059: 5053: 5052: 5035: 5023: 5022: 5016: 5000: 4992: 4986: 4972: 4957: 4951: 4927: 4923: 4922: 4913: 4893: 4860: 4856: 4855: 4852: 4832: 4805: 4797: 4791: 4786: 4780: 4779: 4762: 4750: 4749: 4743: 4730: 4688: 4679: 4671: 4665: 4651: 4636: 4630: 4605: 4603: 4577: 4545: 4482: 4453: 4432: 4426: 4387: 4378: 4343: 4287: 4260: 4242: 4228: 4198: 4180: 4178: 4140: 4101: 4092: 4057: 4001: 3977: 3959: 3933: 3906: 3900: 3862: 3836: 3804: 3781: 3761: 3737: 3723: 3714: 3709: 3700: 3698: 3671: 3667: 3666: 3656: 3650: 3580: 3551: 3529: 3519: 3506: 3489: 3479: 3474: 3469: 3462: 3453: 3451: 3424: 3402: 3392: 3379: 3362: 3352: 3347: 3342: 3335: 3326: 3324: 3302: 3273: 3252: 3237: 3224: 3205: 3196: 3190: 3160: 3139: 3123: 3117: 3097: 3066: 3045: 3020: 3014: 2994: 2974: 2950: 2918: 2891: 2871: 2845: 2833:{\displaystyle d\kappa =n\cdot d\kappa .} 2804: 2781: 2761: 2740: 2715: 2709: 2689: 2669: 2645: 2644: 2632: 2622: 2621: 2603: 2597: 2573: 2550: 2514: 2473: 2451: 2446: 2415: 2405: 2400: 2395: 2385: 2376: 2374: 2346: 2340: 2320: 2315:and all two-dimensional linear subspaces 2294: 2273: 2242: 2221: 2215: 2181: 2154: 2148: 2128: 2123:and all two-dimensional linear subspaces 2102: 2063: 2057: 2037: 2008: 2002: 1982: 1977:and all two-dimensional linear subspaces 1956: 1908: 1902: 1882: 1862: 1838: 1806: 1758: 1730: 1716: 1706: 1701: 1696: 1684: 1682: 1659: 1645: 1635: 1630: 1625: 1613: 1611: 1580: 1559: 1549: 1535: 1526: 1520: 1485: 1456: 1435: 1419: 1413: 1393: 1365: 1344: 1319: 1313: 1293: 1273: 1237: 1203: 1189: 1181: 1158: 1129: 1105: 1088: 1068: 1059: 1054: 1029: 1010: 989: 984: 979: 970: 968: 933: 913: 893: 851: 839: 815: 790: 784: 761: 727: 712: 706: 674: 654: 634: 596: 570: 549: 524: 518: 498: 478: 458: 430: 424: 399: 398: 386: 370: 357: 351: 326: 325: 313: 297: 281: 265: 252: 246: 207: 201: 174: 168: 148: 120: 100: 77: 41: 5345:Shoshichi Kobayashi and Katsumi Nomizu. 4441:{\displaystyle \operatorname {sec} _{p}} 5225: 4331:{\displaystyle \varphi :(M,g)\to (M,g)} 4045:{\displaystyle \varphi :(M,g)\to (M,g)} 4216:{\displaystyle {\text{Gr}}(2,T_{p}M),} 1793:The Schur lemma for the Riemann tensor 449:The Schur lemma states the following: 439:{\displaystyle \operatorname {R} _{p}} 5216:itself is 'close' to a round sphere. 3054:{\displaystyle h_{p}=\kappa (p)g_{p}} 2749:{\displaystyle h_{p}=\kappa (p)g_{p}} 7: 779:Substituting in the given condition 346:, which is a symmetric bilinear map 32:The Schur lemma for the Ricci tensor 4847:is a connected embedded surface in 4414:{\displaystyle d\varphi _{p}(P)=Q.} 4128:{\displaystyle d\varphi _{p}(v)=w.} 3776:is the second fundamental form and 2505:The Schur lemma for Codazzi tensors 908:be a symmetric bilinear form on an 5203: 5017: 4958: 4915: 4834: 3148:{\displaystyle h_{p}=\kappa g_{p}} 427: 14: 2799:then upon substitution one finds 928:-dimensional inner product space 5235:Journal of Differential Geometry 5117:is the second fundamental form, 4869:{\displaystyle \mathbb {R} ^{3}} 6549:Theorems in Riemannian geometry 4618:{\displaystyle {\overline {R}}} 3297:that is, the traceless form of 5714:Differentiable/Smooth manifold 4983: 4963: 4727: 4714: 4709: 4697: 4662: 4642: 4559: 4547: 4496: 4484: 4399: 4393: 4354: 4348: 4325: 4313: 4310: 4307: 4295: 4269: 4247: 4207: 4185: 4160: 4148: 4113: 4107: 4068: 4062: 4039: 4027: 4024: 4021: 4009: 3882: 3870: 3818: 3806: 3710: 3701: 3662: 3594: 3582: 3526: 3499: 3470: 3454: 3399: 3372: 3343: 3327: 3038: 3032: 2932: 2920: 2733: 2727: 2528: 2516: 2436: 2424: 2396: 2377: 2263: 2251: 2236: 2230: 2195: 2183: 2078: 2072: 1938: 1932: 1923: 1917: 1820: 1808: 1772: 1760: 1697: 1685: 1626: 1614: 1499: 1487: 1337: 1331: 1251: 1239: 980: 971: 947: 935: 808: 802: 622:{\displaystyle d\kappa (p)=0.} 610: 604: 542: 536: 395: 322: 222: 216: 55: 43: 1: 4477:The Schur lemma implies that 4366:{\displaystyle \varphi (p)=p} 4080:{\displaystyle \varphi (p)=p} 3989:{\displaystyle v,w\in T_{p}M} 3636:differentiable sphere theorem 241:, which is a multilinear map 5481:Raising and lowering indices 4977: 4656: 4610: 6420:Classification of manifolds 5137:is the induced metric, and 3623:For example, a key part of 1176:then one automatically has 1124:Additionally, note that if 6570: 5502:Pseudo-Riemannian manifold 4173:also acts transitively on 2543:pseudo-Riemannian manifold 2541:be a smooth Riemannian or 1146:{\displaystyle B=\kappa g} 6496:over commutative algebras 5631:Geometrization conjecture 419:, which is a real number 6212:Riemann curvature tensor 4591:{\displaystyle n\geq 3.} 3928:This means that for all 3857:the group of isometries 1169:{\displaystyle \kappa ,} 239:Riemann curvature tensor 5209:{\displaystyle \Sigma } 4840:{\displaystyle \Sigma } 4470:{\displaystyle p\in M.} 3921:{\displaystyle T_{p}M.