Knowledge (XXG)

Beta-decay stable isobars

Source 📝

338:
surrounding even-even isobars, and the last two surround the proton numbers 43 and 61 which have no beta-stable isotopes. Also, two beta-decay stable nuclides exist for odd proton numbers 1, 3, 5, 7, 17, 19, 29, 31, 35, 47, 51, 63, 77, 81, and 95; the first four cases involve very light nuclides where odd-odd nuclides are more stable than their surrounding even-even isobars, and the other numbers surround the neutron numbers 19, 21, 35, 39, 45, 61, 71, 89, 115, 123, 147 which have no beta-stable isotopes. (For
1333: 31: 1344:= 256. Black denotes the predicted beta-stability line, which is in good agreement with experimental data, though it fails to predict that Tc and Pm have no beta-stable isotope (the mass differences causing these anomalies are small). Islands of stability are predicted to center near Ds and 126, beyond which the model appears to deviate from several rules of the semi-empirical mass formula. 285:
directions, to Hf or W.) Among non-primordial nuclides, there are some other cases of theoretically possible but never-observed beta decay, notably including Rn and Cm (the most stable isotopes of their elements considering all decay modes). Finally, Ca and Zr have not been observed to undergo beta decay (which is theoretically possible for both), but double beta decay is known for both.
1890:
Gd was previously thought to be a third beta-stable isobar for mass 148, but according to current mass determinations it has a higher mass than Eu and can undergo electron capture. Nevertheless, the mass difference is very small (27.0 keV, even lower than likewise unseen electron capture of Te),
1447:-mass of the two beta-stable isobars. For example, K could either undergo electron capture or positron emission to Ar, or undergo beta minus decay to Ca: both possible products are beta-stable. The former process would produce the lighter of the two beta-stable isobars, yet the latter is more common. 337:
Two beta-decay stable nuclides exist for odd neutron numbers 1 (H and He), 3 (He and Li – the former having an extremely short half-life), 5 (Be and B), 7 (C and N), 55 (Mo and Ru), and 85 (Nd and Sm); the first four cases involve very light nuclides where odd-odd nuclides are more stable than their
1380:
closures in the region; such isotopes would decay primarily through alpha decay or spontaneous fission. Beyond the island of stability, various models that correctly predict many known beta-stable isotopes also predict anomalies in the beta-stability line that are unobserved in any known nuclides,
1360:
is small enough that such decay has never been seen. With the exception of No, no nuclides with A > 260 have been definitively identified as beta-stable. Fm is unconfirmed. Moreover, the known beta-stable nuclei for individual masses A > 257 may not represent the complete
284:
are beta decay stable, with the exception of K, V, Rb, Cd, In, La, Lu, and Re. In addition, Te and Ta have not been observed to decay, but are believed to undergo beta decay with an extremely long half-life (over 10 years). (Te can only undergo electron capture to Sb, whereas Ta can decay in both
386:= 20 (S, Cl, Ar, K, and Ca), 50 (Kr, Sr, Y, Zr, and Mo, noting also primordial but not beta-stable Rb), 58 (Mo, Ru, Rh, Pd, and Cd), 74 (Sn, Te, I, Xe, and Ba), 78 (Te, Xe, Cs, Ba, and Ce), 88 (Nd, Sm, Eu, Gd, and Dy – the last not primordial), and 90 (Nd, Sm, Eu, Gd, and Dy). 1352:
is sometimes also possible, but in all known cases it is a minor branch compared to alpha decay or spontaneous fission. Alpha decay is energetically possible for all beta-stable nuclides with A ≥ 165 with the single exception of Hg, but in most cases the
365:
and Be – the former having an extremely short half-life) and 6 (C and C). Also, the only even neutron numbers with only one beta-decay stable nuclide are 0 (H) and 2 (He); at least two beta-decay stable nuclides exist for even neutron numbers in the range 4 ≤
1381:
such as the existence of two beta-stable nuclides with the same odd mass number. This is a consequence of the fact that a semi-empirical mass formula must consider shell correction and nuclear deformation, which become far more pronounced for heavy nuclides.
1904:), and it falls within the error margin given in AME2020. Hence, Rn is probably not beta-stable, though only the alpha decay mode is experimentally known for that nuclide, and the search for beta decay yielded a lower partial half-life limit of 8 years. 304:, are known to have at least one beta-stable isotope. It is known that technetium and promethium have no beta-stable isotopes; current measurement uncertainties are not enough to say whether mendelevium has them or not. 2208:
Belli, P.; Bernabei, R.; Cappella, C.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Investigation of rare nuclear decays with
1942:
Proc. Int. Symposium on Why and How should we investigate Nuclides Far Off the Stability Line", Lysekil, Sweden, August 1966, eds. W. Forsling, C.J. Herrlander and H. Ryde, Stockholm, Almqvist & Wiksell,
1913:
While the AME2020 atomic mass evaluation gives Md a lower mass than Fm, implying beta stability, the error margin between them is larger than the mass difference. Hence, either Fm or Md could be beta-stable.
1400:), then full ionization makes decay impossible. This happens for example for Be. Moreover, sometimes the energy difference is such that while β decay violates conservation of energy for a neutral atom, 1922:
There is no known beta-stable isobar for mass 261, although they are known for the surrounding masses 260 and 262. Various models suggest that one of the undiscovered Md and No should be beta-stable.
