Knowledge (XXG)

Biological computation

Source đź“ť

638: 643: 696: 140:
can also be used to build logical circuits. In a proposed fungal computer, information is represented by spikes of electrical activity, a computation is implemented in a
372:
Regot S, Macia J, Conde N, Furukawa K, KjellĂ©n J, Peeters T, et al. (January 2011). "Distributed biological computation with multicellular engineered networks".
680: 506:
Adamatzky A, Akl S, Alonso-Sanz R, Van Dessel W, Ibrahim Z, Ilachinski A, et al. (2013-06-01). "Are motorways rational from slime mould's point of view?".
757: 257: 733: 94: 274: 673: 752: 102: 762: 666: 127: 347: 19:
This article is about the analysis of computation in natural organisms. For computers composed of biomolecules, see
560:"Slime Mold Can Solve Exponentially Complicated Problems in Linear Time | Biology, Computer Science | Sci-News.com" 767: 726: 216: 559: 109:, we so far lack principles to understand rigorously how computation is done in living, or active, matter". 106: 24: 230: 145: 122: 117: 75: 28: 101:, economies and brains, life computes. Despite ubiquitous agreement on this fact going back as far as 85:
According to Dominique Chu, Mikhail Prokopenko, and J. Christian J. Ray, "the most important class of
381: 172: 50:
may be key to understanding biology. As a field, biological computation can include the study of the
20: 719: 541: 515: 482: 405: 614: 533: 397: 253: 167: 90: 86: 71: 703: 650: 604: 596: 525: 462: 454: 389: 177: 157: 281: 131: 55: 51: 385: 609: 584: 467: 442: 246: 162: 79: 74:
components and computer methods for the analysis of biological data, elsewhere called
746: 423: 135: 637: 545: 409: 198: 529: 642: 67: 47: 43: 317: 298: 113: 537: 59: 618: 600: 458: 401: 120:
experiments have used them to approximate motorway graphs. The slime mould
695: 141: 93:
that perform computation on multiple levels. From molecular and cellular
39: 393: 351: 483:"Computing with slime: Logical circuits built using living slime molds" 98: 63: 130:, a combinatorial test with exponentially increasing complexity, in 508:
International Journal of Parallel, Emergent and Distributed Systems
520: 27:. For data analysis and mathematical modeling in biology, see 126:
is able to compute high-quality approximate solutions to the
42:
perform computations, and that as such, abstract ideas of
345:
Biological Computation Group at MIT - Psrg.csail.mit.edu
707: 654: 203:
Computer Science Faculty Publications and Presentations
231:"Being - Our New Understanding of the Meaning of Life" 318:"How Plants Recognise Seasons Using Molecular Memory" 62:
inspired by the computational methods of biota, the
245: 299:"Information and entropy in biological systems" 217:Living Computers - Intelligent Plastic Machines 727: 674: 8: 70:of manufactured computational devices using 23:. For computation inspired by biology, see 734: 720: 681: 667: 441:Chu D, Prokopenko M, Ray JC (2018-12-06). 649:This bioinformatics-related article is a 608: 519: 466: 248:Wetware: a computer in every living cell 189: 348:"Biological Computation Group at MIT" 7: 692: 690: 634: 632: 564:Breaking Science News | Sci-News.com 252:. New Haven: Yale University Press. 112:Logical circuits can be built with 706:. You can help Knowledge (XXG) by 653:. You can help Knowledge (XXG) by 14: 694: 641: 636: 443:"Computation by natural systems" 148:is realized via fruit bodies. 1: 758:Computational fields of study 583:Adamatzky A (December 2018). 16:Conceptual computation method 702:This computing article is a 530:10.1080/17445760.2012.685884 107:McCulloch–Pitts neural nets 784: 689: 631: 128:Traveling Salesman Problem 54:computations performed by 18: 585:"Towards fungal computer" 197:Mitchell M (2010-09-21). 163:Biological neural network 424:"Biological Computation" 331:Lamm E, Unger R (2011). 320:. The Royal Institution. 275:"Biological Computation" 199:"Biological Computation" 335:. Chapman and Hall/CRC. 601:10.1098/rsfs.2018.0029 459:10.1098/rsfs.2018.0058 333:Biological Computation 95:information processing 36:biological computation 25:Bio-inspired computing 753:Computational biology 123:Physarum polycephalum 76:computational biology 38:proposes that living 29:Computational biology 763:Bioinformatics stubs 173:Biological computing 103:von Neumann automata 21:Biological computing 394:10.1038/nature09679 386:2011Natur.469..207R 273:Mitchell M (2010). 