} 3290:{\displaystyle p\in M,} 3177:{\displaystyle p\in M,} 3105:{\displaystyle \kappa } 3083:{\displaystyle p\in M,} 2982:{\displaystyle \kappa } 2879:{\displaystyle \kappa } 2677:{\displaystyle \kappa } 2664:If there is a function 2361:{\displaystyle T_{p}M,} 2169:{\displaystyle T_{p}M,} 2045:{\displaystyle \kappa } 2023:{\displaystyle T_{p}M,} 1870:{\displaystyle \kappa } 1597:{\displaystyle p\in M,} 1473:{\displaystyle p\in M,} 1401:{\displaystyle \kappa } 1281:{\displaystyle \kappa } 642:{\displaystyle \kappa } 486:{\displaystyle \kappa } 189:{\displaystyle T_{p}M,} 6004:Manifold with boundary 5719:Differential structure 5641:Uniformization theorem 5574:Nash embedding theorem 5507:Riemannian volume form 5466:Levi-Civita connection 5210: 5187: 5157:is the mean curvature 5151: 5131: 5111: 5091: 4940: 4902: 4870: 4841: 4818: 4619: 4592: 4566: 4515:cosmological principle 4503: 4471: 4442: 4415: 4367: 4332: 4276: 4217: 4167: 4129: 4081: 4046: 3990: 3948: 3947:{\displaystyle p\in M} 3922: 3889: 3851: 3850:{\displaystyle p\in M} 3825: 3790: 3770: 3750: 3687: 3609: 3601: 3566: 3565:{\displaystyle p\in M} 3540: 3439: 3438:{\displaystyle p\in M} 3413: 3311: 3291: 3262: 3178: 3149: 3106: 3084: 3055: 3003: 2983: 2959: 2939: 2903: 2880: 2860: 2859:{\displaystyle n>1} 2834: 2793: 2770: 2750: 2698: 2678: 2658: 2582: 2562: 2535: 2502: 2488: 2487:{\displaystyle p\in M} 2462: 2362: 2329: 2309: 2308:{\displaystyle p\in M} 2283: 2208:has constant curvature 2202: 2170: 2137: 2117: 2116:{\displaystyle p\in M} 2091: 2046: 2024: 1991: 1971: 1970:{\displaystyle p\in M} 1945: 1891: 1871: 1847: 1827: 1787: 1779: 1744: 1670: 1598: 1569: 1506: 1474: 1445: 1402: 1380: 1379:{\displaystyle p\in M} 1354: 1302: 1282: 1258: 1222: 1170: 1147: 1118: 957: 956:{\displaystyle (V,g).} 922: 902: 875: 828: 773: 750: 695: 683: 663: 643: 623: 585: 584:{\displaystyle p\in M} 559: 507: 487: 467: 440: 407: 334: 229: 190: 157: 129: 109: 89: 62: 5211: 5188: 5152: 5132: 5112: 5092: 4941: 4903: 4871: 4842: 4819: 4620: 4593: 4567: 4565:{\displaystyle (M,g)} 4504: 4502:{\displaystyle (M,g)} 4472: 4448:is constant for each 4443: 4416: 4368: 4333: 4282:there is an isometry 4277: 4218: 4168: 4130: 4082: 4047: 3996:there is an isometry 3991: 3949: 3923: 3895:acts transitively on 3890: 3852: 3826: 3824:{\displaystyle (M,g)} 3791: 3771: 3751: 3688: 3602: 3600:{\displaystyle (M,g)} 3567: 3541: 3440: 3414: 3312: 3292: 3263: 3179: 3150: 3107: 3085: 3056: 3004: 2984: 2960: 2940: 2938:{\displaystyle (M,g)} 2904: 2881: 2861: 2835: 2794: 2771: 2751: 2699: 2679: 2659: 2583: 2563: 2536: 2534:{\displaystyle (M,g)} 2489: 2463: 2363: 2330: 2310: 2284: 2203: 2201:{\displaystyle (M,g)} 2171: 2138: 2118: 2092: 2047: 2025: 1992: 1972: 1946: 1892: 1872: 1848: 1828: 1826:{\displaystyle (M,g)} 1780: 1778:{\displaystyle (M,g)} 1745: 1671: 1599: 1570: 1507: 1505:{\displaystyle (M,g)} 1475: 1446: 1403: 1381: 1355: 1303: 1283: 1259: 1257:{\displaystyle (M,g)} 1223: 1171: 1148: 1119: 958: 923: 903: 876: 829: 774: 751: 701:," which states that 684: 664: 644: 624: 586: 560: 508: 488: 468: 441: 408: 335: 230: 191: 158: 130: 110: 90: 63: 61:{\displaystyle (M,g)} 6544:Riemannian manifolds 6151:Covariant derivative 5702:Topological manifold 5564:Gauss–Bonnet theorem 5471:Covariant derivative 5330:J. Differential Geom 5292:J. Differential Geom 5254:J. Differential Geom 5200: 5161: 5141: 5121: 5101: 4950: 4912: 4892: 4851: 4831: 4629: 4602: 4576: 4544: 4481: 4452: 4425: 4377: 4342: 4286: 4227: 4177: 4139: 4091: 4056: 4000: 3958: 3932: 3899: 3861: 3835: 3803: 3780: 3760: 3697: 3649: 3579: 3550: 3450: 3423: 3323: 3301: 3272: 3189: 3159: 3116: 3096: 3065: 3013: 2993: 2973: 2969:there is a function 2949: 2917: 2890: 2870: 2844: 2803: 2780: 2760: 2708: 2688: 2668: 2596: 2572: 2549: 2513: 2472: 2373: 2339: 2319: 2293: 2214: 2180: 2147: 2127: 2101: 2056: 2036: 2001: 1981: 1955: 1901: 1881: 1861: 1857:There is a function 1837: 1805: 1757: 1681: 1610: 1579: 1519: 1484: 1455: 1412: 1392: 1364: 1312: 1292: 1272: 1268:There is a function 1236: 1180: 1157: 1128: 967: 932: 912: 892: 838: 783: 760: 705: 673: 653: 633: 595: 569: 517: 497: 477: 457: 423: 350: 245: 200: 167: 147: 119: 99: 76: 40: 6539:Riemannian geometry 6185:Exterior derivative 5787:Atiyah–Singer index 5736:Riemannian manifold 5636:Poincaré conjecture 5497:Riemannian manifold 5485:Musical isomorphism 5400:Riemannian geometry 5069: 4796: 4223:that is, for every 3643:mean curvature flow 3484: 3357: 2456: 2410: 1711: 1640: 1064: 994: 141:sectional curvature 70:Riemannian manifold 21:Riemannian geometry 6491:Secondary calculus 6445:Singularity theory 6400:Parallel transport 6168:De Rham cohomology 5807:Generalized Stokes 5626:General relativity 5569:Hopf–Rinow theorem 5516:Types of manifolds 5492:Parallel transport 5206: 5183: 5147: 5127: 5107: 5087: 5051: 4936: 4898: 4888:there is a number 4866: 4837: 4814: 4778: 4615: 4588: 4562: 4499: 4467: 4438: 4411: 4363: 4328: 4272: 4213: 4163: 4135:This implies that 4125: 4077: 4042: 3986: 3944: 3918: 3885: 3847: 3821: 3786: 3766: 3746: 3683: 3597: 3562: 3536: 3535: 3468: 3435: 3409: 3408: 3341: 3307: 3287: 3258: 3174: 3145: 3102: 3092:there is a number 3080: 3051: 2999: 2979: 2955: 2935: 2902:{\displaystyle M.} 2899: 2876: 2856: 2830: 2792:{\displaystyle M,} 2789: 2766: 2746: 2694: 2674: 2654: 2578: 2561:{\displaystyle n.} 2558: 2531: 2484: 2458: 2457: 2442: 2394: 2358: 2325: 2305: 2279: 2198: 2166: 2133: 2113: 2087: 2042: 2032:There is a number 2020: 1987: 1967: 1941: 1887: 1867: 1843: 1823: 1775: 1740: 1739: 1695: 1666: 1665: 1624: 1594: 1565: 1502: 1470: 1441: 1398: 1388:There is a number 1376: 1350: 1298: 1278: 1254: 1218: 1166: 1143: 1114: 998: 978: 953: 918: 898: 871: 870: 824: 772:{\displaystyle M.