Knowledge (XXG)

Bioprinting drug delivery

Source πŸ“

539:, and silk. These proteins are advantageous since they are in the ECM and display good cytocompatibility, biocompatibility, and biodegradability. They are all derived from natural sources, are isolated with different methods, and have various advantages and disadvantages. Collagen is typically printed using extrusion or SLA and provides good structural responses and esion for cells. Silk is printed using digital light processing, and provides strength and robustness. One disadvantage of silk is its potential to conform in response to high shear forces. Gelatin is printed using extrusion and provides good cellular affinity, however, its covalent crosslinking-based stabilization requires chemical reactions that are not cytocompatible. Overall, protein-based bio-inks are abundant, inexpensive, biocompatible, and biodegradable, and are in common use for 3D bioprinting. Advantages of protein-based bio-inks over synthetic bio-inks include their similarity to human host tissue and their ability to match their degradation rate with the regeneration of host tissue. 700: 337: 507: 357: 423:. Depending on the surrounding medium, alginate has the potential to form two different types of gels. Low-pH alginate shrinks and produces a viscous acidic gel, holding onto encapsulated drugs. Once the pH increases, such as inside an intestinal tract, alginate turns into a viscose gel that allows drug dissolution and release. This process allows for a controlled and sustained release to specific tissues. 380: 415:. The structure and high water absorption of alginate provides a tissue environment that closely mimics human soft tissue. In addition, it is an ideal candidate for biomedical applications due to its natural biodegradability and biocompatibility. This hydrogel leverages the delivery of drugs, protects drugs with encapsulation, and allows for tunable drug release and degradability 427: 66: 25: 746:
implants. Quinine filaments were loaded into bio-printed cellulose implants and then incubated to observe their drug-release behaviors. The study reported showed that around 5% of the quinine was released from the cellulose implant over 100 days. Using cellulose nanofibrils might provide implants with customizable shapes and controlled release of loaded drugs via FDM.
779:. The researchers used microstructures composed of poly(ethylene glycol)-diacrylate (PEGDA) and copolymerized the PEGDA to synthesize microstructures with increased cell adherence. Curved and tubular structures were fabricated via bioprinting, and the proliferation of cells on the outer surface, along with encapsulation of cells on the inner surface, was observed. 113: 167: 755:
release. Studies have reported results in the use of responsive materials and bio-inks. Responsive materials can reshape in response to stimuli, such as transforming via self-folding, assembling, and disassembling. Certain bio-inks have been reported to undergo maturation with cellular coating, self-organization, and matrix deposition.
783:
change. A 2015 study considered a 4D-printed capsule system that could release drugs on-demand at specific locations with a core-shell hydrogel. A 2014 study evaluated thermo-responsive poly(propylene fumarate) (PPF)-based system that released drugs in a controlled manner for treating the gastrointestinal tract.
754:
One study added a fourth dimension to the devices, which allows printed objects to change their shapes and functions as external factors are applied, broadening the range of biomedical applications as cellular self-organization becomes possible. This technique allows for more advanced control of drug
332:
by pressuring material into a nozzle that expels droplets. Acoustic wave jetting uses acoustic radiation force to produce droplets; electrohydrodynamic jetting uses electric voltage to form droplets; and LIFT is replaces nozzles with a laser and generates a high-pressure bubble that propels droplets.
732:
One study deposited perfusable vascular structures with a cell-responsive bio-ink that consisted of GelMA, sodium alginate, and poly(ethylene glycol)-tetra-acrylate (PEGTA). The study reported that this supported the spreading and proliferation of encapsulated endothelial and stem cells, leading to
639:
Multiple protein applications use bio-inks for 3D printing. A 2014 study bioprinted cell-laden methacrylated gelatin (GelMA) hydrogels at concentrations ranging from 7 to 15% with varying cell densities. The study used "direct-write bioprinting of cell-laden photolabile ECM-derived hydrogels". They
513:
These self-assembling peptides provide beneficial organization and strength. In addition, their resemblance to the native cellular microenvironment and tunable mechanical strength allow them to support the proliferation of human stem cells. Using self-assembling peptides to print hydrogels provides
308:) or a similar program, uses motion control systems to control the X/Y/Z axis direction drive mechanisms along with a material control system for the Bio-ink printhead, and deposits material into a 3D construct. Bioprinting can be done by material jetting, material extrusion, or vat polymerization. 782:
4D printing with thermally actuating hydrogels was reported to be relatively fast and reversible with skeletal muscle-like linear actuation in tough hydrogel materials that control the flow of water. Other examples include the usage of water absorption and thermal shape memory to demonstrate shape
291:
to treat cancer, arterial diseases, heart diseases, and arthritis. In addition, implants can be printed in unique shapes and forms to deliver drugs directly to targeted tissues. One approach adds a fourth dimension, which allows the materials to conform, by folding/unfolding, to release drugs in a
724:
Researchers studied a printed bladder device for intravesical drug delivery. Intravesical instillation provides an alternative to oral medication and delivers high drug concentrations to specific sites. Studies reported the use indwelling bladder devices with an elastic polymer bio-ink to deliver
745:
Cellulose nanofibrils have been used as a bio-ink for non-hydrogel applications. A 2017 study evaluated the use of bioprinting cellulose as drug-loaded implants. Researchers used FDM to evaluate drug release behavior. Fluorescent dye quinine was used to visualize the distribution of drugs in the
394:
are three-dimensional polymeric networks that can maintain their structure while absorbing large amounts of water or biological fluids. Hydrogels can be made of many different synthetic polymers or natural polysaccharides. These have been widely studied due to their similarities to the human
733:
the formation of perfusable vessels. These may lead to the application of vascularized tissue constructs in organ transplantation and repair. Bioprinting vascular structures may lead to treatments for cancer, arterial disease, heart disease, and arthritis by regulating vascularization and
514:
drug delivery vehicles that represent the ECM and potentially differentiate primary cells into organotypic structures and deliver antimicrobial, anti-inflammatory, anticancer, and wound healing drugs. Specifically, hydrogels made of such peptides have been studied to encapsulate
418:
To construct alginate hydrogels, a series of negatively and positively charged polyelectrolytes are assembled layer-by-layer. Alginate is used as the matrix in bio-ink that is extruded from the bioprinter's syringe with increasing shear, resulting in a tough hydrogel with low
684:-based bio-inks are accessible, inexpensive, biodegradable, biocompatible, and stiff. A polysaccharide is obtained from the biosynthesis of plants and bacteria. It is extracted from raw materials with mechanical shearing actions and biological treatments, such as 720:
tests measured levofloxacin release. The results showed no interaction between the resin and the drug, the resistance of the implant without compromise, and high antimicrobial activity. Antibiotics were delivered directly to the inner ear to address infection.
