Knowledge (XXG)

Biggest little polygon

Source đź“ť

17: 197:; it takes the form of an irregular equidiagonal pentagon with an obtuse isosceles triangle attached to one of its sides, with the distance from the apex of the triangle to the opposite pentagon vertex equal to the diagonals of the pentagon. Its area is 0.674981.... (sequence 156:
with unit-length diagonals, which has area 1/2. However, infinitely many other orthodiagonal and equidiagonal quadrilaterals also have diameter 1 and have the same area as the square, so in this case the solution is not unique.
120:
must themselves be at most 1. Therefore, the quadrilateral has largest area when the three factors in the area formula are individually maximized, with
204: 275: = 8 this was verified by a computer calculation by Audet et al. Graham's proof that his hexagon is optimal, and the computer proof of the 311:, the polygons maximizing perimeter for their diameter, maximizing width for their diameter, and maximizing width for their perimeter 267: − 1)-gon with an isosceles triangle attached to one of its sides, its apex at unit distance from the opposite ( 489: 450: 419: 353: 170: 290:
The full conjecture of Graham, characterizing the solution to the biggest little polygon problem for all even values of
149: 20:
Biggest little polygon with 6 sides (on the left); on the right the regular polygon with same diameter but lower area.
564: 141: 303: 487:
Foster, Jim; Szabo, Tamas (2007), "Diameter graphs of polygons and the proof of a conjecture of Graham",
574: 357: 448:
Audet, Charles; Hansen, Pierre; Messine, Frédéric; Xiong, Junjie (2002), "The largest small octagon",
207:), a number that satisfies the equation (although not expressible in radicals due to it having the 189:= 6, the unique optimal polygon is not regular. The solution to this case was published in 1975 by 112:
is either of the angles they form with each other. In order for the diameter to be at most 1, both
531: 308: 153: 498: 459: 428: 45: 512: 473: 535: 508: 469: 174: 65: 548: 411: 16: 569: 558: 433: 407: 380: 194: 190: 85: 259:
Graham conjectured that the optimal solution for the general case of even values of
208: 152:(its diagonals cross at right angles). The quadrilaterals of this type include the 503: 540: 464: 284: 41: 37: 61: 279: = 8 case, both involved a case analysis of all possible 15: 48:
are within unit distance of each other) and that has the largest
49: 144:(its diagonals have equal length), and the condition that sin( 199: 72:
is an odd number, but the solution is irregular otherwise.
329:
Schäffer, J. J. (1958), "Nachtrag zu Ungelöste Prob. 12",
362:
Jahresbericht der Deutschen Mathematiker-Vereinigung
177:has largest area among all diameter-one polygons. 108:are the two diagonals of the quadrilateral and 271: − 1)-gon vertex. In the case 263:consists in the same way of an equidiagonal ( 8: 358:"Extremale Polygone gegebenen Durchmessers" 231: − 30848x + 21056 294:, was proven in 2007 by Foster and Szabo. 502: 463: 432: 193:, answering a question posed in 1956 by 321: 394: 340: 7: 148:) = 1 means that it is an 132:) = 1. The condition that 56:-gons. One non-unique solution when 140:means that the quadrilateral is an 14: 490:Journal of Combinatorial Theory 451:Journal of Combinatorial Theory 420:Journal of Combinatorial Theory 84:= 4, the area of an arbitrary 44:one (that is, every two of its 549:Graham's Largest Small Hexagon 383:(1956), "Ungelöste Prob. 12", 1: 434:10.1016/0097-3165(75)90004-7 255: + 11993 = 0. 551:, from the Hall of Hexagons 412:"The largest small hexagon" 150:orthodiagonal quadrilateral 591: 504:10.1016/j.jcta.2007.02.006 142:equidiagonal quadrilateral 239: − 221360 536:"Biggest Little Polygon" 251: − 78488 88:is given by the formula 64:, and the solution is a 227: − 3008 128: = 1 and sin( 52:among all diameter-one 465:10.1006/jcta.2001.3225 304:Hansen's small octagon 26:biggest little polygon 21: 287:with straight edges. 