Knowledge

Betterton–Kroll process

Source 📝

432:. This process used the different melting points of the metals in the solution in order to separate them out. Through fractional crystallization, the metals silver, copper and bismuth can be separated out of the lead in one step. However, this process is not very effective at removing bismuth because of how close the melting points of lead and bismuth are to each other. 70:
with a higher melting point, which then can be skimmed off of the surface. This process leaves behind lead with less than 0.01 percent bismuth by weight. The process is crucial to cheap industrial lead smelting and offers significant advantages over more expensive processes like the
404:. When the centrifuge is spun, the molten lead separates out of the dross more completely than just waiting for the dross to float to the top. This process also removes the need to hydraulically press the dross after extraction because very little lead ends up trapped in the dross. 332:
can be added to the solution. Once in the mixture at high temperature, electrodes can be used to decompose the salts into the metal and oxygen gas, so the calcium and magnesium are free to form alloys in the solution. For calcium oxide, the reaction that occurs is:
752: 103:
The key to the Betterton–Kroll process is adding calcium and magnesium metal to molten lead bullion. The metals react with impurities in the lead and form a solid film on the surface, which can be easily removed, leaving behind much purer lead.
600: 117:
point (the lowest temperature that the alloy is completely liquid), which around 320-380 °C. At the lower temperature, the calcium and magnesium react with bismuth and antimony in the lead bullion in the following way:
112:
The Betterton–Kroll process begins by heating lead bullion to around 500 °C. A calcium-magnesium alloy is added to the solution, which melts into the bullion in 15–20 minutes. The lead mixture is then cooled to the
391:
Because the calcium is produced by a reaction and doesn't spend time exposed to air, method prevents loss from oxidation. Another advantage of this method is that salts of calcium are often cheaper than calcium metal.
283: 200: 387: 416:
is used. However, due to the significant energy and equipment requirements of the Betts process, the Betterton–Kroll process is preferable if that high level of purity is not needed.
320:
Although the Betterton–Kroll process is the most widely used method, it has variations and alternatives that can provide advantages for specific use cases.
312:
of the calcium-magnesium-bismuth alloy. In the chlorination process, chlorine reacts with other metals in the dross and leaves behind high-purity bismuth.
300:
in order to squeeze out any remaining lead. Through this process, the bismuth in solution can be reduced to under 0.01 wt. %(percent by weight).
66:
are added to the molten lead at temperatures around 380 °C. The calcium and magnesium react with the bismuth and antimony in the bullion to form
425: 76: 95:
improved the process by adding magnesium to the process, which decreased the total amount of metal required in order to refine the lead.
400:
Instead of skimming the dross off the top of the molten bullion, the calcium and magnesium can be combined with the lead bullion in a
750:, Li, Rui-Qing & Harris, Ralph, "Process for bismuth recovery from lead-bismuth dross", issued 2003-09-12 412:
The Betterton–Kroll process can only reduce the bismuth concertation to about 0.01% by mass. If higher purity is required, the
206: 123: 91:
developed a process for removing bismuth from lead by the addition of calcium. However, it was not commercially viable until
882: 413: 72: 328:
Instead of calcium and magnesium metal being added directly to the mixture, oxides of the metals mixed with other
338: 308:
After the dross is skimmed off, it can be treated to recover the bismuth. The most common process for this is
296:, on the surface that can be skimmed off. Molten lead can remain trapped in the dross, so the dross is often 292:
The alloys produced have a melting point greater than the rest of the metal, so they form a solid film, or
92: 309: 429: 834: 779: 685: 630: 558: 88: 43: 598:, Oatman, Betterton Jesse, "Process for removal of bismuth from lead", issued 1932-04-12 858: 803: 654: 850: 795: 729: 701: 646: 574: 522: 502:
Electrochemical processes within the slimes layer of lead anodes during Betts electrorefining
42:
from lead bullion (lead that still contains significant amounts of impurities). Developed by
887: 842: 787: 693: 638: 566: 514: 506: 297: 58:
remain. The Betterton–Kroll process is used to remove these impurities. In the process,
838: 783: 689: 634: 562: 471: 35: 17: 747: 673: 892: 876: 697: 658: 446: 47: 862: 807: 547:"Analysis of the Kroll-Betterton Process: The Removal of Bismuth from Lead Bullion" 441: 50:. After gold, copper, and silver are removed from the lead, significant amounts of 595: 329: 822: 791: 618: 46:
in 1922, the Betterton–Kroll process is one of the final steps in conventional
846: 733: 642: 401: 854: 799: 767: 705: 650: 578: 570: 526: 63: 723: 546: 114: 55: 768:"Calcium–magnesium exchange reactions in lead alloys under molten salt" 619:"Behaviour of copper in refining of lead by fractional crystallization" 510: 59: 51: 518: 722:
Montagna, D; Ruppert, J. A; United States; Bureau of Mines (1977).
500: 823:"Synthesis of Pb–Ca alloys by electrolysis of CaO in molten salts" 293: 67: 728:. Washington, D.C.: U.S. Dept. of the Interior, Bureau of Mines. 39: 680:. Proceedings of the Fourth European Lead Battery Conference. 674:"Advances in the refining and alloying of low-bismuth lead" 617:
Qiu, K.; Chen, Q.; Winkler, P.; Krüger, J. (April 2001).
375: 260: 247: 177: 164: 725:
Removing bismuth from lead with a submersible centrifuge
672:
Hibbins, S. G.; Closset, B.; Bray, M. (1 January 1995).
499:
González Domínguez, José Alberto; Alberto, José (2011).
278:{\displaystyle {\ce {Ca + 2Mg + 2Sb -> CaMg2Sb2(s)}}} 195:{\displaystyle {\ce {Ca + 2Mg + 2Bi -> CaMg2Bi2(s)}}} 355: 341: 209: 126: 381: 277: 194: 27:Industrial process for removing bismuth from lead 424:Another way to separate the bullion is through 766:Freidina, E. B.; Fray, D. J. (1 August 2003). 545:Mallaley, K.; Morris, D. R. (1 January 1990). 8: 827:Mineral Processing and Extractive Metallurgy 821:Freydina, E. B.; Fray, D. J. (August 2002). 772:Mineral Processing and Extractive Metallurgy 623:Mineral Processing and Extractive Metallurgy 382:{\displaystyle {\ce {CaO -> Ca + 1/2O2}}} 505:(Thesis). University of British Columbia. 374: 369: 342: 340: 263: 259: 254: 246: 241: 230: 220: 210: 208: 180: 176: 171: 163: 158: 147: 137: 127: 125: 458: 717: 715: 612: 610: 590: 588: 540: 538: 536: 494: 492: 466: 464: 462: 7: 25: 551:Canadian Metallurgical Quarterly 346: 270: 264: 234: 187: 181: 151: 1: 698:10.1016/0378-7753(94)02007-P 472:"Lead processing - Refining" 316:Variations and Alternatives 909: 792:10.1179/037195503225002709 426:fractional crystallization 420:Fractional Crystallization 414:Betts Electrolytic process 408:Betts Electrolytic Process 77:fractional crystallization 73:Betts Electrolytic process 847:10.1179/mpm.2002.111.2.79 643:10.1179/mpm.2001.110.1.60 678:Journal of Power Sources 571:10.1179/cmq.1990.29.1.67 476:Encyclopedia Britannica 32:Betterton-Kroll Process 18:Betterton-Kroll process 383: 279: 196: 93:Jesse Oatman Betterton 384: 324:Molten Salt Reactions 298:hydraulically pressed 280: 197: 38:process for refining 883:Industrial processes 339: 207: 124: 89:William Justin Kroll 87:In the early 1920s, 44:William Justin Kroll 839:2002MPEM..111...79F 784:2003MPEM..112..135F 690:1995JPS....53...75H 635:2001MPEM..110...60Q 563:1990CaMQ...29...67M 377: 262: 249: 179: 166: 511:10.14288/1.0078559 379: 365: 364: 275: 250: 237: 192: 167: 154: 430:pattinson process 396:Use of Centrifuge 368: 363: 351: 345: 269: 253: 240: 233: 223: 213: 186: 170: 157: 150: 140: 130: 36:pyrometallurgical 16:(Redirected from 900: 867: 866: 818: 812: 811: 763: 757: 756: 755: 751: 744: 738: 737: 719: 710: 709: 669: 663: 662: 614: 605: 604: 603: 599: 592: 583: 582: 542: 531: 530: 496: 487: 486: 484: 