695:
cross-linking. These porous hydrogels were reported to support bacterial growth and incorporate and release antimicrobial drugs. These structures provide strong, moist environments that are ideal for delivering drugs to tissues that require wound healing aid.
495:" to produce a printable hydrogel. They reported that the tripeptide self-assembled into a viscous solution of aligned micelles at high pH values that could be transformed into a self-supporting hydrogel when the cross-linking of the 348:
Another method of bioprinting is extrusion. This is a mechanical method that uses motors to drive a piston. Extrusion is based on the rate of the motor's displacement, where the difference between the piston-driven pressure and
651:
Other research includes gelatin-sulfonated skin composite tissue to deliver cells to open wounds by seeding matrices. Doing this helps wounds to heal faster and more efficiently. Gelatin hydrogels have successfully delivered
455:
The hydrogel can be loaded with any drug, and target any tissue. The low toxicity and controllable factors of alginate make it a suitable candidate for hydrogel incorporation. Alginate hydrogels have been used to deliver
518:
drugs that can disassemble and release the loaded drug under the stimulation of tumor environments, providing an alternative to typical chemotherapy that inevitably damages healthy cells, while killing cancer cells.
246: 484:-based materials. Peptide-based hydrogels are candidates for bio-inks since they resemble the ECM. In addition, their mechanical strength and stiffness of up to 40 kPa allow for strong and rigid hydrogels. 257:
to form tissues, organs, or biological materials in a scaffold-free manner that mimics living human tissue. The technique allows targeted disease treatments with scalable and complex geometry.
437:(PRP) to develop a bio-ink with personalized biological factors. The plasms was extracted from specific patients, then mixed with the alginate solution. The solution was coated with 271:(cell-laden microgel) materials and bioprinting implantable devices that mimic specific tissues or biological functions. Applications include promoting wound healing by delivering 699: 712:
Non-hydrogel delivery systems implants are printed in the same manner as hydrogels. A 2022 study used SLA 3D printing to produce an implant to deliver drugs to the ear. 0.5%
185: 300:
Layer-by-layer printing of biochemicals and living cells requires precise placement and viable materials. The basic technology of a bioprinter starts with data taken from
640:
reported a direct correlation between printability and hydrogel mechanical properties. A commercially available bioprinter dispensed the GelMA hydrogel fibers using
452:
cells in tissue healing. The study reported that PRP and alginate hydrogel bio-ink could be used by any bioprinter to produce personalized drug delivery therapies.
1550:
Bertassoni, L.E.; Cardoso, J.C.; Manoharon, V; Cristino, A.L.; Bhise, N.S.; Araujo, W; Zorlutuna, P; Vrana, N.E.; Ghaemmaghami, A.M.; Dokmeci, M.R. (2014).
336: 38: 444:
gel. The result was a hydrogel disk that had decreased the risk of immune responses from the patient. The disk showed potential for promoting
1915:
Jia, W; Gungor-Ozkerim, P.S.; Zhang, Y.S.; Yue, K; Zhu, K; Liu, W; Pi, Q; Byambaa, B; Dokmeci, M.R.; Shin, S.R.; Khademhosseini, A (2016).
2247:
Gupta, M. K.; Meng, F.; Johnson, B. N.; Kong, Y. L.; Tian, L.; Yeh, Y. W.; Masters, N.; Singamaneni, S.; McAlpine, M. C. (June 4, 2015).
805:"Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting" 368:
Vat polymerization printing (VPP) uses a cell-hydrogel suspension. The constructs are formed layer-by-layer through laser curing in
221: 203: 52: 688:, resulting in highly structured nanofibrils. Cellulose materials are defined by their high viscosity and shear-thinning behavior. 87: 2358: 44: 292:
more controlled manner. Bioprinting allows for biocompatible, biodegradable, universal, and personalized delivery vehicles.
328:, or laser-induced forward transfer (LIFT). Piezoelectric/thermal ink-jetting uses the same non-contact process as desktop 1663:
Albanna, M; Binder, K.W.; Murphy, S.V.; Kim, J; Qasem, S.A.; Zhao, W; Tan, J; El-Amin, I.B.; Dice, D.D.; Marco, J (2019).
506: 680:
Another bio-ink that has been successful in producing drug delivery systems via bioprinting is cellulosic nanomaterials.