} 769: 746: 679: 659: 639: 619: 581: 555: 503: 483: 463: 436: 403: 330: 225: 186: 153: 125: 105: 88:{\displaystyle n.} 85: 58: 6526: 6525: 6408: 6407: 6173:Differential form 5827:Whitney embedding 5761:Differential form 5649: 5648: 5354:Barrett O'Neill. 5273:Ann. of Math. (2) 5150:{\displaystyle H} 5130:{\displaystyle g} 5110:{\displaystyle h} 5043: 4980: 4901:{\displaystyle C} 4878:Camillo De Lellis 4770: 4737: 4659: 4613: 4530:Camillo De Lellis 4513:which models the 4245: 4183: 3789:{\displaystyle H} 3769:{\displaystyle h} 3731: 3497: 3370: 3310:{\displaystyle h} 3213: 3002:{\displaystyle M} 2958:{\displaystyle h} 2769:{\displaystyle p} 2697:{\displaystyle M} 2581:{\displaystyle h} 2440: 2328:{\displaystyle V} 2267: 2136:{\displaystyle V} 1990:{\displaystyle V} 1890:{\displaystyle M} 1846:{\displaystyle n} 1724: 1653: 1543: 1301:{\displaystyle M} 1197: 1076: 1018: 921:{\displaystyle n} 901:{\displaystyle B} 859: 735: 691:Einstein manifold 682:{\displaystyle M} 662:{\displaystyle M} 506:{\displaystyle M} 466:{\displaystyle n} 156:{\displaystyle V} 128:{\displaystyle M} 108:{\displaystyle p} 6561: 6518:Stratified space 6476:Fréchet manifold 6190:Interior product 6083: 5780: 5676: 5669: 5662: 5653: 5393: 5386: 5379: 5370: 5338: 5337: 5325: 5319: 5318: 5317:(3–44): 347–354. 5306: 5300: 5299: 5287: 5281: 5280: 5268: 5262: 5261: 5249: 5243: 5242: 5230: 5215: 5213: 5212: 5207: 5192: 5190: 5189: 5184: 5173: 5172: 5156: 5154: 5153: 5148: 5136: 5134: 5133: 5128: 5116: 5114: 5113: 5108: 5096: 5094: 5093: 5088: 5083: 5082: 5068: 5063: 5058: 5057: 5044: 5036: 5028: 5027: 5021: 5020: 5005: 5004: 4991: 4990: 4981: 4973: 4962: 4961: 4945: 4943: 4942: 4937: 4932: 4931: 4926: 4907: 4905: 4904: 4899: 4875: 4873: 4872: 4867: 4865: 4864: 4859: 4846: 4844: 4843: 4838: 4823: 4821: 4820: 4815: 4810: 4809: 4795: 4790: 4785: 4784: 4771: 4763: 4755: 4754: 4748: 4747: 4738: 4736: 4735: 4734: 4712: 4689: 4684: 4683: 4670: 4669: 4660: 4652: 4641: 4640: 4624: 4622: 4621: 4616: 4614: 4606: 4597: 4595: 4594: 4589: 4571: 4569: 4568: 4563: 4508: 4506: 4505: 4500: 4476: 4474: 4473: 4468: 4447: 4445: 4444: 4439: 4437: 4436: 4420: 4418: 4417: 4412: 4392: 4391: 4372: 4370: 4369: 4364: 4337: 4335: 4334: 4329: 4281: 4279: 4278: 4273: 4265: 4264: 4246: 4243: 4222: 4220: 4219: 4214: 4203: 4202: 4184: 4181: 4172: 4170: 4169: 4164: 4134: 4132: 4131: 4126: 4106: 4105: 4086: 4084: 4083: 4078: 4051: 4049: 4048: 4043: 3995: 3993: 3992: 3987: 3982: 3981: 3953: 3951: 3950: 3945: 3927: 3925: 3924: 3919: 3911: 3910: 3894: 3892: 3891: 3886: 3856: 3854: 3853: 3848: 3830: 3828: 3827: 3822: 3795: 3793: 3792: 3787: 3775: 3773: 3772: 3767: 3755: 3753: 3752: 3747: 3742: 3741: 3732: 3724: 3719: 3718: 3713: 3704: 3692: 3690: 3689: 3684: 3682: 3681: 3670: 3661: 3660: 3625:Richard Hamilton 3606: 3604: 3603: 3598: 3571: 3569: 3568: 3563: 3545: 3543: 3542: 3537: 3534: 3533: 3524: 3523: 3511: 3510: 3498: 3490: 3483: 3478: 3473: 3467: 3466: 3457: 3444: 3442: 3441: 3436: 3418: 3416: 3415: 3410: 3407: 3406: 3397: 3396: 3384: 3383: 3371: 3363: 3356: 3351: 3346: 3340: 3339: 3330: 3316: 3314: 3313: 3308: 3296: 3294: 3293: 3288: 3267: 3265: 3264: 3259: 3257: 3256: 3247: 3243: 3242: 3241: 3229: 3228: 3214: 3206: 3201: 3200: 3183: 3181: 3180: 3175: 3154: 3152: 3151: 3146: 3144: 3143: 3128: 3127: 3111: 3109: 3108: 3103: 3089: 3087: 3086: 3081: 3060: 3058: 3057: 3052: 3050: 3049: 3025: 3024: 3008: 3006: 3005: 3000: 2988: 2986: 2985: 2980: 2964: 2962: 2961: 2956: 2944: 2942: 2941: 2936: 2908: 2906: 2905: 2900: 2885: 2883: 2882: 2877: 2865: 2863: 2862: 2857: 2839: 2837: 2836: 2831: 2798: 2796: 2795: 2790: 2775: 2773: 2772: 2767: 2755: 2753: 2752: 2747: 2745: 2744: 2720: 2719: 2703: 2701: 2700: 2695: 2683: 2681: 2680: 2675: 2663: 2661: 2660: 2655: 2650: 2649: 2637: 2636: 2627: 2626: 2608: 2607: 2590:Bianchi identity 2587: 2585: 2584: 2579: 2567: 2565: 2564: 2559: 2540: 2538: 2537: 2532: 2493: 2491: 2490: 2485: 2467: 2465: 2464: 2459: 2455: 2450: 2441: 2439: 2416: 2409: 2404: 2399: 2390: 2389: 2380: 2367: 2365: 2364: 2359: 2351: 2350: 2334: 2332: 2331: 2326: 2314: 2312: 2311: 2306: 2288: 2286: 2285: 2280: 2278: 2277: 2268: 2266: 2243: 2226: 2225: 2207: 2205: 2204: 2199: 2175: 2173: 2172: 2167: 2159: 2158: 2142: 2140: 2139: 2134: 2122: 2120: 2119: 2114: 2096: 2094: 2093: 2088: 2068: 2067: 2051: 2049: 2048: 2043: 2029: 2027: 2026: 2021: 2013: 2012: 1996: 1994: 1993: 1988: 1976: 1974: 1973: 1968: 1950: 1948: 1947: 1942: 1913: 1912: 1896: 1894: 1893: 1888: 1876: 1874: 1873: 1868: 1852: 1850: 1849: 1844: 1832: 1830: 1829: 1824: 1784: 1782: 1781: 1776: 1749: 1747: 1746: 1741: 1735: 1734: 1725: 1717: 1710: 1705: 1700: 1688: 1675: 1673: 1672: 1667: 1664: 1663: 1654: 1646: 1639: 1634: 1629: 1617: 1603: 1601: 1600: 1595: 1574: 1572: 1571: 1566: 1564: 1563: 1554: 1553: 1544: 1536: 1531: 1530: 1511: 1509: 1508: 1503: 1479: 1477: 1476: 1471: 1450: 1448: 1447: 1442: 1440: 1439: 1424: 1423: 1407: 1405: 1404: 1399: 1385: 1383: 1382: 1377: 1359: 1357: 1356: 1351: 1349: 1348: 1324: 1323: 1307: 1305: 1304: 1299: 1287: 1285: 1284: 1279: 1263: 1261: 1260: 1255: 1227: 1225: 1224: 1219: 1208: 1207: 1198: 1190: 