Knowledge (XXG)

Billiard-ball computer

Source πŸ“

20: 158:. In these simulations, the balls are only allowed to move at a constant speed in an axis-parallel direction, assumptions that in any case were already present in the use of the billiard ball model to simulate logic circuits. Both the balls and the buffers are simulated by certain patterns of live cells, and the field across which the balls move is simulated by regions of dead cells, in these cellular automaton simulations. 133:
in which the wires of the circuit correspond to paths on which one of the balls may travel, the signal on a wire is encoded by the presence or absence of a ball on that path, and the gates of the circuit are simulated by collisions of balls at points where their paths cross. In particular, it is
58:
billiard ball, they collide with each other in the upper-left-hand corner of the device and redirect each other to collide again in the lower-right-hand corner of the device. One ball then exits via
445: 138:, from which any other Boolean logic gate may be simulated. Therefore, suitably configured billiard-ball computers may be used to perform any computational task. 214: 117:
in a friction-free environment made of buffers against which the balls bounce perfectly. It was devised to investigate the relation between computation and
286: 155: 476: 455: 486: 481: 147: 370: 180: 151: 110: 389: 342: 316: 223: 91: 118: 94: 405: 379: 247: 98: 424: 307: 282: 167: 161:
Logic gates based on billiard-ball computer designs have also been made to operate using live
429: 397: 365: 361: 324: 274: 266: 231: 70:
is logically consistent with the output of an AND gate that takes the presence of a ball at
243: 134:
possible to set up the paths of the balls and the buffers around them to form a reversible
334: 302: 239: 209: 130: 106: 27: 393: 346: 320: 227: 19: 341:, Advanced series on complex systems, vol. 1, World Scientific, pp. 232–246, 205: 102: 23: 470: 450: 328: 114: 409: 401: 251: 135: 278: 265:
Durand-Lose, JΓ©rΓ΄me (2002), "Computing inside the billiard ball model", in
185: 162: 31: 235: 146:
It is possible to simulate billiard-ball computers on several types of
384: 34:. When a single billiard ball arrives at the gate through input 109:. Instead of using electronic signals like a conventional 42:, it passes through the device unobstructed and exits via 142:
Simulating billiard balls in other models of computation
66:. Thus, the presence of a ball being emitted from the 425:"Computer Built Using Swarms Of Soldier Crabs" 305:(1984), "Physics-like models of computation", 8: 339:Theory and Applications of Cellular Automata 215:International Journal of Theoretical Physics 54:billiard ball arrives simultaneously as a 383: 18: 197: 125:Simulating circuits with billiard balls 113:, it relies on the motion of spherical 62:and the other ball exits via the lower 446:"Computers powered by swarms of crabs" 360:Gunji, Yukio-Pegio; Nishiyama, Yuta; 273:, Springer-Verlag, pp. 135–160, 7: 90:circuit, is an idealized model of a 129:This model can be used to simulate 16:Type of conservative logic circuit 14: 423:Solon, Olivia (April 14, 2012), 171:in place of the billiard balls. 