Knowledge (XXG)

Biointerface

Source 📝

835:
electrical field. For example, DNA grafted onto gold electrodes can be made to come closer to the electrode surface on application of positive electrode potential and as explained by Rant et al., this can be used to create smart interfaces for biomolecular detection. Likewise, Xiao Ma and others, have discussed the electrical control on the binding/unbinding of thrombin from aptamers immobilized on electrodes. They showed that on application of certain positive potentials, the thrombin gets separated from the biointerface.
863:, allow for the properties of the SiNWs to be customized for unique applications. One example of these unique uses is that SiNWs can be used as individual wires to be used for intracellular probes or extracellular devices or the SiNWs can be manipulated into larger macro structures. These structures can be manipulated into flexible, 3D, macropourus structures (like the scaffolds mentioned above) that can be used for creating synthetic 33: 615: 834:
for synthetic tissues allows for monitoring of electrical activity and electrical stimulation of cells as a result of the photoelectric properties of the silicon. The orientation of biomolecules on the interface can also be controlled through the modulation of parameters like pH, temperature and
675:
or inorganic/organic material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces. The behavior of complex macromolecular systems at materials interfaces are important in the fields of
724:). Well-designed biointerfaces would facilitate desirable interactions by providing optimized surfaces where biological matter can interact with other inorganic or organic materials, such as by promoting cell and tissue adhesion onto a surface. 871:
were grown on these structures as a way to create a synthetic tissue structure that could be used to monitor the electrical activity of the cells on the scaffold. The device created by Tian et al. takes advantage of the fact that SiNWs are
846:
is a common material used in the technology industry due to its abundance as well as its properties as a semiconductor. However, in the bulk form used for computer chips and the like are not conducive to biointerfaces. For these purposes
888:. These sensors have the ability to be inserted into cells with minimal invasiveness making them in some ways preferable to traditional biosensors like fluorescent dyes, as well as other nanoparticles which require target labelling. 829:
in order to act as drug delivery agents for cancers because their size allows them to collect at tumor sites passively. Also as an example, the use of silicon nanowires in nanoporous materials to create
825:
materials. Due to the many properties unique to each nanomaterial, like size, conductivity, and construction, various applications have been achieved. For example, gold nanoparticles are often
646: 1171:
Ma, Xiao; Gosai, Agnivo; Shrotriya, Pranav (2020). "Resolving electrical stimulus triggered molecular binding and force modulation upon thrombin-aptamer biointerface".
708:) cooperate with scientists who have developed the tools to position biomolecules with molecular precision (proximal probe methods, nano-and micro contact methods, 377: 960:
Chen, Da; Wang, Geng; Li, Jinghong (2007). "Interfacial Bioelectrochemistry: Fabrication, Properties and Applications of Functional Nanostructured Biointerfaces".
720:
to interrogate these molecules at the solid-liquid interface, and people who integrate these into functional devices (applied physicists, analytical chemists and
880:
charges at the surface of the device, or in this case the surface of the SiNW. Being a FET device can also be taken advantage of when using single SiNWs as
884:
devices. SiNW sensors are nanowires that contain specific receptors on their surface that when bound to their respective antigens will cause changes in
885: 639: 1047:
Tian, Bozhi; Liu, Jia; Dvir, Tal; Jin, Lihua; Tsui, Jonathan H.; Qing, Quan; Suo, Zhigang; Langer, Robert; Kohane, Daniel S. (2012-11-01).
632: 688:, and medicine. Biointerface science is a multidisciplinary field in which biochemists who synthesize novel classes of biomolecules ( 1296: 598: 1312:
Zhang, Guo-Jun; Ning, Yong (2012-10-24). "Silicon nanowire biosensor and its applications in disease diagnostics: A review".
509: 504: 337: 809:
is a rapidly growing field that has allowed for the creation of many different possibilities for creating biointerfaces.
743: 332: 1352: 619: 566: 1112:
Rant, U.; Arinaga, K.; Scherer, S.; Pringsheim, E.; Fujita, S.; Yokoyama, N.; Tornow, M.; Abstreiter, G. (2007).