264:
beyond those available from donors. Organ transplantation showed limitations with immune responses and organ rejection.
1819:"Stereolithography 3D printed implants: A preliminary investigation as potential local drug delivery systems to the ear" 1721: 1665:"In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds" 1268:
Hong, H; Seo, Y.B.; Kim, D.Y.; Lee, J.S.; Lee, Y.J; Lee, H; Ajiteru, O; Sultan, M.T.; Lee, O.J.; Kim, S.H. (2020).
461: 771:. The study attempted to create a self-folding curved hydrogel microstructure to mimic the geometry of ducts and 317: 691:
One 2015 study used nanocellulose bio-inks as wound dressings. Extrusion produced porous structures with ionic
641: 373: 301: 726: 1389:"New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells" 2072:
Kwag, Hye Rin; Serbo, Janna; Korangath, Preethi; Sukumar, Saraswati; Romer, Lewis; Gracias, David (2016).
356: 1866:
Goyanes, A; Xu, X; Trenfield, S.J.; Diaz-Gomez, L; Alvarez-Lorenzo, C; Gaisford, S; Basit, A.W. (2021).
1131: 445: 261: 1331:"Inclusion of Cross-Linked Elastin in Gelatin/PEG Hydrogels Favourably Influences Fibroblast Phenotype" 2019: 1766:
Rees, A; Powell, L.C.; Chinga-Carrasco, G; Gethin, D.T.; Syverud, K; Hill, K.E.; Thomas, D.W. (2015).
2363: 2303:
Malachowski, K; Breger, J; Kwag, H.R.; Wang, M.O.; Fisher, J.P.; Selaru, F.M.; Gracais, D.H. (2014).
2213: 1676: 1563: 434: 396: 325: 276: 1208: 1162: 1088: 1035:"Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques" 611:
Requires non-cytocompatible chemical reactions and has a risk of degradation at high temperatures.
465: 399:(ECM) and their ability to encapsulate drugs. They are mainly printed using jetting and extrusion. 123: 2229: 2047: 1993: 1897: 1848: 1416: 1297: 1236: 1182: 1112: 844: 280: 1964:
Kempin, W; Franz, C; Koster, L.C.; Schneider, F; Bogdahn, M; Weitschies, W; Seidlitz, A (2017).
142: 2334: 2278: 2144: 2103: 2039: 1985: 1946: 1889: 1840: 1799: 1741: 1702: 1645: 1589: 1527: 1469: 1408: 1362: 1289: 1228: 1104: 1066: 1015: 958: 898: 836: 369: 1388: 2324: 2316: 2268: 2260: 2221: 2175: 2134: 2093: 2085: 2031: 1977: 1936: 1928: 1879: 1830: 1789: 1779: 1733: 1692: 1684: 1635: 1627: 1579: 1571: 1517: 1507: 1459: 1400: 1387:
Lee, H.J.; Kim, Y.B.; Ahn, S.H.; Lee, J.S.; Jang, C.H.; Yoon, H; Chun, W; Kim, G.H. (2015).
1352: 1342: 1281: 1220: 1174: 1096: 1056: 1046: 1005: 997: 989: 948: 940: 888: 878: 826: 816: 768: 692: 438: 350: 333:
These methods provide precise placement of the bioink and enable scaffold-free bioprinting.
321: 1270:"igital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering" 260:
This technique was first developed in the 1950s as patients with incurable diseases sought
2163: 1144: 703:
Nanocellulose cross-linked with calcium chloride printed on a nanocellulose hydrogel film.
500: 329: 288: 2217: 1868:"Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery" 1680: 1567: 2329: 2304: 2273: 2098: 2073: 1941: 1932: 1916: 1794: 1767: 1697: 1664: 1640: 1615: 1584: 1575: 1522: 1495: 1357: 1330: 1285: 1061: 1034: 1010: 977: 953: 928: 893: 866: 831: 804: 776: 645: 492: 2352: 2233: 1901: 1852: 1301: 1186: 1116: 848: 238: 1420: 1240: 867:"Recent advances in bioprinting techniques: approaches, applications, and prospects" 2051: 1997: 734: 713: 661: 577:
Conforms at high shear forces, so not suitable for printing at low concentrations.
515: 379: 284: 2201: 2035: 1835: 1818: 1551: 1512: 1051: 2264: 1631: 1817:
Triacca, A; Pitzanti, G; Matthew, E; Conti, B; Dorati, R; Lamprou, D.A. (2022).
653: 625:
Good structural responses and cell adhesion. High porosity and tensile strength.
469: 449: 272: 242: 2248: 1981: 1917:"Direct 3D bioprinting of perfusable vascular constructs using a blend bio-ink" 1884: 1867: 1688: 1329:
Cao, Y; Lee, B.H.; Irvine, S.A.; Wong, Y.S.; Bianco, H; Venkatraman, S (2020).
283:, providing anticancer treatments directly to tumors, and promoting/inhibiting 2089: 883: 821: 685: 669: 457: 426: 1872:
Materials Science & Engineering. C, Materials for Biological Applications
978:"Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds" 433:
One 2018 study used alginate-based hydrogels combined with the growth factor
267:
Techniques that have been studied include bioprinting hydrogels with various
1965: 1269: 681: 420: 412: 250: 132: 2338: 2320: 2282: 2148: 2139: 2122: 2107: 2043: 1989: 1950: 1893: 1844: 1803: 1745: 1706: 1649: 1593: 1531: 1473: 1412: 1404: 1366: 1293: 1232: 1108: 1070: 1019: 993: 962: 929:"3D bioprinting processes: A perspective on classification and terminology" 902: 840: 112: 1784: 1347: 944: 2305:"Stimuli-Responsive Theragrippers for Chemomechanical Controlled Release" 1161:
Yang, X; Wang, Y; Qi, W; Xing, R; Yang, X; Xing, Q; Su, R; He, S (2019).