1175: 1173: 1172: 1167: 1153:for some number 1152: 1150: 1149: 1144: 1123: 1121: 1120: 1115: 1110: 1109: 1104: 1100: 1093: 1092: 1077: 1069: 1063: 1058: 1053: 1049: 1045: 1041: 1034: 1033: 1019: 1011: 993: 988: 983: 974: 962: 960: 959: 954: 927: 925: 924: 919: 907: 905: 904: 899: 880: 878: 877: 872: 860: 852: 833: 831: 830: 825: 820: 819: 795: 794: 778: 776: 775: 770: 755: 753: 752: 747: 736: 728: 717: 716: 699:Bianchi identity 688: 686: 685: 680: 668: 666: 665: 660: 648: 646: 645: 640: 628: 626: 625: 620: 590: 588: 587: 582: 564: 562: 561: 556: 554: 553: 529: 528: 512: 510: 509: 504: 492: 490: 489: 484: 472: 470: 469: 464: 445: 443: 442: 437: 435: 434: 417:scalar curvature 412: 410: 409: 404: 402: 391: 390: 375: 374: 362: 361: 339: 337: 336: 331: 329: 318: 317: 302: 301: 286: 285: 270: 269: 257: 256: 234: 232: 231: 226: 212: 211: 195: 193: 192: 187: 179: 178: 162: 160: 159: 154: 134: 132: 131: 126: 114: 112: 111: 106: 94: 92: 91: 86: 67: 65: 64: 59: 6569: 6568: 6564: 6563: 6562: 6560: 6559: 6558: 6529: 6528: 6527: 6522: 6461:Banach manifold 6454:Generalizations 6449: 6404: 6341: 6238: 6200:Ricci curvature 6156:Cotangent space 6134: 6072: 5914: 5908: 5867:Exponential map 5831: 5776: 5770: 5690: 5680: 5650: 5645: 5614: 5593:Generalizations 5588: 5542: 5511: 5446:Exponential map 5407: 5397: 5342: 5341: 5327: 5326: 5322: 5308: 5307: 5303: 5289: 5288: 5284: 5279:(3): 1079–1097. 5270: 5269: 5265: 5251: 5250: 5246: 5232: 5231: 5227: 5222: 5198: 5197: 5164: 5159: 5158: 5139: 5138: 5119: 5118: 5099: 5098: 5074: 5012: 4996: 4982: 4953: 4948: 4947: 4921: 4910: 4909: 4890: 4889: 4854: 4849: 4848: 4829: 4828: 4801: 4739: 4726: 4713: 4690: 4675: 4661: 4632: 4627: 4626: 4600: 4599: 4574: 4573: 4542: 4541: 4523: 4479: 4478: 4450: 4449: 4428: 4423: 4422: 4383: 4375: 4374: 4340: 4339: 4284: 4283: 4256: 4225: 4224: 4194: 4175: 4174: 4137: 4136: 4097: 4089: 4088: 4054: 4053: 3998: 3997: 3973: 3956: 3955: 3930: 3929: 3902: 3897: 3896: 3859: 3858: 3833: 3832: 3801: 3800: 3778: 3777: 3758: 3757: 3733: 3708: 3695: 3694: 3665: 3652: 3647: 3646: 3632:Gerhard Huisken 3618:geometric flows 3614: 3577: 3576: 3548: 3547: 3525: 3515: 3502: 3458: 3448: 3447: 3421: 3420: 3398: 3388: 3375: 3331: 3321: 3320: 3299: 3298: 3270: 3269: 3248: 3233: 3220: 3219: 3215: 3192: 3187: 3186: 3157: 3156: 3135: 3119: 3114: 3113: 3094: 3093: 3063: 3062: 3041: 3016: 3011: 3010: 2991: 2990: 2971: 2970: 2947: 2946: 2915: 2914: 2888: 2887: 2868: 2867: 2842: 2841: 2801: 2800: 2778: 2777: 2758: 2757: 2736: 2711: 2706: 2705: 2686: 2685: 2666: 2665: 2628: 2599: 2594: 2593: 2570: 2569: 2547: 2546: 2511: 2510: 2507: 2470: 2469: 2420: 2381: 2371: 2370: 2342: 2337: 2336: 2317: 2316: 2291: 2290: 2269: 2247: 2217: 2212: 2211: 2178: 2177: 2150: 2145: 2144: 2125: 2124: 2099: 2098: 2059: 2054: 2053: 2034: 2033: 2004: 1999: 1998: 1979: 1978: 1953: 1952: 1904: 1899: 1898: 1879: 1878: 1859: 1858: 1835: 1834: 1803: 1802: 1795: 1755: 1754: 1726: 1679: 1678: 1655: 1608: 1607: 1577: 1576: 1555: 1545: 1522: 1517: 1516: 1482: 1481: 1453: 1452: 1431: 1415: 1410: 1409: 1390: 1389: 1362: 1361: 1340: 1315: 1310: 1309: 1290: 1289: 1270: 1269: 1234: 1233: 1199: 1178: 1177: 1155: 1154: 1126: 1125: 1084: 1083: 1079: 1078: 1025: 1024: 1020: 1003: 999: 965: 964: 930: 929: 910: 909: 890: 889: 886: 836: 835: 834:one finds that 811: 786: 781: 780: 758: 757: 708: 703: 702: 671: 670: 651: 650: 631: 630: 593: 592: 567: 566: 545: 520: 515: 514: 495: 494: 475: 474: 455: 454: 426: 421: 420: 382: 366: 353: 348: 347: 344:Ricci curvature 309: 293: 277: 261: 248: 243: 242: 203: 198: 197: 170: 165: 164: 145: 144: 117: 116: 97: 96: 74: 73: 72:with dimension 38: 37: 34: 17: 12: 11: 5: 6567: 6565: 6557: 6556: 6551: 6546: 6541: 6531: 6530: 6524: 6523: 6521: 6520: 6515: 6510: 6505: 6500: 6499: 6498: 6488: 6483: 6478: 6473: 6468: 6463: 6457: 6455: 6451: 6450: 6448: 6447: 6442: 6437: 6432: 6427: 6422: 6416: 6414: 6410: 6409: 6406: 6405: 6403: 6402: 6397: 6392: 6387: 6382: 6377: 6372: 6367: 6362: 6357: 6351: 6349: 6343: 6342: 6340: 6339: 6334: 6329: 6324: 6319: 6314: 6309: 6299: 6294: 6289: 6279: 6274: 6269: 6264: 6259: 6254: 6248: 6246: 6240: 6239: 6237: 6236: 6231: 6226: 6225: 6224: 6214: 6209: 6208: 6207: 6197: 6192: 6187: 6182: 6181: 6180: 6170: 6165: 6164: 6163: 6153: 6148: 6142: 6140: 6136: 6135: 6133: 6132: 6127: 6122: 6117: 6116: 6115: 6105: 6100: 6095: 6089: 6087: 6080: 6074: 6073: 6071: 6070: 6065: 6055: 6050: 6036: 6031: 6026: 6021: 6016: 6014:Parallelizable 6011: 6006: 6001: 6000: 5999: 5989: 5984: 5979: 5974: 5969: 5964: 5959: 5954: 5949: 5944: 5934: 5924: 5918: 5916: 5910: 5909: 5907: 5906: 5901: 5896: 5894:Lie derivative 5891: 5889:Integral curve 5886: 5881: 5876: 5875: 5874: 5864: 5859: 5858: 5857: 5850:Diffeomorphism 5847: 5841: 5839: 5833: 5832: 5830: 5829: 5824: 5819: 5814: 5809: 5804: 5799: 5794: 5789: 5783: 5781: 5772: 5771: 5769: 5768: 5763: 5758: 5753: 5748: 5743: 5738: 5733: 5728: 5727: 5726: 5721: 5711: 5710: 5709: 5698: 5696: 5695:Basic concepts 5692: 5691: 5681: 5679: 5678: 5671: 5664: 5656: 5647: 5646: 5644: 5643: 5638: 5633: 5628: 5622: 5620: 5616: 5615: 5613: 5612: 5610:Sub-Riemannian 5607: 5602: 5596: 5594: 5590: 5589: 5587: 5586: 5581: 5576: 5571: 5566: 5561: 5556: 