856: 560: 219: 873: 342: 860: 531: 356: 94: 1235: 1180: 1125: 1060: 864: 826: 689: 214: 126: 1357: 814: 48: 1279:
Coffer, J.L. (2014). "Overview of semiconducting silicon nanowires for biomedical applications".
1204: 877: 852: 795: 571: 422: 388: 305: 298: 209: 58: 906:, Editors: Dietmar Hutmacher, Wojciech Chrzanowski, Royal Society of Chemistry, Cambridge 2015, 1329: 1292: 1261: 1196: 1153: 1094: 1076: 1026: 1008: 942: 787: 775: 713: 586: 496: 165: 99: 24: 1321: 1284: 1251: 1243: 1188: 1143: 1133: 1084: 1068: 1016: 1000: 969: 932: 848: 818: 668: 546: 536: 516: 138: 133: 53: 907: 831: 412: 202: 170: 1239: 1184: 1129: 1114:"Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets" 1064: 1256: 1223: 1148: 1113: 1089: 1048: 1021: 988: 813:
that are commonly used for biointerfaces include: metal nanomaterials such as gold and
806: 664: 554: 417: 404: 231: 226: 987:
Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A (2017-01-26).
32: 1346: 1208: 868: 810: 756: 681: 576: 521: 361: 324: 187: 145: 116: 1224:"Electrical Stimulus Controlled Binding/Unbinding of Human Thrombin-Aptamer Complex" 921:"Biointerface Materials for Cellular Adhesion: Recent Progress and Future Prospects" 851:(SiNWs) are often used. Various methods of growth and composition of SiNWs, such as 779: 766: 717: 591: 268: 263: 245: 721: 685: 672: 541: 526: 469: 383: 150: 82: 1192: 1325: 1288: 822: 791: 747: 121: 111: 106: 1080: 1012: 946: 1222:
Gosai, Agnivo; Ma, Xiao; Balasubramanian, Ganesh; Shrotriya, Pranav (2016).
1138: 881: 701: 464: 457: 351: 155: 1333: 1265: 1200: 1157: 1098: 1030: 716:, and bottom up self-assembly methods), scientists who have developed new 752: 705: 452: 442: 258: 177: 160: 937: 920: 843: 697: 693: 677: 447: 372: 293: 182: 68: 1247: 1004: 973: 671:
or living organism or organic material considered living with another
1072: 1049:"Macroporous nanowire nanoelectronic scaffolds for synthetic tissues" 731: 709: 581: 476: 288: 197: 989:"Size matters: gold nanoparticles in targeted cancer drug delivery" 192: 310: 249: 737:
Cells in engineered microenvironments and regenerative medicine
760: 1281:
Semiconducting Silicon Nanowires for Biomedical Applications
919:
Nguyen, John V. L.; Ghafar-Zadeh, Ebrahim (2020-12-11).