1001: 657: 528: 488: 408: 391: 254: 1552:"Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels" 1464: 1447: 1737: 1224: 1178: 1100: 665: 536: 532: 481: 441: 2225: 594:
Can be difficult to achieve and have varying properties in humid air.
2123:"4D printing with mechanically robust, thermally actuating hydrogels" 268: 2179: 1494:
Mirzaei, M; Okoro, O.V.; Nie, L; Petri, D.F.S.; Shavandi, A (2021).
1207:
Gao, Y; Zhang, C; Chang, J; Yang, C; Liu, J; Fan, S; Ren, C (2019).
574:
High strength and robustness. High solubility and printing fidelity.
407:
A common polysaccharide used in biomedical hydrogel applications is
253:
or implantable devices. 3D bioprinting prints cells and biological
772: 698: 505: 496: 425: 378: 355: 335: 648:. The hydrogels provided cell viability for at least eight days. 376:(DLP) into the vat of a photopolymer using a micromirror device. 85:
parameter to this template to explain the issue with the article.
628:
Possible lack of biocompatibility and immunogenicity concerns.
353:
drives the material through an angular turn of a rotary screw.
591:
High strength and fidelity. Good cell adherence and viability.
305: 160: 106: 59: 18: 2074:"A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma" 668:, an anti-inflammatory drug that aids in wound dressing, and 1722:"Nanocellulosic materials as bio-inks for 3D bioprinting" 1720:
Piras, C; FernΓ‘ndez-Prieto, S; Borggraeve, W.M.D (2017).
491:
induced by disulfide crosslinking in a lyotropic peptide
2121:
Bakarich, SE; Gorkin, R; Panhuis, M; Spinks, GM (2015).
480:
Another bio-ink is low molecular weight self-assembling
320:(FDM), is a method that involves depositing cells using 2018:
Gao, B; Yang, Q; Zhao, X; Jin, G; Ma, Y; Xu, F (2016).
181: 137: 127: 1970:
European Journal of Pharmaceutics and Biopharmaceutics
664:
cell differentiation. Silk has successfully delivered
275:, anti-inflammatory treatments, or drugs that promote 927:
Lee, J.M.; Sing, S.L.; Zhou, M; Yeong, W.Y. (2018).
249:. Such vehicles are biocompatible, tissue-specific 176:
may be too technical for most readers to understand
1496:"Protein-based 3D bio fabrication of Biomaterials" 672:, an antibiotic that also aids in wound dressing. 472:, which promotes local stem cell differentiation. 241:vehicles. It uses three-dimensional printing of 499:group of the side chain peptides increased the 1620:Current Opinion in Obstetrics & Gynecology 716:was added to a flexible resin. Mechanical and 2202:"Active materials by four-dimension printing" 1448:"3D bioprinting and its in vivo applications" 324:/thermal ink-jetting, acoustic wave jetting, 8: 2020:"4D bioprinting for biomedical applications" 316:Material jetting, sometimes referred to as 53:Learn how and when to remove these messages 2164:"4D Printing: Multi-Material Shape Change" 487:A 2019 study used the "helical coiling of 75:needs attention from an expert in Medicine 2328: 2272: 2138: 2097: 1940: 1883: 1834: 1793: 1783: 1696: 1639: 1583: 1521: 1511: 1463: 1356: 1346: 1060: 1050: 1033:Vigata, M; Hutmacher, D; Bock, N (2020). 1009: 952: 892: 882: 830: 820: 763:Examples include a self-folding hydrogel 608:Good cellular affinity and proliferation. 468:, which are hydrophobic antibiotics, and 222:Learn how and when to remove this message 204:Learn how and when to remove this message 188:, without removing the technical details. 541: 792: 1823:International Journal of Pharmaceutics 1140: 1129: 527:Common protein-based bio-inks include 90:may be able to help recruit an expert. 186:make it understandable to non-experts 7: 2200:Ge, Q; Qi, H.J.; Dunn, M.L. (2013). 933:International Journal of Bioprinting 411:, a naturally occurring polyanionic 2078:Tissue Engineering. Part C, Methods 1545: 1543: 1541: 1489: 1487: 1485: 1483: 1441: 1439: 1437: 1382: 1380: 1378: 1376: 1324: 1322: 1320: 1318: 1933:10.1016/j.biomaterials.2016.07.038 1286:10.1016/j.biomaterials.2019.119679 1263: 1261: 1259: 1257: 1156: 1154: 1082: 1080: 922: 920: 918: 916: 914: 912: 860: 858: 798: 796: 585:Spider, sheep wool, and human hair 14: 871:Journal of Translational Medicine 809:Journal of Biological Engineering 34:This article has multiple issues. 