181:Even numbers of sides 19: 161:Odd numbers of sides 247: + 144464 235: + 146496 532:Weisstein, Eric W. 385:EIemente der Math. 331:Elemente der Math. 169:, it was shown by 165:For odd values of 22: 565:Types of polygons 309:Reinhardt polygon 243: + 1232 24:In geometry, the 582: 545: 544: 517: 515: 506: 497:(8): 1515–1525, 484: 478: 476: 467: 445: 439: 437: 436: 416: 404: 398: 392: 377: 371: 369: 350: 344: 338: 326: 202: 590: 589: 585: 584: 583: 581: 580: 579: 555: 554: 530: 529: 526: 521: 520: 486: 485: 481: 447: 446: 442: 414: 406: 405: 401: 379: 378: 374: 352: 351: 347: 328: 327: 323: 318: 300: 214: 198: 183: 175:regular polygon 173:in 1922 that a 163: 78: 66:regular polygon 12: 11: 5: 588: 586: 578: 577: 572: 567: 557: 556: 553: 552: 546: 525: 524:External links 522: 519: 518: 479: 440: 427:(2): 165–170, 399: 393:. As cited by 372: 345: 339:. As cited by 320: 319: 317: 314: 313: 312: 306: 299: 296: 257: 256: 212: 182: 179: 171:Karl Reinhardt 162: 159: 77: 76:Quadrilaterals 74: 13: 10: 9: 6: 4: 3: 2: 587: 576: 573: 571: 568: 566: 563: 562: 560: 550: 547: 543: 542: 537: 533: 528: 527: 523: 514: 510: 505: 500: 496: 492: 491: 483: 480: 475: 471: 466: 461: 457: 453: 452: 444: 441: 435: 430: 426: 422: 421: 413: 409: 408:Graham, R. L. 403: 400: 396: 395:Graham (1975) 390: 386: 382: 376: 373: 367: 363: 359: 355: 354:Reinhardt, K. 349: 346: 342: 341:Graham (1975) 336: 332: 325: 322: 315: 310: 307: 305: 302: 301: 297: 295: 293: 288: 286: 282: 278: 274: 270: 266: 262: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 217: 216: 210: 206: 201: 196: 195:Hanfried Lenz 192: 191:Ronald Graham 188: 180: 178: 176: 172: 168: 160: 158: 155: 151: 147: 143: 139: 136: =  135: 131: 127: 124: =  123: 119: 115: 111: 107: 103: 99: 95: 92: =  91: 87: 86:quadrilateral 83: 75: 73: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 31: 28:for a number 27: 18: 575:Superlatives 539: 494: 493:, Series A, 488: 482: 458:(1): 46–59, 455: 454:, Series A, 449: 443: 424: 423:, Series A, 418: 402: 388: 384: 375: 365: 361: 348: 334: 330: 324: 291: 289: 280: 276: 272: 268: 264: 260: 258: 252: 248: 244: 240: 236: 232: 228: 224: 220: 209:Galois group 186: 185:In the case 184: 166: 164: 145: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 81: 79: 69: 57: 53: 33: 29: 25: 23: 223: +8192 559:Categories 316:References 219:4096  100:)/2 where 96: sin( 541:MathWorld 368:: 251–270 285:thrackles 60:= 4 is a 40:that has 410:(1975), 381:Lenz, H. 356:(1922), 298:See also 283:-vertex 42:diameter 513:2360684 474:1897923 337:: 85–86 203:in the 200:A111969 38:polygon 36:-sided 32:is the 511:  472:  154:square 62:square 46:points 415:(PDF) 68:when 570:Area 391:: 86 205:OEIS 116:and 104:and 80:For 50:area 499:doi 495:114 460:doi 429:doi 561:: 538:, 534:, 509:MR 507:, 470:MR 468:, 456:98 425:18 417:, 389:11 387:, 366:31 364:, 360:, 335:13 333:, 215:) 213:10 94:pq 516:. 501:: 477:. 462:: 438:. 431:: 397:. 370:. 343:. 292:n 281:n 277:n 273:n 269:n 265:n 261:n 253:x 249:x 245:x 241:x 237:x 233:x 229:x 225:x 221:x 211:S 187:n 167:n 146:θ 138:q 134:p 130:θ 126:q 122:p 118:q 114:p 110:θ 106:q 102:p 98:θ 90:S 82:n 70:n 58:n 54:n 34:n 30:n

Index


polygon
diameter
points
area
square
regular polygon
quadrilateral
equidiagonal quadrilateral
orthodiagonal quadrilateral
square
Karl Reinhardt
regular polygon
Ronald Graham
Hanfried Lenz
A111969
OEIS
Galois group
thrackles
Hansen's small octagon
Reinhardt polygon
Graham (1975)
Reinhardt, K.
"Extremale Polygone gegebenen Durchmessers"
Lenz, H.
Graham (1975)
Graham, R. L.
"The largest small hexagon"
Journal of Combinatorial Theory
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