5550: 5548: 5544: 5543: 5541: 5540: 5535: 5530: 5525: 5519: 5517: 5513: 5512: 5510: 5509: 5504: 5499: 5494: 5489: 5488: 5487: 5478: 5473: 5468: 5458: 5453: 5448: 5443: 5442: 5441: 5436: 5431: 5426: 5415: 5413: 5412:Basic concepts 5409: 5408: 5398: 5396: 5395: 5388: 5381: 5373: 5367: 5366: 5352: 5340: 5339: 5320: 5301: 5282: 5263: 5244: 5224: 5223: 5221: 5218: 5205: 5194: 5193: 5182: 5179: 5176: 5171: 5167: 5146: 5126: 5106: 5086: 5081: 5077: 5073: 5067: 5062: 5056: 5050: 5047: 5042: 5039: 5034: 5031: 5026: 5019: 5015: 5011: 5008: 5003: 4999: 4995: 4989: 4985: 4979: 4976: 4971: 4968: 4965: 4960: 4956: 4935: 4930: 4925: 4920: 4917: 4897: 4863: 4858: 4836: 4825: 4824: 4813: 4808: 4804: 4800: 4794: 4789: 4783: 4777: 4774: 4769: 4766: 4761: 4758: 4753: 4746: 4742: 4733: 4729: 4725: 4722: 4719: 4716: 4711: 4708: 4705: 4702: 4699: 4696: 4693: 4687: 4682: 4678: 4674: 4668: 4664: 4658: 4655: 4650: 4647: 4644: 4639: 4635: 4612: 4609: 4587: 4584: 4581: 4561: 4558: 4555: 4552: 4549: 4522: 4519: 4498: 4495: 4492: 4489: 4486: 4466: 4463: 4460: 4457: 4435: 4431: 4410: 4407: 4404: 4401: 4398: 4395: 4390: 4386: 4382: 4362: 4359: 4356: 4353: 4350: 4347: 4327: 4324: 4321: 4318: 4315: 4312: 4309: 4306: 4303: 4300: 4297: 4294: 4291: 4271: 4268: 4263: 4259: 4255: 4252: 4249: 4241: 4238: 4235: 4232: 4212: 4209: 4206: 4201: 4197: 4193: 4190: 4187: 4162: 4159: 4156: 4153: 4150: 4147: 4144: 4124: 4121: 4118: 4115: 4112: 4109: 4104: 4100: 4096: 4076: 4073: 4070: 4067: 4064: 4061: 4041: 4038: 4035: 4032: 4029: 4026: 4023: 4020: 4017: 4014: 4011: 4008: 4005: 3985: 3980: 3976: 3972: 3969: 3966: 3963: 3943: 3940: 3937: 3917: 3914: 3909: 3905: 3884: 3881: 3878: 3875: 3872: 3869: 3866: 3846: 3843: 3840: 3820: 3817: 3814: 3811: 3808: 3785: 3765: 3745: 3740: 3736: 3730: 3727: 3722: 3717: 3712: 3707: 3703: 3680: 3677: 3674: 3669: 3664: 3659: 3655: 3613: 3610: 3596: 3593: 3590: 3587: 3584: 3573: 3572: 3561: 3558: 3555: 3532: 3528: 3522: 3518: 3514: 3509: 3505: 3501: 3496: 3493: 3487: 3482: 3477: 3472: 3465: 3461: 3456: 3445: 3434: 3431: 3428: 3405: 3401: 3395: 3391: 3387: 3382: 3378: 3374: 3369: 3366: 3360: 3355: 3350: 3345: 3338: 3334: 3329: 3318: 3306: 3286: 3283: 3280: 3277: 3255: 3251: 3246: 3240: 3236: 3232: 3227: 3223: 3218: 3212: 3209: 3204: 3199: 3195: 3184: 3173: 3170: 3167: 3164: 3142: 3138: 3134: 3131: 3126: 3122: 3101: 3090: 3079: 3076: 3073: 3070: 3048: 3044: 3040: 3037: 3034: 3031: 3028: 3023: 3019: 2998: 2978: 2954: 2934: 2931: 2928: 2925: 2922: 2898: 2895: 2875: 2855: 2852: 2849: 2829: 2826: 2823: 2820: 2817: 2814: 2811: 2808: 2788: 2785: 2765: 2743: 2739: 2735: 2732: 2729: 2726: 2723: 2718: 2714: 2693: 2673: 2653: 2648: 2643: 2640: 2635: 2631: 2625: 2620: 2617: 2614: 2611: 2606: 2602: 2577: 2557: 2554: 2530: 2527: 2524: 2521: 2518: 2506: 2503: 2501: 2500: 2497: 2494: 2483: 2480: 2477: 2454: 2449: 2445: 2438: 2435: 2432: 2429: 2426: 2423: 2419: 2413: 2408: 2403: 2398: 2393: 2388: 2384: 2379: 2368: 2357: 2354: 2349: 2345: 2324: 2304: 2301: 2298: 2276: 2272: 2265: 2262: 2259: 2256: 2253: 2250: 2246: 2241: 2238: 2235: 2232: 2229: 2224: 2220: 2209: 2197: 2194: 2191: 2188: 2185: 2165: 2162: 2157: 2153: 2132: 2112: 2109: 2106: 2086: 2083: 2080: 2077: 2074: 2071: 2066: 2062: 2041: 2030: 2019: 2016: 2011: 2007: 1986: 1966: 1963: 1960: 1940: 1937: 1934: 1931: 1928: 1925: 1922: 1919: 1916: 1911: 1907: 1886: 1866: 1842: 1822: 1819: 1816: 1813: 1810: 1794: 1791: 1774: 1771: 1768: 1765: 1762: 1751: 1750: 1738: 1733: 1729: 1723: 1720: 1714: 1709: 1704: 1699: 1694: 1691: 1687: 1676: 1662: 1658: 1652: 1649: 1643: 1638: 1633: 1628: 1623: 1620: 1616: 1605: 1593: 1590: 1587: 1584: 1562: 1558: 1552: 1548: 1542: 1539: 1534: 1529: 1525: 1513: 1501: 1498: 1495: 1492: 1489: 1469: 1466: 1463: 1460: 1438: 1434: 1430: 1427: 1422: 1418: 1397: 1386: 1375: 1372: 1369: 1347: 1343: 1339: 1336: 1333: 1330: 1327: 1322: 1318: 1297: 1277: 1253: 1250: 1247: 1244: 1241: 1217: 1214: 1211: 1206: 1202: 1196: 1193: 1188: 1185: 1165: 1162: 1142: 1139: 1136: 1133: 1113: 1108: 1103: 1099: 1096: 1091: 1087: 1082: 1075: 1072: 1067: 1062: 1057: 1052: 1048: 1044: 1040: 1037: 1032: 1028: 1023: 1017: 1014: 1009: 1006: 1002: 997: 992: 987: 982: 977: 973: 952: 949: 946: 943: 940: 937: 917: 897: 885: 882: 869: 866: 863: 858: 855: 850: 847: 844: 823: 818: 814: 810: 807: 804: 801: 798: 793: 789: 768: 765: 745: 742: 739: 734: 731: 726: 723: 720: 715: 711: 678: 658: 638: 629:Equivalently, 618: 615: 612: 609: 606: 603: 600: 580: 577: 574: 552: 548: 544: 541: 538: 535: 532: 527: 523: 502: 482: 462: 447: 446: 433: 429: 413: 401: 397: 394: 389: 385: 381: 378: 373: 369: 365: 360: 356: 340: 328: 324: 321: 316: 312: 308: 305: 300: 296: 292: 289: 284: 280: 276: 273: 268: 264: 260: 255: 251: 235: 224: 221: 218: 215: 210: 206: 196:a real number 185: 182: 177: 173: 152: 124: 104: 84: 81: 57: 54: 51: 48: 45: 33: 30: 15: 13: 10: 9: 6: 4: 3: 2: 6566: 6555: 6552: 6550: 6547: 6545: 6542: 6540: 6537: 6536: 6534: 6519: 6516: 6514: 6513:Supermanifold 6511: 6509: 6506: 6504: 6501: 6497: 6494: 6493: 6492: 6489: 6487: 6484: 6482: 6479: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6458: 6456: 6452: 6446: 6443: 6441: 6438: 6436: 6433: 6431: 6428: 6426: 6423: 6421: 6418: 6417: 6415: 