482: 468: 388: 386: 385: 380: 378: 376: 373: 366: 356: 349: 343: 304:Bismuth Recovery 288:Removal of Dross 284: 282: 281: 276: 274: 273: 267: 261: 258: 251: 248: 245: 238: 231: 221: 211: 201: 199: 198: 193: 191: 190: 184: 178: 175: 168: 165: 162: 155: 148: 138: 128: 99:Chemical Process 21: 908: 907: 903: 902: 901: 899: 898: 897: 873: 872: 871: 870: 820: 819: 815: 765: 764: 760: 753: 746: 745: 741: 721: 720: 713: 671: 670: 666: 616: 615: 608: 601: 594: 593: 586: 544: 543: 534: 498: 497: 490: 480: 478: 470: 469: 460: 455: 438: 422: 410: 398: 337: 336: 326: 318: 306: 290: 205: 204: 122: 121: 110: 101: 85: 28: 23: 22: 15: 12: 11: 5: 906: 904: 896: 895: 890: 885: 875: 874: 869: 868: 813: 778:(2): 135–136. 758: 748:WO2003074743A2 739: 711: 664: 606: 584: 532: 488: 457: 456: 454: 451: 450: 449: 444: 437: 434: 421: 418: 409: 406: 397: 394: 372: 362: 359: 354: 348: 325: 322: 317: 314: 305: 302: 289: 286: 272: 266: 257: 244: 236: 229: 226: 219: 216: 189: 183: 174: 161: 153: 146: 143: 136: 133: 109: 108:Metal Addition 106: 100: 97: 84: 81: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 905: 894: 891: 889: 886: 884: 881: 880: 878: 864: 860: 856: 852: 848: 844: 840: 836: 832: 828: 824: 817: 814: 809: 805: 801: 797: 793: 789: 785: 781: 777: 773: 769: 762: 759: 749: 743: 740: 735: 731: 727: 726: 718: 716: 712: 707: 703: 699: 695: 691: 687: 683: 679: 675: 668: 665: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 620: 613: 611: 607: 597: 591: 589: 585: 580: 576: 572: 568: 564: 560: 556: 552: 548: 541: 539: 537: 533: 528: 524: 520: 516: 512: 508: 504: 503: 495: 493: 489: 477: 473: 467: 465: 463: 459: 452: 448: 447:Lead smelting 445: 443: 440: 439: 435: 433: 431: 427: 419: 417: 415: 407: 405: 403: 395: 393: 389: 370: 360: 357: 352: 334: 331: 323: 321: 315: 313: 311: 303: 301: 299: 295: 287: 285: 255: 242: 227: 224: 217: 214: 202: 172: 159: 144: 141: 134: 131: 119: 116: 107: 105: 98: 96: 94: 90: 82: 80: 78: 74: 69: 65: 61: 57: 53: 49: 48:lead smelting 45: 41: 37: 33: 19: 833:(2): 79–83. 830: 826: 816: 775: 771: 761: 742: 724: 684:(1): 75–83. 681: 677: 667: 629:(1): 60–62. 626: 622: 557:(1): 67–71. 554: 550: 501: 479:. Retrieved 475: 442:Lead smelter 423: 411: 399: 390: 335: 330:molten salts 327: 319: 310:chlorination 307: 291: 203: 120: 111: 102: 86: 31: 29: 83:Development 877:Categories 734:1139511290 596:US1853539A 519:2429/30919 481:21 October 453:References 402:centrifuge 855:0371-9553 800:0371-9553 706:0378-7753 659:137570796 651:0371-9553 579:0008-4433 527:753010310 347:⟶ 235:⟶ 152:⟶ 64:magnesium 863:97304441 808:95435976 436:See also 428:and the 115:liquidus 56:antimony 888:Bismuth 835:Bibcode 780:Bibcode 686:Bibcode 631:Bibcode 559:Bibcode 60:calcium 52:bismuth 861:  853:  806:  798:  754:  732:  704:  657:  649:  602:  577:  525:  68:alloys 859:S2CID 804:S2CID 655:S2CID 294:dross 34:is a 893:Lead 851:ISSN 796:ISSN 730:OCLC 702:ISSN 647:ISSN 575:ISSN 523:OCLC 483:2021 239:CaMg 156:CaMg 75:and 62:and 54:and 40:lead 30:The 843:doi 831:111 788:doi 776:112 694:doi 639:doi 627:110 567:doi 515:hdl 507:doi 344:CaO 879:: 857:. 849:. 841:. 829:. 825:. 802:. 794:. 786:. 774:. 770:. 714:^ 700:. 692:. 682:53 676:. 653:. 645:. 637:. 625:. 621:. 609:^ 587:^ 573:. 565:. 555:29 553:. 549:. 535:^ 521:. 513:. 491:^ 474:. 461:^ 350:Ca 252:Sb 232:Sb 222:Mg 212:Ca 169:Bi 149:Bi 139:Mg 129:Ca 79:. 865:. 845:: 837:: 810:. 790:: 782:: 736:. 708:. 696:: 688:: 661:. 641:: 633:: 581:. 569:: 561:: 529:. 517:: 509:: 485:. 371:2 367:O 361:2 358:1 353:+ 271:) 268:s 265:( 256:2 243:2 228:2 225:+ 218:2 215:+ 188:) 185:s 182:( 173:2 160:2 145:2 142:+ 135:2 132:+ 20:)

Index

Betterton-Kroll process
pyrometallurgical
lead
William Justin Kroll
lead smelting
bismuth
antimony
calcium
magnesium
alloys
Betts Electrolytic process
fractional crystallization
William Justin Kroll
Jesse Oatman Betterton
liquidus
dross
hydraulically pressed
chlorination
molten salts
centrifuge
Betts Electrolytic process
fractional crystallization
pattinson process
Lead smelter
Lead smelting



"Lead processing - Refining"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.