215:Didales, K. (2006) 118:Distributed systems 428:Microsoft Research 229:Didales K (2007). 91:biological systems 715: 714: 662: 661: 259:978-0-300-14173-3 168:Artificial neuron 87:natural computers 72:synthetic biology 775: 736: 729: 722: 698: 691: 683: 676: 669: 645: 640: 633: 623: 622: 612: 580: 574: 573: 571: 570: 556: 550: 549: 523: 503: 497: 496: 494: 493: 479: 473: 472: 470: 438: 432: 431: 420: 414: 413: 380:(7329): 207–11. 369: 363: 362: 360: 359: 350:. Archived from 343: 337: 336: 328: 322: 321: 313: 307: 306: 303:NIMBios Workshop 295: 289: 288: 286: 280:. Archived from 279: 270: 264: 263: 251: 241: 235: 234: 226: 220: 213: 207: 206: 194: 178:Zero player game 144:network, and an 134:. Fungi such as 89:can be found in 783: 782: 778: 777: 776: 774: 773: 772: 768:Computing stubs 743: 742: 741: 740: 688: 687: 629: 627: 626: 595:(6): 20180029. 589:Interface Focus 582: 581: 577: 568: 566: 558: 557: 553: 505: 504: 500: 491: 489: 481: 480: 476: 453:(6): 20180058. 447:Interface Focus 440: 439: 435: 422: 421: 417: 371: 370: 366: 357: 355: 346: 344: 340: 330: 329: 325: 316:Dean C (2019). 315: 314: 310: 297: 296: 292: 284: 277: 272: 271: 267: 260: 244:Bray D (2009). 243: 242: 238: 228: 227: 223: 214: 210: 196: 195: 191: 186: 154: 52:systems biology 34:The concept of 32: 17: 12: 11: 5: 781: 779: 771: 770: 765: 760: 755: 745: 744: 739: 738: 731: 724: 716: 713: 712: 699: 686: 685: 678: 671: 663: 660: 659: 646: 625: 624: 575: 551: 514:(3): 230–248. 498: 474: 433: 415: 364: 338: 323: 308: 290: 287:on 2013-10-23. 265: 258: 236: 221: 208: 188: 187: 185: 182: 181: 180: 175: 170: 165: 160: 153: 150: 137:basidiomycetes 80:bioinformatics 58:the design of 15: 13: 10: 9: 6: 4: 3: 2: 780: 769: 766: 764: 761: 759: 756: 754: 751: 750: 748: 737: 732: 730: 725: 723: 718: 717: 711: 709: 705: 700: 697: 693: 684: 679: 677: 672: 670: 665: 664: 658: 656: 652: 647: 644: 639: 635: 630: 620: 616: 611: 606: 602: 598: 594: 590: 586: 579: 576: 565: 561: 555: 552: 547: 543: 539: 535: 531: 527: 522: 517: 513: 509: 502: 499: 488: 484: 478: 475: 469: 464: 460: 456: 452: 448: 444: 437: 434: 429: 425: 419: 416: 411: 407: 403: 399: 395: 391: 387: 383: 379: 375: 368: 365: 354:on 2013-10-30 353: 349: 342: 339: 334: 327: 324: 319: 312: 309: 304: 300: 294: 291: 283: 276: 269: 266: 261: 255: 250: 249: 240: 237: 232: 225: 222: 218: 212: 209: 204: 200: 193: 190: 183: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 155: 151: 149: 147: 143: 139: 138: 133: 129: 125: 124: 119: 115: 110: 108: 104: 100: 96: 92: 88: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 30: 26: 22: 708:expanding it 701: 655:expanding it 648: 628: 592: 588: 578: 567:. Retrieved 563: 554: 511: 507: 501: 490:. Retrieved 487:ScienceDaily 486: 477: 450: 446: 436: 427: 418: 377: 373: 367: 356:. Retrieved 352:the original 341: 332: 326: 311: 302: 293: 282:the original 268: 247: 239: 224: 211: 202: 192: 136: 121: 114:slime moulds 111: 97:networks to 84: 35: 33: 132:linear time 68:engineering 48:computation 44:information 747:Categories 569:2019-12-06 492:2019-12-06 358:2013-10-23 184:References 60:algorithms 538:1744-5760 521:1203.2851 146:interface 99:ecologies 40:organisms 619:30443330 546:15534238 402:21150900 152:See also 142:mycelium 610:6227805 468:6227810 410:4389216 382:Bibcode 305:. 2015. 158:Wetware 617:  607:  544:  536:  465:  408:  400:  374:Nature 256:  64:design 542:S2CID 516:arXiv 406:S2CID 285:(PDF) 278:(PDF) 56:biota 704:stub 651:stub 615:PMID 534:ISSN 398:PMID 254:ISBN 105:and 66:and 46:and 605:PMC 597:doi 526:doi 463:PMC 455:doi 390:doi 378:469 78:or 749:: 613:. 603:. 591:. 587:. 562:. 540:. 532:. 524:. 512:28 510:. 485:. 461:. 449:. 445:. 426:. 404:. 396:. 388:. 376:. 301:. 201:. 116:. 82:. 735:e 728:t 721:v 710:. 682:e 675:t 668:v 657:. 621:. 599:: 593:8 572:. 548:. 528:: 518:: 495:. 471:. 457:: 451:8 430:. 412:. 392:: 384:: 361:. 262:. 233:. 219:. 205:. 31:.

Index

Biological computing
Bio-inspired computing
Computational biology
organisms
information
computation
systems biology
biota
algorithms
design
engineering
synthetic biology
computational biology
bioinformatics
natural computers
biological systems
information processing
ecologies
von Neumann automata
McCulloch–Pitts neural nets
slime moulds
Distributed systems
Physarum polycephalum
Traveling Salesman Problem
linear time
basidiomycetes
mycelium
interface
Wetware
Biological neural network

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