16:Bioprinting drug delivery systems 1167:Journal of Materials Chemistry B 803:Abasalizadeh, Moghaddam (2020). 165: 111: 64: 23: 1087:Das, A.K.; Gavel, P.K. (2020). 42:or discuss these issues on the 729:directly to the target site. 656:, a hydrophobic molecule, and 1: 2036:10.1016/j.tibtech.2016.03.004 1836:10.1016/j.ijpharm.2022.121529 1772:BioMed Research International 1616:"Stem Cells and reproduction" 1513:10.3390/bioengineering8040048 1393:Advanced Healthcare Materials 1052:10.3390/pharmaceutics12121188 2265:10.1021/acs.nanolett.5b01688 1632:10.1097/GCO.0b013e328338c152 1614:Du, H; Taylor, H.S. (2010). 1576:10.1088/1758-5082/6/2/024105 326:electrohydrodynamic jetting 2380: 1982:10.1016/j.ejpb.2017.02.014 1885:10.1016/j.msec.2020.111773 1689:10.1038/s41598-018-38366-w 462:tetracycline hydrochloride 237:is a method for producing 2090:10.1089/ten.TEC.2015.0442 884:10.1186/s12967-016-1028-0 822:10.1186/s13036-020-0227-7 318:fused deposition modeling 235:Bioprinting drug delivery 1966:"Eur. J. Pharm Biopharm" 642:digital light processing 571:Digital light processing 374:digital light processing 302:computer-assisted design 2206:Applied Physics Letters 2024:Trends in Biotechnology 727:lidocaine hydrochloride 126:, as no other articles 2321:10.1002/anie.201311047 2140:10.1002/marc.201500079 1405:10.1002/adhm.201500193 1139:Cite journal requires 994:10.1002/adhm.201701347 704: 510: 460:, an anticancer drug, 446:mesenchymal stem cells 430: 383: 360: 340: 262:organ transplantations 247:additive manufacturing 2359:Drug delivery devices 2127:Macromol Rapid Commun 1348:10.3390/polym12030670 976:Faramarzi, N (2018). 945:10.18063/ijb.v4i2.151 708:Non-hydrogel implants 702: 509: 429: 382: 359: 339: 2309:Angew. Chem. Int. Ed 2168:Architectural Design 1726:Biomaterials Science 1452:J Biomed Mater Res B 1213:Biomaterials Science 435:platelet-rich plasma 397:extracellular matrix 277:cell differentiation 88:WikiProject Medicine 2218:2013ApPhL.103m1901G 2162:Tibbits, S (2014). 1785:10.1155/2015/925757 1681:2019NatSR...9.1856A 1568:2014BioFa...6b4105B 1465:10.1002/jbm.b.33826 1163:"J. Mater. Chem. B" 1095:(44): 10065–10095. 544: 466:silver sulfadiazine 1738:10.1039/C7BM00510E 1669:Scientific Reports 1225:10.1039/C8BM01422A 1179:10.1039/C8TB03121E 1101:10.1039/D0SM01136C 705: 542: 511: 431: 384: 364:Vat polymerization 361: 341: 281:cell proliferation 145:for suggestions. 135:to this page from 2315:(31): 8045–8049. 2226:10.1063/1.4819837 2133:(12): 1211–1217. 1768:"BioMed Res. Int" 1732:(10): 1988–1992. 1173:(18): 2981–2988. 982:Adv Healthc Mater 632: 631: 503:of the solution. 370:stereolithography 232: 231: 224: 214: 213: 206: 159: 158: 105: 104: 57: 2371: 2343: 2342: 2332: 2300: 2294: 2293: 2291: 2289: 2276: 2259:(8): 5321–5329. 2244: 2238: 2237: 2197: 2191: 2190: 2188: 2186: 2159: 2153: 2152: 2142: 2118: 2112: 2111: 2101: 2069: 2063: 2062: 2060: 2058: 2015: 2009: 2008: 2006: 2004: 1961: 1955: 1954: 1944: 1912: 1906: 1905: 1887: 1863: 1857: 1856: 1838: 1814: 1808: 1807: 1797: 1787: 1763: 1757: 1756: 1754: 1752: 1717: 1711: 1710: 1700: 1660: 1654: 1653: 1643: 1611: 1605: 1604: 1602: 1600: 1587: 1547: 1536: 1535: 1525: 1515: 1491: 1478: 1477: 1467: 1446:Hong, N (2018). 1443: 1432: 1431: 1429: 1427: 1399:(9): 1359–1368. 1384: 1371: 1370: 1360: 1350: 1326: 1313: 1312: 1310: 1308: 1265: 1252: 1251: 1249: 1247: 1219:(4): 1477–1485. 1204: 1198: 1197: 1195: 1193: 1158: 1149: 1148: 1142: 1137: 1135: 1127: 1125: 1123: 1084: 1075: 1074: 1064: 1054: 1030: 1024: 1023: 1013: 988:(11): e1701347. 