1420:
Beta decay generally causes nuclides to decay toward the isobar with the lowest mass (which is often, but not always, the one with highest binding energy) with the same mass number. Those with lower
1900:
While the AME2020 atomic mass evaluation gives Rn a lower mass than Fr, implying beta stability, it is predicted that single beta decay of Rn is energetically possible (albeit with very low
1412:, this means that Dy, Ir, Tl, At, and Am among beta-stable neutral nuclides cease to be beta-stable as bare nuclides, and are replaced by their daughters Ho, Pt, Pb, Rn, and Cm. 397:
are He, Be, Sm, Gd, and Dy. (Sm has a half-life long enough that it should barely survive as a primordial nuclide, but it has never been experimentally confirmed as such.)
374:= 4 (Li and Be), 6 (B and C), 8 (N and O), 66 (Cd and Sn, noting also primordial but not beta-stable In), 120 (Pt and Hg), and 128 (Po and Rn – both very unstable to 2192: 1959: 1348:
All beta-decay stable nuclides with A ≥ 209 are known to undergo alpha decay, though for some, spontaneous fission is the dominant decay mode.
256:
Among even mass number, five (124, 130, 136, 150, 154) have three beta-stable nuclides. None have more than three; all others have either one or two.
1877:
Zr is theoretically capable of beta decay to Nb, thus making it not a beta-stable nuclide. However, such a process has never been observed, having a
1855:
Ca is theoretically capable of beta decay to Sc, thus making it not a beta-stable nuclide. However, such a process has never been observed, having a
334:
in the special case of He. For mass 5 there are no bound isobars at all; there are bound isobars for mass 8, but the beta-stable one Be is unbound.
1404:(in which the decay electron remains bound to the daughter in an atomic orbital) is possible for the corresponding bare nucleus. Within the range 261: 2579: 2672: 1881:
greater than 2.4×10 years, longer than its double beta decay half-life, meaning that double beta decay would usually occur first.
330:, especially for the heavy elements. Possible decay modes are listed as α for alpha decay, SF for spontaneous fission, and n for 100: 2146:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
276:
From 156 to 262, only eighteen have one, and the remaining 36 have two, though there may also exist some undiscovered ones.
1368:, though the exact location of the center of the valley of stability is model dependent. It is widely believed that an 2485:
Möller, P.; Sierk, A.J.; Ichikawa, T.; Sagawa, H. (2016). "Nuclear ground-state masses and deformations: FRDM(2012)".
2338:
Belli, P.; Bernabei, R.; Danevich, F. A.; et al. (2019). "Experimental searches for rare alpha and beta decays".
1868:×10 years, longer than its double beta decay half-life, meaning that double beta decay would usually occur first. 96: 1443:
However, there are a few odd-odd nuclides between two beta-stable even-even isobars, that predominantly decay to the
2068: 1388:
nuclei (with all electrons stripped) are somewhat different. Firstly, if a proton-rich nuclide can only decay by
1354: 2691: 2103:
Aunola, M.; Suhonen, J.; Siiskonen, T. (1999). "Shell-model study of the highly forbidden beta decay Ca → Sc".
1996: 313: 2635:
Liu, Shuo; Gao, Chao; Xu, Chang (2021). "Investigation of bound state β decay half-lives of bare atoms".
322:
is shown by arrows, i.e. arrows point towards the lightest-mass isobar. This is sometimes dominated by
318:
350 beta-decay stable nuclides are currently known. Theoretically predicted or experimentally observed
2594: 2550: 2535: 2500: 2448: 2424:"Future of superheavy element research: Which nuclei could be synthesized within the next few years?" 2357: 2232: 2153: 2114: 2077: 2037: 1968: 1377: 1369: 327: 267:
From 36 to 72, only eight (36, 40, 46, 50, 54, 58, 64, 70) have two, and the remaining 11 have one.
80: 91:
The line of beta stability can be defined mathematically by finding the nuclide with the greatest
2610: 2516: 2490: 2464: 2438: 2381: 2347: 2248: 2222: 1365: 394: 350:= 71 there is Te whose electron capture has not yet been observed, but neither are beta-stable.) 281: 1332: 2373: 1878: 1856: 1433: 1397: 319: 61: 2618: 2644: 2602: 2558: 2508: 2456: 2365: 2285: 2240: 2161: 2122: 2085: 2045: 1976: 1828: 1437: 1429: 1389: 331: 65: 2666: 2606: 2460: 2319:. 4th International Conference on the Chemistry and Physics of the Transactinide Elements 2598: 2554: 2504: 2452: 2361: 2236: 2157: 2118: 2081: 2049: 2041: 1981: 1972: 1954: 273:
From 124 to 154, only one (140) has one, five have three, and the remaining 10 have two.
79:, a term already in common use in 1965. This line lies along the bottom of the nuclear 2270: 2066:
Tretyak, V.I.; Zdesenko, Yu.G. (2002). "Tables of Double Beta Decay Data — An Update".