908:
https://pubs.rsc.org/en/content/ebook/978-1-78262-845-3
740:
Computational and modeling approaches to biointerfaces
727:
Topics of interest include, but are not limited to:
663:is the region of contact between a biomolecule, 1118:Proceedings of the National Academy of Sciences 640: 8: 876:(FET)-based devices. FET devices respond to 647: 633: 15: 1255: 1147: 1137: 1088: 1020: 936: 1173:Journal of Colloid and Interface Science 896: 23: 786:Related fields for biointerfaces are 7: 1042: 1040: 962:The Journal of Physical Chemistry C 14: 614: 613: 31: 817:, semiconductor materials like 772:Molecularly designed interfaces 378:microbial calcite precipitation 867:. In the case of Tian et al., 1: 338:marine biogenic calcification 821:, carbon nanomaterials, and 839:Silicon nanowire interfaces 567:Biomineralising polychaetes 333:amorphous calcium carbonate 19:Part of a series related to 1374: 1193:10.1016/j.jcis.2019.09.080 599:Burgess Shale preservation 1326:10.1016/j.aca.2012.08.035 1289:10.1533/9780857097712.1.3 857:chemical vapor deposition 561:Cupriavidus metallidurans 802:Nanostructure interfaces 718:spectroscopic techniques 282:Teeth, scales, tusks etc 1139:10.1073/pnas.0703974104 874:field-effect transistor 343:calcareous nannofossils 139:Choanoflagellate lorica 1314:Analytica Chimica Acta 865:extracellular matrices 769:and pathogen detection 532:Magnetotactic bacteria 357:oolitic aragonite sand 215:scaly-foot snail shell 690:peptide nucleic acids 993:Therapeutic Delivery 815:silver nanoparticles 1240:2016NatSR...637449G 1185:2020JCIS..559....1M 1130:2007PNAS..10417364R 1124:(44): 17364–17369. 1065:2012NatMa..11..986T 746:and membrane-based 259:Vertebrate skeleton 49:Mineralized tissues 1228:Scientific Reports 938:10.3390/act9040137 878:electric potential 423:diatomaceous earth 389:Great Calcite Belt 306:Scale microfossils 299:otolithic membrane 210:small shelly fauna 183:echinoderm stereom 59:Biocrystallization 1353:Biomineralization 1248:10.1038/srep37449 1005:10.4155/tde.12.21 974:10.1021/jp065099w 849:silicon nanowires 819:silicon nanowires 788:biomineralization 714:X-ray lithography 704:, and engineered 657: 656: 587:permineralization 572:Mineral nutrients 497:Mineral evolution 166:foraminifera test 25:Biomineralization 1365: 1338: 1337: 1309: 1303: 1302: 1283:. pp. 3–7. 1276: 1270: 1269: 1259: 1219: 1213: 1212: 1168: 1162: 1161: 1151: 1141: 1109: 1103: 1102: 1092: 1073:10.1038/nmat3404 1053:Nature Materials 1044: 1035: 1034: 1024: 984: 978: 977: 968:(6): 2351–2367. 957: 951: 950: 940: 916: 910: 901: 798:, and so forth. 763:at biointerfaces 649: 642: 635: 622: 617: 616: 537:Magnetoreception 517:Ballast minerals 112:Cephalopod shell 107:Brachiopod shell 54:Remineralisation 35: 16: 1373: 1372: 1368: 1367: 1366: 1364: 1363: 1362: 1343: 1342: 1341: 1311: 1310: 1306: 1299: 1278: 1277: 1273: 1221: 1220: 1216: 1170: 1169: 1165: 1111: 1110: 1106: 1059:(11): 986–994. 1046: 1045: 1038: 986: 985: 981: 959: 958: 954: 918: 917: 913: 902: 898: 894: 841: 804: 694:peptidomimetics 653: 612: 605: 604: 603: 491: 483: 482: 481: 437: 429: 428: 427: 413:biogenic silica 407: 397: 396: 395: 380: 368: 347: 327: 317: 316: 315: 283: 275: 274: 273: 253: 238: 237: 236: 203:gastropod shell 171:testate amoebae 161:diatom frustule 86: 75: 74: 73: 43: 12: 11: 5: 1371: 1369: 1361: 1360: 1355: 1345: 1344: 1340: 1339: 1304: 1297: 1271: 1214: 1163: 1104: 1036: 999:(4): 457–478. 