973: 967: 966: 956: 924: 907: 906: 896: 886: 862: 853: 852: 834: 824: 800: 769:ductal carcinoma 693:calcium chloride 622:Extrusion or SLA 619:Porcine and fish 545: 439:calcium chloride 351:ambient pressure 227: 220: 209: 202: 198: 195: 189: 169: 168: 161: 154: 151: 140: 138:related articles 115: 107: 100: 97: 91: 77:. Please add a 68: 67: 60: 49: 27: 26: 19: 2379: 2378: 2374: 2373: 2372: 2370: 2369: 2368: 2349: 2348: 2347: 2346: 2302: 2301: 2297: 2287: 2285: 2246: 2245: 2241: 2199: 2198: 2194: 2184: 2182: 2180:10.1002/ad.1710 2161: 2160: 2156: 2120: 2119: 2115: 2071: 2070: 2066: 2056: 2054: 2017: 2016: 2012: 2002: 2000: 1963: 1962: 1958: 1914: 1913: 1909: 1865: 1864: 1860: 1816: 1815: 1811: 1765: 1764: 1760: 1750: 1748: 1719: 1718: 1714: 1662: 1661: 1657: 1613: 1612: 1608: 1598: 1596: 1549: 1548: 1539: 1493: 1492: 1481: 1445: 1444: 1435: 1425: 1423: 1386: 1385: 1374: 1328: 1327: 1316: 1306: 1304: 1267: 1266: 1255: 1245: 1243: 1209:"Biomater. Sci" 1206: 1205: 1201: 1191: 1189: 1160: 1159: 1152: 1138: 1128: 1121: 1119: 1086: 1085: 1078: 1032: 1031: 1027: 975: 974: 970: 926: 925: 910: 864: 863: 856: 802: 801: 794: 789: 761: 752: 743: 710: 678: 644:since GelMA is 637: 554:Printing Method 525: 501:storage modulus 478: 405: 389: 366: 346: 330:inkjet printers 314: 298: 289:vascularization 228: 217: 216: 215: 210: 199: 193: 190: 182:help improve it 179: 170: 166: 155: 149: 146: 136: 133:introduce links 116: 101: 95: 92: 86: 69: 65: 28: 24: 17: 12: 11: 5: 2377: 2375: 2367: 2366: 2361: 2351: 2350: 2345: 2344: 2295: 2239: 2212:(13): 131901. 2192: 2154: 2113: 2084:(4): 398–407. 2064: 2030:(9): 746–756. 2010: 1956: 1907: 1858: 1809: 1758: 1712: 1655: 1626:(3): 235–241. 1606: 1556:Biofabrication 1537: 1500:Bioengineering 1479: 1458:(1): 444–459. 1433: 1372: 1314: 1253: 1199: 1150: 1141:|journal= 1076: 1025: 968: 908: 865:Li, J (2016). 854: 791: 790: 788: 785: 777:mammary glands 760: 757: 751: 750:4D bioprinting 748: 742: 739: 709: 706: 677: 674: 646:photosensitive 636: 633: 630: 629: 626: 623: 620: 617: 613: 612: 609: 606: 603: 600: 596: 595: 592: 589: 586: 583: 579: 578: 575: 572: 569: 566: 562: 561: 560:Disadvantages 558: 555: 552: 549: 524: 521: 493:liquid crystal 477: 474: 404: 401: 388: 385: 365: 362: 345: 342: 313: 310: 297: 294: 230: 229: 212: 211: 173: 171: 164: 157: 156: 143:Find link tool 119: 117: 110: 103: 102: 72: 70: 63: 58: 32: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 2376: 2365: 2362: 2360: 2357: 2356: 2354: 2340: 2336: 2331: 2326: 2322: 2318: 2314: 2310: 2306: 2299: 2296: 2284: 2280: 2275: 2270: 2266: 2262: 2258: 2254: 2250: 2243: 2240: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2196: 2193: 2181: 2177: 2173: 2169: 2165: 2158: 2155: 2150: 2146: 2141: 2136: 2132: 2128: 2124: 2117: 2114: 2109: 2105: 2100: 2095: 2091: 2087: 2083: 2079: 2075: 2068: 2065: 2053: 2049: 2045: 2041: 2037: 2033: 2029: 2025: 2021: 2014: 2011: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1960: 1957: 1952: 1948: 1943: 1938: 1934: 1930: 1926: 1922: 1918: 1911: 1908: 1903: 1899: 1895: 1891: 1886: 1881: 1877: 1873: 1869: 1862: 1859: 1854: 1850: 1846: 1842: 1837: 1832: 1828: 1824: 1820: 1813: 1810: 1805: 1801: 1796: 1791: 1786: 1781: 1777: 1773: 1769: 1762: 1759: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1716: 1713: 1708: 1704: 1699: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1659: 1656: 1651: 1647: 1642: 1637: 1633: 1629: 1625: 1621: 1617: 1610: 1607: 1595: 1591: 1586: 1581: 1577: 1573: 1569: 1565: 1562:(2): 024105. 1561: 1557: 1553: 1546: 1544: 1542: 1538: 1533: 1529: 1524: 1519: 1514: 1509: 1505: 1501: 1497: 1490: 1488: 1486: 1484: 1480: 1475: 1471: 1466: 1461: 1457: 1453: 1449: 1442: 1440: 1438: 1434: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1383: 1381: 1379: 1377: 1373: 1368: 1364: 1359: 1354: 1349: 1344: 1340: 1336: 1332: 1325: 1323: 1321: 1319: 1315: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1264: 1262: 1260: 1258: 1254: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1200: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1157: 1155: 1151: 1146: 1133: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1089:"Soft Matter" 1083: 1081: 1077: 1072: 1068: 1063: 1058: 1053: 1048: 1044: 1040: 1039:Pharmaceutics 