6411: 6401: 6398: 6396: 6393: 6391: 6388: 6386: 6383: 6381: 6378: 6376: 6373: 6371: 6368: 6366: 6363: 6361: 6358: 6356: 6353: 6352: 6350: 6348: 6344: 6338: 6335: 6333: 6330: 6328: 6325: 6323: 6320: 6318: 6315: 6313: 6310: 6308: 6304: 6300: 6298: 6295: 6293: 6290: 6288: 6284: 6280: 6278: 6275: 6273: 6270: 6268: 6265: 6263: 6260: 6258: 6255: 6253: 6250: 6249: 6247: 6245: 6241: 6235: 6234:Wedge product 6232: 6230: 6227: 6223: 6220: 6219: 6218: 6215: 6213: 6210: 6206: 6203: 6202: 6201: 6198: 6196: 6193: 6191: 6188: 6186: 6183: 6179: 6178:Vector-valued 6176: 6175: 6174: 6171: 6169: 6166: 6162: 6159: 6158: 6157: 6154: 6152: 6149: 6147: 6144: 6143: 6141: 6137: 6131: 6128: 6126: 6123: 6121: 6118: 6114: 6111: 6110: 6109: 6108:Tangent space 6106: 6104: 6101: 6099: 6096: 6094: 6091: 6090: 6088: 6084: 6081: 6079: 6075: 6069: 6066: 6064: 6060: 6056: 6054: 6051: 6049: 6045: 6041: 6037: 6035: 6032: 6030: 6027: 6025: 6022: 6020: 6017: 6015: 6012: 6010: 6007: 6005: 6002: 5998: 5995: 5994: 5993: 5990: 5988: 5985: 5983: 5980: 5978: 5975: 5973: 5970: 5968: 5965: 5963: 5960: 5958: 5955: 5953: 5950: 5948: 5945: 5943: 5939: 5935: 5933: 5929: 5925: 5923: 5920: 5919: 5917: 5911: 5905: 5902: 5900: 5897: 5895: 5892: 5890: 5887: 5885: 5882: 5880: 5877: 5873: 5872:in Lie theory 5870: 5869: 5868: 5865: 5863: 5860: 5856: 5853: 5852: 5851: 5848: 5846: 5843: 5842: 5840: 5838: 5834: 5828: 5825: 5823: 5820: 5818: 5815: 5813: 5810: 5808: 5805: 5803: 5800: 5798: 5795: 5793: 5790: 5788: 5785: 5784: 5782: 5779: 5775:Main results 5773: 5767: 5764: 5762: 5759: 5757: 5756:Tangent space 5754: 5752: 5749: 5747: 5744: 5742: 5739: 5737: 5734: 5732: 5729: 5725: 5722: 5720: 5717: 5716: 5715: 5712: 5708: 5705: 5704: 5703: 5700: 5699: 5697: 5693: 5688: 5684: 5677: 5672: 5670: 5665: 5663: 5658: 5657: 5654: 5642: 5639: 5637: 5634: 5632: 5629: 5627: 5624: 5623: 5621: 5617: 5611: 5608: 5606: 5603: 5601: 5598: 5597: 5595: 5591: 5585: 5584:Schur's lemma 5582: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5559:Gauss's lemma 5557: 5555: 5552: 5551: 5549: 5545: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5520: 5518: 5514: 5508: 5505: 5503: 5500: 5498: 5495: 5493: 5490: 5486: 5482: 5479: 5477: 5474: 5472: 5469: 5467: 5464: 5463: 5462: 5461:Metric tensor 5459: 5457: 5456:Inner product 5454: 5452: 5449: 5447: 5444: 5440: 5437: 5435: 5432: 5430: 5427: 5425: 5422: 5421: 5420: 5417: 5416: 5414: 5410: 5405: 5401: 5394: 5389: 5387: 5382: 5380: 5375: 5374: 5371: 5365: 5364:0-12-526740-1 5361: 5357: 5353: 5350: 5349: 5344: 5343: 5335: 5331: 5324: 5321: 5316: 5312: 5305: 5302: 5298:(1): 237–266. 5297: 5293: 5286: 5283: 5278: 5274: 5267: 5264: 5259: 5255: 5248: 5245: 5241:(2): 255–306. 5240: 5236: 5229: 5226: 5219: 5217: 5180: 5177: 5174: 5169: 5165: 5144: 5124: 5104: 5084: 5079: 5075: 5071: 5065: 5060: 5048: 5045: 5040: 5037: 5032: 5029: 5013: 5009: 5006: 5001: 4997: 4993: 4987: 4974: 4969: 4966: 4954: 4933: 4928: 4918: 4895: 4887: 4886: 4885: 4883: 4882:Stefan Müller 4879: 4861: 4811: 4806: 4802: 4798: 4792: 4787: 4775: 4772: 4767: 4764: 4759: 4756: 4744: 4740: 4731: 4723: 4720: 4717: 4706: 4703: 4700: 4694: 4691: 4685: 4680: 4676: 4672: 4666: 4653: 4648: 4645: 4637: 4633: 4607: 4585: 4582: 4579: 4556: 4553: 4550: 4539: 4538: 4537: 4535: 4534:Peter Topping 4531: 4526: 4520: 4518: 4516: 4512: 4511:any spacetime 4493: 4490: 4487: 4464: 4461: 4458: 4455: 4433: 4429: 4408: 4405: 4402: 4396: 4388: 4384: 4380: 4360: 4357: 4351: 4345: 4322: 4319: 4316: 4304: 4301: 4298: 4292: 4289: 4266: 4261: 4257: 4253: 4250: 4239: 4236: 4233: 4230: 4210: 4204: 4199: 4195: 4191: 4188: 4157: 4154: 4151: 4145: 4142: 4122: 4119: 4116: 4110: 4102: 4098: 4094: 4074: 4071: 4065: 4059: 4036: 4033: 4030: 4018: 4015: 4012: 4006: 4003: 3983: 3978: 3974: 3970: 3967: 3964: 3961: 3941: 3938: 3935: 3915: 3912: 3907: 3903: 3879: 3876: 3873: 3867: 3864: 3844: 3841: 3838: 3815: 3812: 3809: 3797: 3783: 3763: 3743: 3738: 3734: 3728: 3725: 3720: 3715: 3705: 3678: 3675: 3672: 3657: 3653: 3644: 3639: 3637: 3633: 3628: 3626: 3621: 3619: 3611: 3608: 3591: 3588: 3585: 3559: 3556: 3553: 3530: 3520: 3516: 3512: 3507: 3503: 3494: 3491: 3485: 3480: 3475: 3463: 3459: 3446: 3432: 3429: 3426: 3403: 3393: 3389: 3385: 3380: 3376: 3367: 3364: 3358: 3353: 3348: 3336: 3332: 3319: 3304: 3284: 3281: 3278: 3275: 3253: 3249: 3244: 3238: 3234: 3230: 3225: 3221: 3216: 3210: 3207: 3202: 3197: 3193: 3185: 3171: 3168: 3165: 3162: 3140: 3136: 3132: 3129: 3124: 3120: 3099: 3091: 3077: 3074: 3071: 3068: 3046: 3042: 3035: 3029: 3026: 3021: 3017: 2996: 2976: 2968: 2967: 2966: 2952: 2929: 2926: 2923: 2910: 2896: 2893: 2873: 2866:implies that 2853: 2850: 2847: 2827: 2824: 2821: 2818: 2815: 2812: 2809: 2806: 2786: 2783: 2763: 2741: 2737: 2730: 2724: 2721: 2716: 2712: 2691: 2671: 2651: 2641: 2638: 2633: 2629: 2618: 2615: 2612: 2609: 2604: 2600: 2591: 2575: 2555: 2552: 2545:of dimension 2544: 2525: 2522: 2519: 2504: 2498: 2495: 2481: 2478: 2475: 2452: 2447: 2443: 2433: 2430: 2427: 2421: 2417: 2411: 2406: 2401: 2391: 2386: 2382: 2369: 2355: 2352: 2347: 2343: 2322: 2302: 2299: 2296: 2274: 2270: 2260: 2257: 2254: 2248: 2244: 2239: 2233: 2227: 2222: 2218: 2210: 2192: 2189: 2186: 2163: 2160: 2155: 2151: 2130: 2110: 2107: 