2022: 1813: 1762: 1712: 1703: 1680: 1598: 1425: 1392:(because the energy difference between the parent and daughter is less than 1.022  406: 103:. These nuclides are local maxima in terms of binding energy for a given mass number. 92: 64:
or theoretically higher simultaneous beta decay, as they have the lowest energy of all
57: 2685: 2614: 2520: 2385: 2252: 2105: 1955:"Nuclei Far Away from the Line of Beta Stability: Studies by On-Line Mass Separation" 1796: 1689: 1655: 1548: 1421: 1349: 417: 2468: 2563: 2311: 1901: 1782: 1671: 1639: 1557: 1516: 1500: 1393: 1364:
The general patterns of beta-stability are expected to continue into the region of
343: 17: 2369: 2244: 2648: 2126: 1647: 1589: 1492: 1373: 423: 375: 362: 323: 301: 111: 69: 30: 2289: 2166: 2141: 1832: 2512: 2423: 1721: 1580: 1508: 1401: 297: 293: 107: 45: 2377: 2313:
Decay modes and a limit of existence of nuclei in the superheavy mass region
1530: 270:
From 74 to 122, three (88, 90, 118) have one, and the remaining 22 have two.
2089: 1571: 1539: 1432:, while those with higher atomic number and lower neutron number undergo 357:≤ 102 have at least two beta-decay stable nuclides, with exactly two for 289: 41: 49: 1372:
exists along the beta stability line for isotopes of elements around
53: 2495: 2352: 2269:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
2021:
Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017).
1812:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
2443: 2400: 2227: 1331: 29: 2536:"The limits of the nuclear chart set by fission and alpha decay" 2000: 1997:"Interactive Chart of Nuclides (Brookhaven National Laboratory)" 2422:
Zagrebaev, Valeriy; Karpov, Alexander; Greiner, Walter (2013).
253:
All odd mass numbers have only one beta decay stable nuclide.
60:. A subset of these nuclides are also stable with regards to 1891:
and only alpha decay has been observed experimentally for Gd.
446:
All known beta-decay stable isobars sorted by mass number
95:
for a given mass number, by a model such as the classical
2399:
Koura, H.; Katakura, J; Tachibana, T; Minato, F (2015).
393:≤ 209, the only beta-decay stable nuclides that are not 378:). Seven beta-decay stable nuclides exist for the magic 2667:
https://www-nds.iaea.org/relnsd/NdsEnsdf/masschain.html
399: 105: 2580:"Manipulation of Nuclear Lifetimes in Storage Rings" 382:= 82 (Xe, Ba, La, Ce, Pr, Nd, and Sm) and five for 2271:"The NUBASE2020 evaluation of nuclear properties" 2023:"The NUBASE2016 evaluation of nuclear properties" 1814:"The NUBASE2020 evaluation of nuclear properties" 1336:One chart of known and predicted nuclides up to 2213:crystal scintillator contaminated by radium". 27:Set of nuclides that cannot undergo beta decay 2264: 2262: 2183: 2181: 2179: 2177: 2061: 2059: 1960:Annual Review of Nuclear and Particle Science 8: 2480: 2478: 2305: 2303: 2301: 2299: 2203: 2201: 75:This set of nuclides is also known as the 2562: 2494: 2442: 2351: 2226: 2165: 1980: 1449: 1396:, the amount of decay energy needed for 444: 2191:was invoked but never defined (see the 1935: 1848: 308:List of known beta-decay stable isobars 1773: 1771: 1769: 1662: 1428:than the minimum-mass isobar undergo 7: 56:or a proton to a neutron within the 2487:Atomic Data and Nuclear Data Tables 2186: 1982:10.1146/annurev.ns.29.120179.000441 48:, that is, the transformation of a 25: 2673:Beta-decay stable nuclides up to 288:All elements up to and including 2187:Cite error: The named reference 2140:Finch, S.W.; Tornow, W. (2016). 