1036: 1029: 1026: 1021: 1017: 1012: 1007: 1003: 1002:1721.1/140759 999: 995: 991: 987: 983: 979: 972: 969: 964: 960: 955: 950: 946: 942: 938: 934: 930: 923: 921: 919: 917: 915: 913: 909: 904: 900: 895: 890: 885: 880: 876: 872: 868: 861: 859: 855: 850: 846: 842: 838: 833: 828: 823: 818: 814: 810: 806: 799: 797: 793: 786: 784: 780: 778: 774: 770: 766: 758: 756: 749: 747: 741:Nanocellulose 740: 738: 736: 730: 728: 722: 719: 715: 707: 701: 697: 694: 689: 687: 683: 676:Nanocellulose 675: 673: 671: 667: 663: 659: 655: 649: 647: 643: 634: 627: 624: 621: 618: 615: 614: 610: 607: 604: 601: 598: 597: 593: 590: 587: 584: 581: 580: 576: 573: 570: 567: 564: 563: 559: 556: 553: 550: 547: 546: 540: 538: 534: 530: 522: 520: 517: 508: 504: 502: 498: 494: 490: 485: 483: 475: 473: 471: 467: 463: 459: 453: 451: 447: 443: 440: 436: 428: 424: 422: 416: 414: 410: 402: 400: 398: 393: 386: 381: 377: 375: 371: 363: 358: 354: 352: 343: 338: 334: 331: 327: 323: 322:piezoelectric 319: 311: 309: 307: 303: 295: 293: 290: 286: 282: 278: 274: 270: 265: 263: 258: 256: 252: 248: 244: 240: 239:drug delivery 236: 226: 223: 208: 205: 197: 187: 183: 177: 174:This article 172: 163: 162: 153: 144: 139: 134: 130: 129: 125: 120:This article 118: 114: 109: 108: 99: 89: 84: 80: 76: 73:This article 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 2312: 2308: 2298: 2286:. Retrieved 2256: 2253:Nano Letters 2252: 2242: 2209: 2205: 2195: 2183:. Retrieved 2171: 2167: 2157: 2130: 2126: 2116: 2081: 2077: 2067: 2055:. Retrieved 2027: 2023: 2013: 2001:. Retrieved 1973: 1969: 1959: 1924: 1921:Biomaterials 1920: 1910: 1875: 1871: 1861: 1826: 1822: 1812: 1775: 1771: 1761: 1749:. Retrieved 1729: 1725: 1715: 1672: 1668: 1658: 1623: 1619: 1609: 1597:. Retrieved 1559: 1555: 1503: 1499: 1455: 1451: 1424:. Retrieved 1396: 1392: 1338: 1334: 1305:. Retrieved 1277: 1274:Biomaterials 1273: 1244:. Retrieved 1216: 1212: 1202: 1190:. Retrieved 1170: 1166: 1132:cite journal 1120:. Retrieved 1092: 1045:(12): 1188. 1042: 1038: 1028: 985: 981: 971: 936: 932: 874: 870: 812: 808: 781: 764: 762: 759:Applications 753: 744: 735:angiogenesis 731: 723: 717: 714:levofloxacin 711: 690: 679: 650: 638: 635:Applications 543:Comparisons 526: 516:chemotherapy 512: 486: 479: 454: 432: 417: 406: 390: 372:(SLA) or UV 367: 347: 315: 299: 285:angiogenesis 266: 259: 243:biomaterials 234: 233: 218: 200: 191: 175: 147: 121: 93: 82: 78: 74: 50: 43: 37: 36:Please help 33: 2364:3D printing 2249:"Nano Lett" 2174:: 116–121. 1778:: e925757. 1675:(1): 1856. 660:to promote 654:fluorescein 470:simvastatin 450:endothelial 273:antibiotics 2353:Categories 1878:: 111773. 1829:: 121529. 1341:(3): 670. 1280:: 119679. 939:(2): 151. 787:References 767:model for 686:hydrolysis 670:gentamicin 662:osteogenic 557:Advantages 497:sulfhydryl 458:bortezomib 141:; try the 128:link to it 96:April 2023 39:improve it 2234:120595002 1976:: 84–93. 1927:: 58–68. 1902:230557189 1853:246512205 1506:(4): 48. 1302:209447166 1187:109858112 1117:224781478 849:255987816 682:Cellulose 605:Extrusion 588:Extrusion 551:Source(s) 421:viscosity 413:copolymer 403:Alginates 392:Hydrogels 387:Hydrogels 344:Extrusion 255:molecules 251:hydrogels 194:June 2023 131:. Please 45:talk page 2339:24634136 2288:10 April 2283:26042472 2185:10 April 2149:25864515 2108:26831041 2057:10 April 2044:27056447 1990:28232106 1951:27552316 1894:33545904 1845:35114311 1804:26090461 1746:28829453 1707:30755653 1650:20305558 1599:10 April 1594:24695367 1532:33923425 1474:28106947 1421:24625469 1413:25874573 1367:32192137 1335:Polymers 1294:31865191 1241:58948074 1233:30672520 1192:10 April 1109:33073836 1071:33297493 1020:29663706 963:33102923 903:27645770 841:32190110 765:in vitro 718:in vitro 658:microRNA 616:Collagen 568:Silkworm 529:collagen 489:micelles 476:Peptides 409:alginate 150:May 2023 2330:4315180 2274:4536147 2214:Bibcode 2099:4827285 2052:3594292 2003:9 April 1998:3402723 1942:5300870 1795:4452270 1751:9 April 1698:6372693 1677:Bibcode 1641:3107846 1585:4040163 1564:Bibcode 1523:8073780 1426:9 April 1358:7183321 1307:9 April 1246:8 April 1122:8 April 1062:7762425 1011:6422175 954:7582007 894:5028995 877:: 271. 