2104: 2084: 2081: 2075: 2069: 2064: 2060: 2039: 2031: 2017: 2014: 2009: 2005: 1984: 1964: 1961: 1958: 1935: 1929: 1926: 1920: 1914: 1909: 1905: 1884: 1864: 1856: 1855: 1854: 1840: 1817: 1814: 1811: 1798: 1792: 1790: 1786: 1769: 1766: 1763: 1736: 1731: 1727: 1721: 1718: 1712: 1707: 1702: 1692: 1689: 1677: 1660: 1656: 1650: 1647: 1641: 1636: 1631: 1621: 1618: 1606: 1591: 1588: 1585: 1582: 1560: 1556: 1550: 1546: 1540: 1537: 1532: 1527: 1523: 1514: 1496: 1493: 1490: 1467: 1464: 1461: 1458: 1436: 1432: 1428: 1425: 1420: 1416: 1395: 1387: 1373: 1370: 1367: 1345: 1341: 1334: 1328: 1325: 1320: 1316: 1295: 1275: 1267: 1266: 1265: 1248: 1245: 1242: 1229: 1215: 1212: 1209: 1204: 1200: 1194: 1191: 1186: 1183: 1163: 1160: 1140: 1137: 1134: 1131: 1111: 1106: 1101: 1097: 1094: 1089: 1085: 1080: 1073: 1070: 1065: 1060: 1055: 1050: 1046: 1042: 1038: 1035: 1030: 1026: 1021: 1015: 1012: 1007: 1004: 1000: 995: 990: 985: 975: 950: 944: 941: 938: 915: 895: 883: 881: 867: 864: 861: 856: 853: 848: 845: 842: 821: 816: 812: 805: 799: 796: 791: 787: 766: 763: 743: 740: 737: 732: 729: 724: 721: 718: 713: 709: 700: 694: 692: 676: 656: 636: 616: 613: 607: 601: 598: 578: 575: 572: 550: 546: 539: 533: 530: 525: 521: 500: 480: 460: 453:Suppose that 450: 431: 418: 414: 392: 387: 383: 379: 376: 371: 367: 363: 358: 354: 345: 341: 319: 314: 310: 306: 303: 298: 294: 290: 287: 282: 278: 274: 271: 266: 262: 258: 253: 249: 240: 236: 219: 213: 208: 204: 183: 180: 175: 171: 150: 142: 138: 137: 136: 122: 102: 82: 79: 71: 52: 49: 46: 31: 29: 26: 25:Schur's lemma 22: 6440:Moving frame 6435:Morse theory 6425:Gauge theory 6217:Tensor field 6146:Closed/Exact 6125:Vector field 6093:Distribution 6034:Hypercomplex 6029:Quaternionic 5766:Vector field 5724:Smooth atlas 5619:Applications 5583: 5547:Main results 5355: 5346: 5336:(1): 75–110. 5333: 5329: 5323: 5314: 5310: 5304: 5295: 5291: 5285: 5276: 5272: 5266: 5257: 5253: 5247: 5238: 5234: 5228: 5195: 4826: 4598:Then, where 4527: 4524: 3798: 3640: 3629: 3622: 3615: 3612:Applications 3574: 2912: 2508: 1800: 1796: 1788: 1752: 1231: 887: 696: 452: 448: 68:is a smooth 35: 24: 18: 6385:Levi-Civita 6375:Generalized 6347:Connections 6297:Lie algebra 6229:Volume form 6130:Vector flow 6103:Pushforward 6098:Lie bracket 5997:Lie algebra 5962:G-structure 5751:Pushforward 5731:Submanifold 5260:(1): 47–62. 1512:is Einstein 6533:Categories 6508:Stratifold 6466:Diffeology 6262:Associated 6063:Symplectic 6048:Riemannian 5977:Hyperbolic 5904:Submersion 5812:Hopf–Rinow 5746:Submersion 5741:Smooth map 5579:Ricci flow 5528:Hyperbolic 5220:References 4338:such that 4052:such that 3112:such that 3009:such that 2704:such that 2052:such that 1897:such that 1408:such that 1308:such that 513:such that 6390:Principal 6365:Ehresmann 6322:Subbundle 6312:Principal 6287:Fibration 6267:Cotangent 6139:Covectors 5992:Lie group 5972:Hermitian 5915:manifolds 5884:Immersion 5879:Foliation 5817:Noether's 5802:Frobenius 5797:De Rham's 5792:Darboux's 5683:Manifolds 5523:Hermitian 5476:Signature 5439:Sectional 5419:Curvature 5204:Σ 5175:⁡ 5076:μ 5033:− 5018:Σ 5014:∫ 5007:≤ 4998:μ 4978:¯ 4970:− 4959:Σ 4955:∫ 4919:⊆ 4916:Σ 4835:Σ 4803:μ 4760:− 4741:∫ 4721:− 4704:− 4686:≤ 4677:μ 4657:¯ 4649:− 4634:∫ 4611:¯ 4583:≥ 4521:Stability 4459:∈ 4385:φ 4346:φ 4311:→ 4290:φ 4240:∈ 4146:⁡ 4099:φ 4060:φ 4025:→ 4004:φ 3971:∈ 3939:∈ 3868:⁡ 3842:∈ 3663:→ 3557:∈ 3513:⁡ 3486:≤ 3430:∈ 3386:⁡ 3279:∈ 3231:⁡ 3166:∈ 3133:κ 3100:κ 3072:∈ 3030:κ 2977:κ 2874:κ 2825:κ 2819:⋅ 2810:κ 2725:κ 2672:κ 2639:⁡ 2610:⁡ 2479:∈ 2431:− 2392:⁡ 2300:∈ 2258:− 2228:⁡ 2176:that is, 2108:∈ 2085:κ 2070:⁡ 2040:κ 1962:∈ 1930:κ 1915:⁡ 1865:κ 1713:≤ 1693:⁡ 1622:⁡ 1586:∈ 1480:that is, 1462:∈ 1429:κ 1396:κ 1371:∈ 1329:κ 1276:κ 1210:⁡ 1184:κ 1161:κ 1138:κ 1095:⁡ 1036:⁡ 1008:− 865:κ 846:κ 800:κ 719:⁡ 637:κ 602:κ 576:∈ 534:κ 481:κ 396:→ 380:× 323:→ 307:× 291:× 275:× 214:⁡ 6486:Orbifold 6481:K-theory 6471:Diffiety 6195:Pullback 6009:Oriented 5987:Kenmotsu 5967:Hadamard 5913:Types of 5862:Geodesic 5687:Glossary 5538:Kenmotsu 5451:Geodesic 5404:Glossary 4946:one has 4540:Suppose 3954:and all 3546:for all 3419:for all 3268:for all 3155:for all 3061:for all 2756:for all 2468:for all 2289:for all 2097:for all 1951:for all 1575:for all 1515:One has 1451:for all 1360:for all 565:for all 36:Suppose 6430:History 6413:Related 6327:Tangent 6305:)  6285:)  6252:Adjoint 6244:Bundles 6222:density 6120:Torsion 6086:Vectors 6078:Tensors 6061:)  6046:)  6042:,  6040:Pseudo− 6019:Poisson 5952:Finsler 5947:Fibered 5942:Contact 5940:)  5932:Complex 5930:)  5899:Section 5605:Hilbert 5600:Finsler 3317:is zero 6554:Lemmas 6395:Vector 6380:Koszul 6360:Cartan 6355:Affine 6337:Vector 6332:Tensor 6317:Spinor 6307:Normal 6303:Stable 6257:Affine 6161:bundle 6113:bundle 6059:Almost 5982:Kähler 5938:Almost 5928:Almost 5922:Closed 5822:Sard's 5778:(list) 5533:Kähler 5429:Scalar 5424:tensor 5362:  5097:where 3756:where 2840:Hence 689:is an 6503:Sheaf 6277:Fiber 6053:Rizza 6024:Prime 5855:Local 5845:Curve 5707:Atlas 5434:Ricci 3693:with 963:Then 591:then 6370:Form 6272:Dual 6205:flow 6068:Tame 6044:Sub− 5957:Flat 5837:Maps 5360:ISBN 4880:and 4532:and 4373:and 4143:Isom 4087:and 3865:Isom 2913:Let 2851:> 2568:Let 2509:Let 1801:Let 1232:Let 888:Let 415:the 342:the 237:the 139:the 6292:Jet 5315:443 5277:167 4757:Ric 4430:sec 3575:If 2989:on 2776:in 2684:on 2601:div 2335:of 2219:sec 2143:of 2061:sec 1997:of 1906:sec 1877:on 1753:If 1690:Ric 1619:Ric 1524:Ric 1417:Ric 1317:Ric 1288:on 788:Ric 722:Ric 710:div 522:Ric 493:on 355:Ric 205:sec 163:of 115:of 19:In 6535:: 6283:Co 5334:69 5332:. 