342:= 21 the long-lived primordial 2607:10.1088/0031-8949/1995/t59/030 2461:10.1088/1742-6596/420/1/012001 2142:"Search for the β decay of Zr" 1416:Beta decay toward minimum mass 1294: 1274: 1262: 1256: 1242: 1222: 1204: 1184: 1170: 1152: 1138: 1132: 1112: 1100: 1092: 1074: 1060: 1040: 1022: 1008: 988: 970: 962: 930: 924: 904: 884: 872: 866: 840: 826: 820: 806: 774: 762: 748: 736: 728: 716: 702: 696: 684: 676: 664: 650: 638: 618: 606: 598: 592: 586: 572: 560: 546: 534: 520: 508: 494: 476: 435: 1: 2050:10.1088/1674-1137/41/3/030001 2564:10.1051/epjconf/201613103002 2403:. Japan Atomic Energy Agency 1308: 1300: 1288: 1282: 1268: 1248: 1236: 1230: 1216: 1210: 1196: 1190: 1178: 1164: 1158: 1144: 1126: 1118: 1106: 1086: 1080: 1066: 1054: 1048: 1034: 1028: 1014: 1002: 996: 982: 976: 956: 950: 944: 936: 918: 910: 898: 892: 878: 858: 852: 846: 832: 814: 800: 794: 788: 780: 768: 754: 742: 722: 710: 690: 670: 658: 644: 632: 624: 612: 580: 566: 554: 540: 528: 517: 514: 505: 502: 491: 488: 482: 479: 438: 427: 370:≤ 160, with exactly two for 353:All even proton numbers 2 ≤ 2649:10.1103/PhysRevC.104.024304 2340:European Physical Journal A 2215:European Physical Journal A 97:semi-empirical mass formula 2708: 2370:10.1140/epja/i2019-12823-2 2245:10.1140/epja/i2014-14134-6 2167:10.1016/j.nima.2015.09.098 2069:At. Data Nucl. Data Tables 1478: 1470: 1462: 1454: 311: 2513:10.1016/j.adt.2015.10.002 2127:10.1209/epl/i1999-00301-2 38:Beta-decay stable isobars 2290:10.1088/1674-1137/abddae 1833:10.1088/1674-1137/abddae 2401:"Chart of the Nuclides" 1792:Majority decay (β+/EC) 1667:Minority decay (β+/EC) 1526:Minority decay (β+/EC) 1376:that are stabilized by 314:List of stable isotopes 2543:EPJ Web of Conferences 2090:10.1006/adnd.2001.0873 1953:Hansen, P. G. (1979). 1345: 77:line of beta stability 34: 2578:Bosch, Fritz (1995). 1808:Isotope masses from: 1335: 44:which cannot undergo 33: 1778:Minority decay (β−) 1699:Majority decay (β−) 1567:Majority decay (β−) 264:, all have only one. 2599:1995PhST...59..221B 2555:2016EPJWC.13103002M 2534:Möller, P. (2016). 2505:2016ADNDT.109....1M 2453:2013JPhCS.420a2001Z 2362:2019EPJA...55..140B 2237:2014EPJA...50..134B 2158:2016NIMPA.806...70F 2119:1999EL.....46..577A 2082:2002ADNDT..80...83T 2042:2017ChPhC..41c0001A 1973:1979ARNPS..29...69H 1402:bound-state β decay 1370:island of stability 1366:superheavy elements 447: 395:primordial nuclides 328:spontaneous fission 282:primordial nuclides 116: 81:valley of stability 18:Beta-stability line 2489:. 109–110: 1–204. 2431:Journal of Physics 2346:(8): 140–1–140–7. 2310:Koura, H. (2011). 1346: 1317:Fm (SF) → No (SF) 1312:Fm (SF) ← No (SF) 1304:Cf (SF) → Fm (SF) 445: 106: 35: 2637:Physical Review C 2278:Chinese Physics C 2030:Chinese Physics C 1879:partial half-life 1857:partial half-life 1821:Chinese Physics C 1805: 1804: 1398:positron emission 1330: 1329: 1298:Cf (SF) → Fm (α) 974:Sm → Gd ← Dy (α) 960:Nd → Sm ← Gd (α) 443: 442: 320:double beta-decay 251: 250: 62:double beta decay 16:(Redirected from 2699: 2653: 2652: 2632: 2626: 2625: 2623: 2617:. Archived from 2584: 2575: 2569: 2568: 2566: 2540: 2531: 2525: 2524: 2498: 2482: 2473: 2472: 2446: 2428: 2419: 2413: 2412: 2410: 2408: 2396: 2390: 2389: 2355: 2335: 2329: 2328: 2326: 2324: 2318: 2307: 2294: 2293: 2275: 2266: 2257: 2256: 2230: 2205: 2196: 2190: 2185: 2172: 2171: 2169: 2137: 2131: 2130: 2100: 2094: 2093: 2063: 2054: 2053: 2027: 2018: 2012: 2011: 2009: 2008: 1999:. Archived from 1993: 1987: 1986: 1984: 1950: 1944: 1940: 1923: 1920: 1914: 1911: 1905: 1898: 1892: 1888: 1882: 1875: 1869: 1867: 1866: 1859:greater than 1.1 1853: 1836: 1818: 1450: 1438:electron capture 1430:beta-minus decay 1411: 1390:electron capture 1384:The beta-stable 1292:Cf (α) ← Fm (α) 1278:Cm (α) → Cf (α) 1266:Pu (α) → Cm (α) 1260:Pu (α) ← Cm (α) 1208:Ra (α) → Th (α) 1200:Ra (α) ← Th (α) 1188:Rn (α) → Ra (α) 1182:Rn (α) ← Ra (α) 1174:Po (α) → Rn (α) 1168:Po (α) ← Rn (α) 1162:Po (α) ← Rn (α) 448: 400: 346:exists, and for 332:neutron emission 117: 