979: 952: 911: 895: 893: 890: 869:cardiomyocytes 840: 837: 827:functionalized 811:Nanostructures 807:Nanotechnology 803: 800: 784: 783: 773: 770: 764: 750: 741: 738: 735: 655: 654: 652: 651: 644: 637: 629: 626: 625: 624: 623: 607: 606: 602: 601: 596: 595: 594: 589: 579: 574: 569: 564: 557: 552: 544: 539: 534: 529: 524: 519: 514: 513: 512: 510:immobilization 507: 505:mineralization 499: 493: 492: 489: 488: 485: 484: 480: 479: 474: 473: 472: 462: 461: 460: 455: 445: 439: 438: 435: 434: 431: 430: 426: 425: 420: 418:siliceous ooze 415: 409: 408: 405:Silicification 403: 402: 399: 398: 394: 393: 392: 391: 386: 381: 369: 367: 366: 365: 364: 359: 348: 346: 345: 340: 335: 329: 328: 323: 322: 319: 318: 314: 313: 308: 303: 302: 301: 291: 285: 284: 281: 280: 277: 276: 272: 271: 266: 261: 255: 254: 244: 243: 240: 239: 235: 234: 229: 227:Sponge spicule 224: 223: 222: 220:estuary shells 217: 212: 207: 206: 205: 200: 195: 185: 175: 174: 173: 168: 163: 158: 153: 143: 142: 141: 131: 130: 129: 124: 119: 109: 104: 103: 102: 97: 88: 87: 81: 80: 77: 76: 72: 71: 66: 61: 56: 51: 45: 44: 41: 40: 37: 36: 28: 27: 21: 20: 13: 10: 9: 6: 4: 3: 2: 1370: 1359: 1356: 1354: 1351: 1350: 1348: 1335: 1331: 1327: 1323: 1319: 1315: 1308: 1305: 1300: 1298:9780857097668 1294: 1290: 1286: 1282: 1275: 1272: 1267: 1263: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1218: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1167: 1164: 1159: 1155: 1150: 1145: 1140: 1135: 1131: 1127: 1123: 1119: 1115: 1108: 1105: 1100: 1096: 1091: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1043: 1041: 1037: 1032: 1028: 1023: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 983: 980: 975: 971: 967: 963: 956: 953: 948: 944: 939: 934: 930: 926: 922: 915: 912: 909: 905: 904:Biointerfaces 900: 897: 891: 889: 887: 883: 879: 875: 870: 866: 862: 858: 854: 850: 845: 838: 836: 833: 828: 824: 820: 816: 812: 808: 801: 799: 797: 793: 789: 781: 777: 774: 771: 768: 765: 762: 758: 757:carbohydrates 754: 751: 749: 745: 742: 739: 736: 733: 730: 729: 728: 725: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 682:biotechnology 679: 674: 670: 667:, biological 666: 662: 650: 645: 643: 638: 636: 631: 630: 628: 627: 621: 611: 610: 609: 608: 600: 597: 593: 590: 588: 585: 584: 583: 582:Fossilization 580: 578: 577:Microbial mat 575: 573: 570: 568: 565: 563: 562: 558: 556: 553: 551: 549: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 522:Magnetofossil 520: 518: 515: 511: 508: 506: 503: 502: 500: 498: 495: 494: 487: 486: 478: 475: 471: 468: 467: 466: 463: 459: 456: 454: 451: 450: 449: 446: 444: 441: 440: 433: 432: 424: 421: 419: 416: 414: 411: 410: 406: 401: 400: 390: 387: 385: 382: 379: 376: 375: 374: 371: 370: 363: 362:aragonite sea 360: 358: 355: 354: 353: 350: 349: 344: 341: 339: 336: 334: 331: 330: 326: 325:Calcification 321: 320: 312: 309: 307: 304: 300: 297: 296: 295: 292: 290: 287: 286: 279: 278: 270: 267: 265: 262: 260: 257: 256: 251: 247: 246:Endoskeletons 242: 241: 233: 230: 228: 225: 221: 218: 216: 213: 211: 208: 204: 201: 199: 196: 194: 191: 190: 189: 188:mollusc shell 186: 184: 