5313:. 5296:20 5294:. 5275:. 5258:21 5256:. 5239:17 5237:. 5166:tr 4586:3. 4244:Gr 4182:Gr 3638:. 3620:. 3504:tr 3377:tr 3222:tr 2630:tr 2383:Rm 1201:tr 1086:tr 1027:tr 617:0. 250:Rm 135:: 23:, 6301:( 6281:( 6057:( 6038:( 5936:( 5926:( 5689:) 5685:( 5675:e 5668:t 5661:v 5483:/ 5406:) 5402:( 5392:e 5385:t 5378:v 5181:. 5178:h 5170:g 5145:H 5125:g 5105:h 5085:, 5080:g 5072:d 5066:2 5061:g 5055:| 5049:g 5046:H 5041:2 5038:1 5030:h 5025:| 5010:C 5002:g 4994:d 4988:2 4984:) 4975:H 4967:H 4964:( 4934:, 4929:3 4924:R 4896:C 4862:3 4857:R 4812:. 4807:g 4799:d 4793:2 4788:g 4782:| 4776:g 4773:R 4768:n 4765:1 4752:| 4745:M 4732:2 4728:) 4724:2 4718:n 4715:( 4710:) 4707:1 4701:n 4698:( 4695:n 4692:4 4681:g 4673:d 4667:2 4663:) 4654:R 4646:R 4643:( 4638:M 4608:R 4580:n 4560:) 4557:g 4554:, 4551:M 4548:( 4497:) 4494:g 4491:, 4488:M 4485:( 4465:. 4462:M 4456:p 4434:p 4409:. 4406:Q 4403:= 4400:) 4397:P 4394:( 4389:p 4381:d 4361:p 4358:= 4355:) 4352:p 4349:( 4326:) 4323:g 4320:, 4317:M 4314:( 4308:) 4305:g 4302:, 4299:M 4296:( 4293:: 4270:) 4267:M 4262:p 4258:T 4254:, 4251:2 4248:( 4237:Q 4234:, 4231:P 4211:, 4208:) 4205:M 4200:p 4196:T 4192:, 4189:2 4186:( 4161:) 4158:g 4155:, 4152:M 4149:( 4123:. 4120:w 4117:= 4114:) 4111:v 4108:( 4103:p 4095:d 4075:p 4072:= 4069:) 4066:p 4063:( 4040:) 4037:g 4034:, 4031:M 4028:( 4022:) 4019:g 4016:, 4013:M 4010:( 4007:: 3984:M 3979:p 3975:T 3968:w 3965:, 3962:v 3942:M 3936:p 3916:. 3913:M 3908:p 3904:T 3883:) 3880:g 3877:, 3874:M 3871:( 3845:M 3839:p 3819:) 3816:g 3813:, 3810:M 3807:( 3784:H 3764:h 3744:, 3739:2 3735:H 3729:n 3726:1 3721:= 3716:2 3711:| 3706:h 3702:| 3679:1 3676:+ 3673:n 3668:R 3658:n 3654:S 3595:) 3592:g 3589:, 3586:M 3583:( 3560:M 3554:p 3531:2 3527:) 3521:p 3517:h 3508:g 3500:( 3495:n 3492:1 3481:2 3476:g 3471:| 3464:p 3460:h 3455:| 3433:M 3427:p 3404:2 3400:) 3394:p 3390:h 3381:g 3373:( 3368:n 3365:1 3359:= 3354:2 3349:g 3344:| 3337:p 3333:h 3328:| 3305:h 3285:, 3282:M 3276:p 3254:p 3250:g 3245:) 3239:p 3235:h 3226:g 3217:( 3211:n 3208:1 3203:= 3198:p 3194:h 3172:, 3169:M 3163:p 3141:p 3137:g 3130:= 3125:p 3121:h 3078:, 3075:M 3069:p 3047:p 3043:g 3039:) 3036:p 3033:( 3027:= 3022:p 3018:h 2997:M 2953:h 2933:) 2930:g 2927:, 2924:M 2921:( 2897:. 2894:M 2854:1 2848:n 2828:. 2822:d 2816:n 2813:= 2807:d 2787:, 2784:M 2764:p 2742:p 2738:g 2734:) 2731:p 2728:( 2722:= 2717:p 2713:h 2692:M 2652:. 2647:) 2642:h 2634:g 2624:( 2619:d 2616:= 2613:h 2605:g 2576:h 2556:. 2553:n 2529:) 2526:g 2523:, 2520:M 2517:( 2482:M 2476:p 2453:2 2448:p 2444:R 2437:) 2434:1 2428:n 2425:( 2422:n 2418:2 2412:= 2407:2 2402:g 2397:| 2387:p 2378:| 2356:, 2353:M 2348:p 2344:T 2323:V 2303:M 2297:p 2275:p 2271:R 2264:) 2261:1 2255:n 2252:( 2249:n 2245:1 2240:= 2237:) 2234:V 2231:( 2223:p 2196:) 2193:g 2190:, 2187:M 2184:( 2164:, 2161:M 2156:p 2152:T 2131:V 2111:M 2105:p 2082:= 2079:) 2076:V 2073:( 2065:p 2018:, 2015:M 2010:p 2006:T 1985:V 1965:M 1959:p 1939:) 1936:p 1933:( 1927:= 1924:) 1921:V 1918:( 1910:p 1885:M 1841:n 1821:) 1818:g 1815:, 1812:M 1809:( 1773:) 1770:g 1767:, 1764:M 1761:( 1737:. 1732:2 1728:R 1722:n 1719:1 1708:2 1703:g 1698:| 1686:| 1661:2 1657:R 1651:n 1648:1 1642:= 1637:2 1632:g 1627:| 1615:| 1592:, 1589:M 1583:p 1561:p 1557:g 1551:p 1547:R 1541:n 1538:1 1533:= 1528:p 1500:) 1497:g 1494:, 1491:M 1488:( 1468:, 1465:M 1459:p 1437:p 1433:g 1426:= 1421:p 1374:M 1368:p 1346:p 1342:g 1338:) 1335:p 1332:( 1326:= 1321:p 1296:M 1252:) 1249:g 1246:, 1243:M 1240:( 1216:. 1213:B 1205:g 1195:n 1192:1 1187:= 1164:, 1141:g 1135:= 1132:B 1112:. 1107:2 1102:) 1098:B 1090:g 1081:( 1074:n 1071:1 1066:+ 1061:2 1056:g 1051:| 1047:g 1043:) 1039:B 1031:g 1022:( 1016:n 1013:1 1005:B 1001:| 996:= 991:2 986:g 981:| 976:B 972:| 951:. 948:) 945:g 942:, 939:V 936:( 916:n 896:B 868:. 862:d 857:2 854:n 849:= 843:d 822:, 817:p 813:g 809:) 806:p 803:( 797:= 792:p 767:. 764:M 744:. 741:R 738:d 733:2 730:1 725:= 714:g 693:. 677:M 657:M 614:= 611:) 608:p 605:( 599:d 579:M 573:p 551:p 547:g 543:) 540:p 537:( 531:= 526:p 501:M 461:n 432:p 428:R 400:R 393:M 388:p 384:T 377:M 372:p 368:T 364:: 359:p 327:R 320:M 315:p 311:T 304:M 299:p 295:T 288:M 283:p 279:T 272:M 267:p 263:T 259:: 254:p 223:) 220:V 217:( 209:p 184:, 181:M 176:p 172:T 151:V 123:M 103:p 83:. 80:n 56:) 53:g 50:, 47:M 44:(

Index

Riemannian geometry
Riemannian manifold
sectional curvature
Riemann curvature tensor
Ricci curvature
scalar curvature
Einstein manifold
Bianchi identity
pseudo-Riemannian manifold
Bianchi identity
geometric flows
Richard Hamilton
Gerhard Huisken
differentiable sphere theorem
mean curvature flow
any spacetime
cosmological principle
Camillo De Lellis
Peter Topping
Camillo De Lellis
Stefan Müller
Foundations of differential geometry. Vol. I.
ISBN
0-12-526740-1
v
t
e
Riemannian geometry
Glossary
Curvature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.