101:C. F. Weizsäcker 21: 2707: 2706: 2702: 2701: 2700: 2698: 2697: 2696: 2692:Nuclear physics 2682: 2681: 2662: 2657: 2656: 2634: 2633: 2629: 2621: 2587:Physica Scripta 2582: 2577: 2576: 2572: 2538: 2533: 2532: 2528: 2484: 2483: 2476: 2426: 2421: 2420: 2416: 2406: 2404: 2398: 2397: 2393: 2337: 2336: 2332: 2322: 2320: 2316: 2309: 2308: 2297: 2273: 2268: 2267: 2260: 2212: 2207: 2206: 2199: 2188: 2175: 2139: 2138: 2134: 2102: 2101: 2097: 2065: 2064: 2057: 2025: 2020: 2019: 2015: 2006: 2004: 1995: 1994: 1990: 1952: 1951: 1947: 1941: 1937: 1932: 1927: 1926: 1921: 1917: 1912: 1908: 1899: 1895: 1889: 1885: 1876: 1872: 1865: 1862: 1861: 1860: 1854: 1850: 1845: 1816: 1811: 1434:beta-plus decay 1418: 1405: 1246:U (α) → Pu (α) 1240:U (α) ← Pu (α) 1226:Th (α) → U (α) 1220:Th (α) ← U (α) 316: 310: 89: 40:are the set of 28: 23: 22: 15: 12: 11: 5: 2705: 2703: 2695: 2694: 2684: 2683: 2680: 2679: 2669: 2661: 2660:External links 2658: 2655: 2654: 2627: 2624:on 2013-12-26. 2570: 2526: 2474: 2414: 2391: 2330: 2295: 2258: 2221:(9): 134–143. 2210: 2197: 2173: 2132: 2095: 2055: 2013: 1988: 1945: 1934: 1933: 1931: 1928: 1925: 1924: 1915: 1906: 1893: 1883: 1870: 1863: 1847: 1846: 1844: 1841: 1840: 1839: 1838: 1837: 1803: 1802: 1799: 1793: 1789: 1788: 1785: 1779: 1775: 1774: 1772: 1770: 1768: 1765: 1760: 1756: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1727: 1724: 1718: 1715: 1709: 1706: 1700: 1696: 1695: 1692: 1686: 1683: 1677: 1674: 1668: 1664: 1663: 1661: 1658: 1653: 1650: 1645: 1642: 1637: 1633: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1611: 1608: 1605: 1604: 1601: 1595: 1592: 1586: 1583: 1577: 1574: 1568: 1564: 1563: 1560: 1554: 1551: 1545: 1542: 1536: 1533: 1527: 1523: 1522: 1519: 1514: 1511: 1506: 1503: 1498: 1495: 1490: 1486: 1485: 1482: 1479: 1477: 1474: 1471: 1469: 1466: 1463: 1461: 1458: 1455: 1453: 1426:neutron number 1417: 1414: 1328: 1327: 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1306: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1280: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1254: 1253: 1250: 1247: 1244: 1241: 1238: 1235: 1232: 1228: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1202: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1176: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1150: 1149: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1124: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1098: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1076: 1072: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1046: 1045: 1042: 1039: 1036: 1033: 1030: 1027: 1024: 1020: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 994: 993: 990: 987: 984: 981: 978: 975: 972: 968: 967: 964: 961: 958: 955: 952: 949: 946: 942: 941: 938: 935: 932: 929: 926: 923: 920: 916: 915: 912: 909: 906: 903: 900: 897: 894: 890: 889: 886: 883: 880: 877: 874: 871: 868: 864: 863: 860: 857: 854: 851: 848: 845: 842: 838: 837: 834: 831: 828: 825: 822: 819: 816: 812: 811: 808: 805: 802: 799: 796: 793: 790: 786: 785: 782: 779: 776: 773: 770: 767: 764: 760: 759: 756: 753: 750: 747: 744: 741: 738: 734: 733: 730: 727: 724: 721: 718: 715: 712: 708: 707: 704: 701: 698: 695: 692: 689: 686: 682: 681: 678: 675: 672: 669: 666: 663: 660: 656: 655: 652: 649: 646: 643: 640: 637: 634: 630: 629: 626: 623: 620: 617: 614: 611: 608: 604: 603: 600: 597: 594: 591: 588: 585: 582: 578: 577: 574: 571: 568: 565: 562: 559: 556: 552: 551: 548: 545: 542: 539: 536: 533: 530: 526: 525: 522: 519: 516: 513: 510: 507: 504: 500: 499: 496: 493: 490: 487: 484: 481: 478: 474: 473: 470: 467: 464: 461: 458: 455: 452: 441: 440: 437: 434: 430: 429: 426: 420: 413: 412: 409: 403: 309: 306: 278: 277: 274: 271: 268: 265: 249: 248: 245: 242: 239: 235: 234: 232: 229: 226: 222: 221: 219: 216: 213: 209: 208: 206: 203: 200: 196: 195: 192: 189: 186: 182: 181: 179: 176: 173: 169: 168: 166: 163: 160: 156: 155: 153: 150: 147: 143: 142: 140: 138: 135: 131: 130: 127: 124: 121: 110:stable / even 93:binding energy 88: 85: 68:with the same 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2704: 2693: 2690: 2689: 2687: 2678: 2676: 2670: 2668: 2665:Decay-Chains 2664: 2663: 2659: 2650: 2646: 2643:(2): 024304. 