181: 180: 179: 176: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 148: 147: 146:Protist shell 144: 140: 137: 136: 135: 132: 128: 125: 123: 120: 118: 117:cirrate shell 115: 114: 113: 110: 108: 105: 101: 98: 96: 93: 92: 90: 89: 84: 79: 78: 70: 67: 65: 62: 60: 57: 55: 52: 50: 47: 46: 39: 38: 34: 30: 29: 26: 22: 18: 17: 1317: 1313: 1307: 1280: 1274: 1231: 1227: 1217: 1176: 1172: 1166: 1121: 1117: 1107: 1056: 1052: 996: 992: 982: 965: 961: 955: 928: 924: 914: 903: 899: 886:conductivity 842: 805: 785: 780:nanoparticle 767:Pathogenesis 726: 722:bioengineers 661:biointerface 660: 658: 592:petrifaction 559: 547: 542:Microfossils 289:Limpet teeth 269:Ossification 264:Bone mineral 198:chiton shell 83:Exoskeletons 64:Biointerface 63: 686:diagnostics 673:biomaterial 527:Magnetosome 470:phosphorite 436:Other forms 384:calcite sea 151:coccosphere 95:exoskeleton 1358:Biosensors 1347:Categories 931:(4): 137. 892:References 882:biosensing 823:nanoporous 794:, medical 792:biosensors 782:interfaces 748:biosensing 734:interfaces 122:cuttlebone 91:Arthropod 1234:: 37449. 1209:203938092 1081:1476-1122 1013:2041-5990 947:2076-0825 925:Actuators 832:scaffolds 744:Membranes 702:ribozymes 548:engrailed 465:Phosphate 458:oil shale 352:Aragonite 156:coccolith 1334:23036462 1320:: 1–15. 1266:27874042 1201:31605780 1179:: 1–12. 1158:17951434 1099:22922448 1031:22834077 796:implants 776:Nanotube 753:Peptides 706:proteins 698:aptamers 620:Category 501:In soil 453:alginite 443:Bone bed 178:Seashell 85:(shells) 1257:5118750 1236:Bibcode 1181:Bibcode 1149:2077262 1126:Bibcode 1090:3623694 1061:Bibcode 1022:3596176 853:etching 844:Silicon 678:biology 490:Related 448:Kerogen 373:Calcite 294:Otolith 127:gladius 100:cuticle 69:Biofilm 42:General 1332:  1295:  1264:  1254:  1207:  1199:  1156:  1146:  1097:  1087:  1079:  1029:  1019:  1011:  945:  861:doping 859:, and 732:Neural 710:e-beam 669:tissue 618:  477:Pyrena 134:Lorica 1205:S2CID 555:Druse 250:bones 193:nacre 1330:PMID 1293:ISBN 1262:PMID 1197:PMID 1154:PMID 1095:PMID 1077:ISSN 1027:PMID 1009:ISSN 943:ISSN 759:and 712:and 665:cell 550:gene 311:Tusk 232:Test 1322:doi 1318:749 1285:doi 1252:PMC 1244:doi 1189:doi 1177:559 1144:PMC 1134:doi 1122:104 1085:PMC 1069:doi 1017:PMC 1001:doi 970:doi 966:111 933:doi 761:DNA 1349:: 1328:. 1316:. 1291:. 1260:. 1250:. 1242:. 1230:. 1226:. 1203:. 1195:. 1187:. 1175:. 1152:. 1142:. 1132:. 1120:. 1116:. 1093:. 1083:. 1075:. 1067:. 1057:11 1055:. 1051:. 1039:^ 1025:. 1015:. 1007:. 995:. 991:. 964:. 941:. 927:. 923:. 855:, 790:, 755:, 700:, 696:, 692:, 684:, 680:, 659:A 1336:. 1324:: 1301:. 1287:: 1268:. 1246:: 1238:: 1232:6 1211:. 1191:: 1183:: 1160:. 1136:: 1128:: 1101:. 1071:: 1063:: 1033:. 1003:: 997:3 976:. 972:: 949:. 935:: 929:9 778:/ 648:e 641:t 634:v 252:) 248:(

Index

Biomineralization

Mineralized tissues
Remineralisation
Biocrystallization
Biointerface
Biofilm
Exoskeletons
exoskeleton
cuticle
Brachiopod shell
Cephalopod shell
cirrate shell
cuttlebone
gladius
Lorica
Choanoflagellate lorica
Protist shell
coccosphere
coccolith
diatom frustule
foraminifera test
testate amoebae
Seashell
echinoderm stereom
mollusc shell
nacre
chiton shell
gastropod shell
small shelly fauna

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.