832:7069202 775:within 666:aspirin 602:Gelatin 599:Gelatin 582:Keratin 548:Protein 537:gelatin 533:keratin 523:Protein 482:peptide 442:agarose 312:Jetting 296:Methods 269:Bio-ink 180:Please 2337:  2327:  2281:  2271:  2232:  2147:  2106:  2096:  2050:  2042:  1996:  1988:  1949:  1939:  1900:  1892:  1851:  1843:  1802:  1792:  1744:  1705:  1695:  1648:  1638:  1592:  1582:  1530:  1520:  1472:  1419:  1411:  1365:  1355:  1300:  1292:  1239:  1231:  1185:  1115:  1107:  1069:  1059:  1018:  1008:  961:  951:  901:  891:  847:  839:  829:  124:orphan 122:is an 79:reason 2230:S2CID 2048:S2CID 1994:S2CID 1898:S2CID 1849:S2CID 1417:S2CID 1298:S2CID 1237:S2CID 1183:S2CID 1113:S2CID 845:S2CID 815:: 8. 773:acini 81:or a 2335:PMID 2290:2023 2279:PMID 2187:2023 2145:PMID 2104:PMID 2059:2023 2040:PMID 2005:2023 1986:PMID 1947:PMID 1890:PMID 1841:PMID 1800:PMID 1776:2015 1753:2023 1742:PMID 1703:PMID 1646:PMID 1601:2023 1590:PMID 1528:PMID 1470:PMID 1428:2023 1409:PMID 1363:PMID 1309:2023 1290:PMID 1248:2023 1229:PMID 1194:2023 1145:help 1124:2023 1105:PMID 1067:PMID 1016:PMID 959:PMID 899:PMID 837:PMID 565:Silk 464:and 448:and 287:and 279:and 245:via 83:talk 2325:PMC 2317:doi 2269:PMC 2261:doi 2222:doi 2210:103 2176:doi 2135:doi 2094:PMC 2086:doi 2032:doi 1978:doi 1974:115 1937:PMC 1929:doi 1925:106 1880:doi 1876:120 1831:doi 1827:616 1790:PMC 1780:doi 1734:doi 1693:PMC 1685:doi 1636:PMC 1628:doi 1580:PMC 1572:doi 1518:PMC 1508:doi 1460:doi 1456:106 1401:doi 1353:PMC 1343:doi 1282:doi 1278:232 1221:doi 1175:doi 1097:doi 1057:PMC 1047:doi 1006:PMC 998:hdl 990:doi 949:PMC 941:doi 889:PMC 879:doi 827:PMC 817:doi 306:CAD 184:to 2355:: 2333:. 2323:. 2313:53 2311:. 2307:. 2277:. 2267:. 2257:15 2255:. 2251:. 2228:. 2220:. 2208:. 2204:. 2172:84 2170:. 2166:. 2143:. 2131:36 2129:. 2125:. 2102:. 2092:. 2082:22 2080:. 2076:. 2046:. 2038:. 2028:34 2026:. 2022:. 1992:. 1984:. 1972:. 1968:. 1945:. 1935:. 1923:. 1919:. 1896:. 1888:. 1874:. 1870:. 1847:. 1839:. 1825:. 1821:. 1798:. 1788:. 1774:. 1770:. 1740:. 1728:. 1724:. 1701:. 1691:. 1683:. 1671:. 1667:. 1644:. 1634:. 1624:22 1622:. 1618:. 1588:. 1578:. 1570:. 1558:. 1554:. 1540:^ 1526:. 1516:. 1502:. 1498:. 1482:^ 1468:. 1454:. 1450:. 1436:^ 1415:. 1407:. 1395:. 1391:. 1375:^ 1361:. 1351:. 1339:12 1337:. 1333:. 1317:^ 1296:. 1288:. 1276:. 1272:. 1256:^ 1235:. 1227:. 1215:. 1211:. 1181:. 1169:. 1165:. 1153:^ 1136:: 1134:}} 1130:{{ 1111:. 1103:. 1093:16 1091:. 1079:^ 1065:. 1055:. 1043:12 1041:. 1037:. 1014:. 1004:. 996:. 984:. 980:. 957:. 947:. 935:. 931:. 911:^ 897:. 887:. 875:14 873:. 869:. 857:^ 843:. 835:. 825:. 813:14 811:. 807:. 795:^ 737:. 535:, 531:, 48:. 2341:. 2319:: 2292:. 2263:: 2236:. 2224:: 2216:: 2189:. 2178:: 2151:. 2137:: 2110:. 2088:: 2061:. 2034:: 2007:. 1980:: 1953:. 1931:: 1904:. 1882:: 1855:. 1833:: 1806:. 1782:: 1755:. 1736:: 1730:5 1709:. 1687:: 1679:: 1673:9 1652:. 1630:: 1603:. 1574:: 1566:: 1560:6 1534:. 1510:: 1504:8 1476:. 1462:: 1430:. 1403:: 1397:4 1369:. 1345:: 1311:. 1284:: 1250:. 1223:: 1217:7 1196:. 1177:: 1171:7 1147:) 1143:( 1126:. 1099:: 1073:. 1049:: 1022:. 1000:: 992:: 986:7 965:. 943:: 937:4 905:. 881:: 851:. 819:: 304:( 225:) 219:( 207:) 201:( 196:) 192:( 178:. 152:) 148:( 98:) 94:( 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
WikiProject Medicine

orphan
link to it
introduce links
related articles
Find link tool
help improve it
make it understandable to non-experts
Learn how and when to remove this message
Learn how and when to remove this message
drug delivery
biomaterials
additive manufacturing
hydrogels
molecules
organ transplantations
Bio-ink
antibiotics
cell differentiation
cell proliferation
angiogenesis
vascularization
computer-assisted design
CAD
fused deposition modeling
piezoelectric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