2642: 2638: 2631: 2628: 2620: 2616: 2612: 2608: 2604: 2600: 2596: 2592: 2588: 2581: 2574: 2571: 2565: 2560: 2556: 2552: 2549:: 03002:1–8. 2548: 2544: 2537: 2530: 2527: 2522: 2518: 2514: 2510: 2506: 2502: 2497: 2492: 2488: 2481: 2479: 2475: 2470: 2466: 2462: 2458: 2454: 2450: 2445: 2440: 2437:(1): 012001. 2436: 2432: 2425: 2418: 2415: 2402: 2395: 2392: 2387: 2383: 2379: 2375: 2371: 2367: 2363: 2359: 2354: 2349: 2345: 2341: 2334: 2331: 2315: 2314: 2306: 2304: 2302: 2300: 2296: 2291: 2287: 2284:(3): 030001. 2283: 2279: 2272: 2265: 2263: 2259: 2254: 2250: 2246: 2242: 2238: 2234: 2229: 2224: 2220: 2216: 2204: 2202: 2198: 2194: 2184: 2182: 2180: 2178: 2174: 2168: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2133: 2128: 2124: 2120: 2116: 2112: 2108: 2107: 2099: 2096: 2091: 2087: 2083: 2079: 2076:(1): 83–116. 2075: 2071: 2070: 2062: 2060: 2056: 2051: 2047: 2043: 2039: 2036:(3): 030001. 2035: 2031: 2024: 2017: 2014: 2003:on 2020-07-25 2002: 1998: 1992: 1989: 1983: 1978: 1974: 1970: 1966: 1962: 1961: 1956: 1949: 1946: 1939: 1936: 1929: 1919: 1916: 1910: 1907: 1903: 1897: 1894: 1887: 1884: 1880: 1874: 1871: 1858: 1852: 1849: 1842: 1834: 1830: 1827:(3): 030001. 1826: 1822: 1815: 1810: 1809: 1807: 1806: 1800: 1798: 1794: 1791: 1790: 1786: 1784: 1780: 1777: 1776: 1766: 1764: 1761: 1758: 1757: 1753: 1750: 1747: 1744: 1741: 1738: 1735: 1732: 1730: 1729: 1725: 1723: 1719: 1716: 1714: 1710: 1707: 1705: 1701: 1698: 1697: 1693: 1691: 1687: 1684: 1682: 1678: 1675: 1673: 1669: 1666: 1665: 1659: 1657: 1654: 1651: 1649: 1646: 1643: 1641: 1638: 1635: 1634: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1607: 1606: 1602: 1600: 1596: 1593: 1591: 1587: 1584: 1582: 1578: 1575: 1573: 1569: 1566: 1565: 1561: 1559: 1555: 1552: 1550: 1546: 1544:39.9623831225 1543: 1541: 1537: 1534: 1532: 1528: 1525: 1524: 1520: 1518: 1515: 1512: 1510: 1507: 1504: 1502: 1499: 1496: 1494: 1491: 1488: 1487: 1483: 1480: 1475: 1472: 1467: 1464: 1459: 1456: 1452: 1451: 1448: 1446: 1441: 1439: 1435: 1431: 1427: 1423: 1422:atomic number 1415: 1413: 1409: 1403: 1399: 1395: 1391: 1387: 1386:fully ionized 1382: 1379: 1375: 1371: 1367: 1362: 1359: 1357: 1351: 1350:Cluster decay 1343: 1339: 1334: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1307: 1303: 1297: 1291: 1285: 1281: 1277: 1271: 1265: 1259: 1255: 1251: 1245: 1239: 1233: 1229: 1225: 1219: 1213: 1207: 1203: 1199: 1193: 1187: 1181: 1177: 1173: 1167: 1161: 1155: 1151: 1147: 1141: 1135: 1129: 1125: 1121: 1115: 1109: 1103: 1099: 1095: 1089: 1083: 1077: 1073: 1069: 1063: 1057: 1051: 1047: 1043: 1037: 1031: 1025: 1021: 1017: 1011: 1005: 999: 995: 991: 985: 979: 973: 969: 965: 959: 953: 947: 943: 939: 933: 927: 921: 917: 914:Xe → Ba ← Ce 913: 907: 901: 896:Te → Xe ← Ba 895: 891: 887: 881: 876:Sn → Te ← Xe 875: 869: 865: 861: 855: 849: 843: 839: 835: 829: 823: 817: 813: 809: 803: 797: 791: 787: 783: 777: 771: 765: 761: 757: 751: 745: 739: 735: 731: 725: 719: 713: 709: 705: 699: 693: 687: 683: 679: 673: 667: 661: 657: 653: 647: 641: 635: 631: 627: 621: 615: 609: 605: 601: 595: 589: 583: 579: 575: 569: 563: 557: 553: 549: 543: 537: 531: 527: 523: 511: 501: 497: 485: 475: 471: 468: 465: 462: 459: 456: 453: 450: 449: 432: 431: 425: 421: 419: 415: 414: 410: 408: 404: 402: 401: 398: 396: 392: 387: 385: 381: 377: 373: 369: 364: 360: 356: 351: 349: 345: 341: 335: 333: 329: 325: 321: 