402:10.25088/ComplexSystems.20.2.93 366:"Robust Soldier Crab Ball Gate" 444:Aron, Jacob (April 12, 2012), 308:Physica D: Nonlinear Phenomena 212:(1982), "Conservative logic", 156:second-order cellular automata 1: 148:reversible cellular automaton 329:10.1016/0167-2789(84)90252-5 279:10.1007/978-1-4471-0129-1_6 503: 30:billiard ball model of an 271:Collision-Based Computing 181:Unconventional computing 152:block cellular automata 101:, proposed in 1982 by 84:billiard-ball computer 79: 477:Models of computation 22: 487:Reversible computing 482:Mechanical computers 119:reversible processes 394:2012arXiv1204.1749G 347:1986taca.book.....W 321:1984PhyD...10...81M 228:1982IJTP...21..219F 95:mechanical computer 236:10.1007/BF01857727 99:Newtonian dynamics 88:conservative logic 80: 362:Adamatzky, Andrew 288:978-1-4471-0129-1 267:Adamatzky, Andrew 168:Mictyris guinotae 494: 461: 459: 454:, archived from 441: 435: 433: 420: 414: 412: 387: 357: 351: 349: 335:Wolfram, Stephen 331: 299: 293: 291: 262: 256: 254: 222:(3–4): 219–253, 210:Toffoli, Tommaso 202: 131:Boolean circuits 50:. However, if a 502: 501: 497: 496: 495: 493: 492: 491: 467: 466: 465: 464: 443: 442: 438: 422: 421: 417: 371:Complex Systems 359: 358: 354: 333: 332:. Reprinted in 301: 300: 296: 289: 264: 263: 259: 206:Fredkin, Edward 204: 203: 199: 194: 177: 165:of the species 144: 127: 107:Tommaso Toffoli 17: 12: 11: 5: 500: 498: 490: 489: 484: 479: 469: 468: 463: 462: 436: 415: 352: 315:(1–2): 81–95, 294: 287: 257: 196: 195: 193: 190: 189: 188: 183: 176: 173: 143: 140: 126: 123: 115:billiard balls 103:Edward Fredkin 15: 13: 10: 9: 6: 4: 3: 2: 499: 488: 485: 483: 480: 478: 475: 474: 472: 458:on 2012-04-13 457: 453: 452: 451:New Scientist 447: 440: 437: 432: 431: 426: 419: 416: 411: 407: 403: 399: 395: 391: 386: 381: 378:(2): 93–104, 377: 373: 372: 367: 363: 356: 353: 348: 344: 340: 336: 330: 326: 322: 318: 314: 310: 309: 304: 298: 295: 290: 284: 280: 276: 272: 268: 261: 258: 253: 249: 245: 241: 237: 233: 229: 225: 221: 217: 216: 211: 207: 201: 198: 191: 187: 184: 182: 179: 178: 174: 172: 170: 169: 164: 163:soldier crabs 159: 157: 153: 149: 141: 139: 137: 132: 124: 122: 120: 116: 112: 108: 104: 100: 96: 93: 89: 85: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 456:the original 449: 439: 428: 418: 375: 369: 355: 338: 312: 306: 303:Margolus, N. 297: 270: 260: 219: 213: 200: 166: 160: 150:, including 145: 136:Toffoli gate 128: 121:in physics. 87: 86:, a type of 83: 81: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 471:Categories 192:References 92:reversible 78:as inputs. 68:AND-output 64:AND-output 385:1204.1749 97:based on 410:14365421 364:(2011), 337:(1986), 252:37305161 186:Fluidics 175:See also 111:computer 32:AND gate 390:Bibcode 343:Bibcode 317:Bibcode 269:(ed.), 244:0657156 224:Bibcode 28:Toffoli 24:Fredkin 408:  285:  250:  242:  430:Wired 406:S2CID 380:arXiv 248:S2CID 60:1-out 48:1-out 44:0-out 283:ISBN 154:and 105:and 76:1-in 74:and 72:0-in 56:1-in 52:0-in 40:1-in 36:0-in 26:and 398:doi 325:doi 275:doi 232:doi 46:or 38:or 473:: 448:, 427:, 404:, 396:, 388:, 376:20 374:, 368:, 323:, 313:10 311:, 281:, 246:, 240:MR 238:, 230:, 220:21 218:, 208:; 82:A 460:. 434:. 413:. 400:: 392:: 382:: 350:. 345:: 327:: 319:: 292:. 277:: 255:. 234:: 226::

Index


Fredkin
Toffoli
AND gate
reversible
mechanical computer
Newtonian dynamics
Edward Fredkin
Tommaso Toffoli
computer
billiard balls
reversible processes
Boolean circuits
Toffoli gate
reversible cellular automaton
block cellular automata
second-order cellular automata
soldier crabs
Mictyris guinotae
Unconventional computing
Fluidics
Fredkin, Edward
Toffoli, Tommaso
International Journal of Theoretical Physics
Bibcode
1982IJTP...21..219F
doi
10.1007/BF01857727
MR
0657156

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