315: 307: 305: 303: 299: 295: 291: 286: 283: 275: 272: 269: 266: 263: 259: 258: 257: 254: 246: 243: 240: 237: 236: 233: 230: 227: 224: 223: 220: 217: 214: 211: 210: 207: 204: 201: 198: 197: 193: 190: 187: 184: 183: 180: 177: 174: 171: 170: 167: 164: 161: 158: 157: 154: 151: 148: 145: 144: 141: 139: 136: 133: 132: 128: 125: 122: 119: 118: 115: 114: 109: 104: 102: 99:developed by 98: 94: 86: 84: 82: 78: 73: 71: 67: 63: 59: 55: 51: 47: 43: 39: 32: 19: 2674: 2640: 2636: 2630: 2619:the original 2590: 2586: 2573: 2546: 2542: 2529: 2486: 2434: 2430: 2417: 2405:. Retrieved 2394: 2343: 2339: 2333: 2321:. Retrieved 2312: 2281: 2277: 2218: 2214: 2149: 2145: 2135: 2110: 2104: 2098: 2073: 2067: 2033: 2029: 2016: 2005:. Retrieved 2001:the original 1991: 1964: 1958: 1948: 1938: 1918: 1909: 1902:decay energy 1896: 1886: 1873: 1851: 1824: 1820: 1801:145.9131169 1726:242.0588358 1694:242.0587426 1576:35.967545106 1562:149.9172755 1444: 1442: 1419: 1407: 1385: 1383: 1363: 1355: 1347: 1341: 1337: 1090:Os ← Pt (α) 1038:Yb ← Hf (α) 966:Sm ← Gd (α) 954:Nd → Sm (α) 948:Nd → Sm (α) 940:Nd (α) ← Sm 390: 388: 383: 379: 371: 367: 358: 354: 352: 347: 339: 336: 317: 287: 279: 255: 252: 112: 90: 87:Introduction 76: 74: 37: 36: 2593:: 221–229. 2323:18 November 1787:145.913041 1708:151.9197910 1685:157.9241039 1676:151.9197324 1660:242.0595474 1652:157.9255315 1644:151.9217935 1603:149.918659 1585:39.96259098 1535:35.96708076 1521:149.919747 1505:39.96399848 1497:35.96830698 1424:and higher 1374:copernicium 1078:W → Os (α) 1070:W ← Os (α) 1058:Hf ← W (α) 376:alpha decay 324:alpha decay 302:mendelevium 70:mass number 2671:(Russian) 2496:1508.06294 2407:30 October 2353:1908.11458 2189:AME2020 II 2113:(5): 577. 2007:2009-06-19 1967:: 69–119. 1930:References 1767:145.914696 1717:157.924409 1594:107.904184 1553:107.903892 1513:107.905956 312:See also: 298:promethium 294:technetium 46:beta decay 2615:250860726 2521:118707897 2444:1207.5700 2386:201664098 2378:1434-601X 2253:118513731 2228:1407.5844 2193:help page 2152:: 70–74. 1720:82.7% to 1688:17.3% to 1679:0.01% to 1538:11.2% to 292:, except 2686:Category 2469:55434734 1711:0.6% to 1648:Tb-158m1 1640:Eu-152m1 1322:No (SF) 1136:Hg → Pb 1116:Pt → Hg 1110:Pt ← Hg 1096:Os → Pt 1044:Yb → Hf 1026:Er → Yb 1018:Er ← Yb 1006:Dy ← Er 1000:Dy ← Er 992:Gd → Dy 986:Gd ← Dy 980:Gd ← Dy 934:Ce → Nd 922:Ba ← Ce 908:Xe → Ba 902:Xe ← Ba 888:Te → Xe 882:Te ← Xe 870:Sn → Te 862:Sn ← Te 850:Cd → Sn 844:Cd → Sn 836:Cd ← Sn 830:Pd → Cd 824:Pd ← Cd 818:Pd ← Cd 810:Ru → Pd 804:Ru ← Pd 798:Mo → Ru 792:Mo → Ru 784:Mo ← Ru 778:Zr → Mo 772:Zr ← Mo 752:Kr → Sr 746:Kr ← Sr 740:Se → Kr 732:Se → Kr 726:Se ← Kr 720:Ge → Se 714:Ge ← Se 700:Zn → Ge 680:Ni ← Zn 662:Fe ← Ni 648:Cr ← Fe 636:Ti ← Cr 622:Ca → Ti 602:Ar ← Ca 290:nobelium 42:nuclides 2595:Bibcode 2551:Bibcode 2501:Bibcode 2449:Bibcode 2358:Bibcode 2233:Bibcode 2154:Bibcode 2115:Bibcode 2078:Bibcode 2038:Bibcode 1969:Bibcode 1795:63% to 1781:37% to 1759:Parent 1751:Nuclide 1745:Nuclide 1739:Nuclide 1733:Nuclide 1702:72% to 1670:28% to 1636:Parent 1628:Nuclide 1622:Nuclide 1616:Nuclide 1610:Nuclide 1597:89% to 1588:97% to 1579:89% to 1570:98% to 1556:11% to 1517:Eu-150m 1489:Parent 1481:Nuclide 1473:Nuclide 1465:Nuclide 1457:Nuclide 1340:= 149, 1309:Fm (α) 1301:Fm (α) 1295:Es (α) 1289:Cf (α) 1286:Cf (α) 1283:Cf (α) 1275:Bk (α) 1272:Cm (α) 1269:Cm (α) 1263:Am (α) 1257:Am (α) 1252:Pu (α) 1249:Pu (α) 1243:Np (α) 1223:Pa (α) 1217:Th (α) 1214:Th (α) 1211:Th (α) 1205:Ac (α) 1197:Ra (α) 1194:Ra (α) 1191:Ra (α) 1185:Fr (α) 1179:Rn (α) 1171:At (α) 1165:Po (α) 1159:Po (α) 1156:Po (α) 1153:Bi (α) 963:Eu (α) 951:Sm (α) 590:S ← Ar 498:Be (α) 489:He (n) 472:Even A 439:Even A 262:2 to 34 225:212-262 212:194-210 199:156-192 185:118-154 108:β decay 66:isobars 58:nucleus 50:neutron 2613:  2519:  2467:  2384:  2376:  2251:  1797:Nd-146 1783:Sm-146 1763:Pm-146 1722:Cm-242 1713:Dy-158 1704:Gd-152 1690:Pu-242 1681:Gd-158 1672:Sm-152 1656:Am-242 1599:Gd-150 1590:Cd-108 1558:Sm-150 1549:Pd-108 1547:3% to 1529:2% to 1509:Ag-108 1445:higher 1358:-value 1237:U (α) 1234:U (α) 1231:U (α) 466:Even A 460:Even A 454:Even A 433:Odd Z 428:Odd A 411:Odd N 300:, and 172:74-116 129:Three 54:proton 2622:(PDF) 2611:S2CID 2583:(PDF) 2539:(PDF) 2517:S2CID 2491:arXiv 2465:S2CID 2439:arXiv 2427:(PDF) 2382:S2CID 2348:arXiv 2317:(PDF) 2274:(PDF) 2249:S2CID 2223:arXiv 2026:(PDF) 1843:Notes 1817:(PDF) 1754:Mass 1631:Mass 1581:Ca-40 1572:Ar-36 1540:Ar-40 1493:Cl-36 1484:Mass 1410:≤ 270 1378:shell 1361:set. 469:Odd A 463:Odd A 457:Odd A 451:Odd A 436:Odd A 422:Even 416:Even 405:Even 361:= 4 ( 260:From 238:Total 159:60-72 146:36-58 52:to a 2677:=118 2409:2018 2374:ISSN 2325:2018 1943:1967 1864:−0.6 1748:Mass 1742:Mass 1736:Mass 1625:Mass 1619:Mass 1613:Mass 1531:S-36 1501:K-40 1476:Mass 1468:Mass 1460:Mass 1406:2 ≤ 389:For 280:All 134:2-34 2645:doi 2641:104 2603:doi 2591:T59 2559:doi 2547:131 2509:doi 2457:doi 2435:420 2366:doi 2286:doi 2241:doi 2209:BaF 2162:doi 2150:806 2123:doi 2106:EPL 2086:doi 2046:doi 1977:doi 1829:doi 1436:or 1394:MeV 1148:Pb 1145:Pb 1142:Pb 1139:Tl 1133:Tl 1130:Hg 1127:Hg 1122:Hg 1119:Hg 1113:Au 1107:Pt 1104:Pt 1101:Ir 1093:Ir 1087:Os 1084:Os 1081:Os 1075:Re 1061:Ta 1055:Hf 1052:Hf 1049:Hf 1041:Lu 1035:Yb 1032:Yb 1029:Yb 1023:Tm 1015:Er 1012:Er 1009:Ho 1003:Dy 997:Dy 989:Tb 983:Gd 977:Gd 971:Eu 957:Sm 945:Nd 937:Nd 931:Pr 928:Ce 925:La 919:Ba 911:Ba 905:Cs 899:Xe 893:Xe 879:Te 873:Sb 867:Sb 859:Sn 856:Sn 853:Sn 847:Sn 841:In 833:Cd 827:Ag 821:Ag 815:Pd 807:Rh 801:Ru 795:Ru 789:Mo 781:Mo 775:Nb 769:Zr 766:Zr 758:Sr 755:Sr 749:Rb 743:Kr 737:Br 729:Br 723:Se 717:As 711:Ge 706:Ge 703:Ga 697:Ga 694:Zn 691:Zn 688:Zn 685:Cu 677:Cu 674:Ni 671:Ni 668:Ni 665:Co 659:Fe 654:Fe 651:Mn 645:Cr 642:Cr 633:Ti 628:Ti 625:Ti 619:Sc 616:Ca 613:Ca 610:Ca 596:Ar 593:Cl 587:Cl 570:Si 567:Si 564:Si 561:Al 558:Mg 555:Mg 550:Mg 547:Na 544:Ne 541:Ne 538:Ne 503:Be 495:Li 492:Li 486:He 483:He 326:or 126:Two 123:One 120:βDS 2688:: 2639:. 2609:. 2601:. 2589:. 2585:. 2557:. 2545:. 2541:. 2515:. 2507:. 2499:. 2477:^ 2463:. 2455:. 2447:. 2433:. 2429:. 2380:. 2372:. 2364:. 2356:. 2344:55 2342:. 2298:^ 2282:45 2280:. 2276:. 2261:^ 2247:. 2239:. 2231:. 2219:50 2217:. 2200:^ 2195:). 2176:^ 2160:. 2148:. 2144:. 2121:. 2111:46 2109:. 2084:. 2074:80 2072:. 2058:^ 2044:. 2034:41 2032:. 2028:. 1975:. 1965:29 1963:. 1957:. 1825:45 1823:. 1819:. 1440:. 1067:W 1064:W 885:I 763:Y 639:V 607:K 599:K 584:S 581:S 576:S 573:P 535:F 532:O 529:O 524:O 521:N 518:N 515:C 512:C 509:B 506:B 480:H 477:H 363:Be 296:, 247:5 244:76 241:50 231:19 205:14 194:5 191:12 178:20 137:17 83:. 72:. 2675:Z 2651:. 2647:: 2605:: 2597:: 2567:. 2561:: 2553:: 2523:. 2511:: 2503:: 2493:: 2471:. 2459:: 2451:: 2441:: 2411:. 2388:. 2368:: 2360:: 2350:: 2327:. 2292:. 2288:: 2255:. 2243:: 2235:: 2225:: 2211:2 2170:. 2164:: 2156:: 2129:. 2125:: 2117:: 2092:. 2088:: 2080:: 2052:. 2048:: 2040:: 2010:. 1985:. 1979:: 1971:: 1835:. 1831:: 1408:A 1356:Q 1342:N 1338:Z 424:A 418:Z 407:N 391:A 384:N 380:N 372:N 368:N 359:Z 355:Z 348:N 344:K 340:N 228:7 218:3 215:6 202:5 188:2 175:2 165:2 162:5 152:6 149:6 113:A 20:)

Index

Beta-stability line

nuclides
beta decay
neutron
proton
nucleus
double beta decay
isobars
mass number
valley of stability
binding energy
semi-empirical mass formula
C. F. Weizsäcker
β decay
A
2 to 34
primordial nuclides
nobelium
technetium
promethium
mendelevium
List of stable isotopes
double beta-decay
alpha decay
spontaneous fission
neutron emission
K
Be
alpha decay

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.