Knowledge (XXG)

Binary matroid

Source 📝

706:(and therefore also for the graphic matroids of planar graphs) these two properties are dual: a planar graph or its matroid is bipartite if and only if its dual is Eulerian. The same is true for binary matroids. However, there exist non-binary matroids for which this duality breaks down. 624:. If every circuit of a binary matroid has odd cardinality, then its circuits must all be disjoint from each other; in this case, it may be represented as the graphic matroid of a 135: 107: 466: 530: 909: 291: 622: 694:
to be a matroid in which the elements can be partitioned into disjoint circuits. Within the class of graphic matroids, these two properties describe the matroids of
589: 320: 171: 678: 654: 493: 440: 420: 400: 380: 360: 340: 255: 231: 211: 191: 72: 741: 1037: 1074: 953: 1127: 564:. A binary matroid is graphic if and only if its minors do not include the dual of the graphic matroid of 28: 110: 43: 116: 88: 713:, must perform an exponential number of oracle queries, and therefore cannot take polynomial time. 445: 1104: 926: 810: 501: 709:
Any algorithm that tests whether a given matroid is binary, given access to the matroid via an
260: 144:
For every pair of circuits of the matroid, their symmetric difference contains another circuit.
737: 687: 536: 702:(not-necessarily-connected graphs in which all vertices have even degree), respectively. For 594: 1088: 1046: 965: 918: 878: 800: 792: 691: 79: 1100: 1060: 979: 938: 890: 822: 766: 567: 1096: 1056: 975: 934: 886: 875:
The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968)
818: 780: 762: 695: 553: 549: 496: 299: 150: 42:
and whose sets of elements are independent if and only if the corresponding columns are
38:. That is, up to isomorphism, they are the matroids whose elements are the columns of a 761:, North-Holland Math. Stud., vol. 75, Amsterdam: North-Holland, pp. 371–376, 710: 699: 663: 639: 478: 425: 405: 385: 365: 345: 325: 240: 216: 196: 176: 138: 57: 39: 1051: 998:, Section 10.2, "An excluded minor criterion for a matroid to be binary", pp. 167–169. 1121: 1079: 1032: 870: 729: 703: 657: 561: 472: 1108: 877:, Lecture Notes in Mathematics, vol. 110, Berlin: Springer, pp. 155–170, 866: 625: 234: 32: 539:
associated to the matroid, every interval of height two has at most five elements.
904: 556:, is binary. A binary matroid is regular if and only if it does not contain the 805: 557: 970: 1092: 930: 882: 814: 20: 922: 796: 690:
to be a matroid in which every circuit has even cardinality, and an
757:
Jaeger, F. (1983), "Symmetric representations of binary matroids",
422:
is the symmetric difference of the fundamental circuits induced in
35: 560:(a seven-element non-regular binary matroid) or its dual as a 680:. Additionally, the direct sum of binary matroids is binary. 122: 94: 783:(1935), "On the abstract properties of linear dependence", 656:
is a binary matroid, then so is its dual, and so is every
958:
Journal of Research of the National Bureau of Standards
666: 642: 597: 570: 504: 481: 448: 428: 408: 388: 368: 348: 328: 302: 263: 243: 219: 199: 179: 153: 119: 91: 60: 907:(1958), "A homotopy theorem for matroids. I, II", 791:(3), The Johns Hopkins University Press: 509–533, 759:Combinatorial mathematics (Marseille-Luminy, 1981) 672: 648: 616: 583: 524: 487: 460: 434: 414: 394: 374: 354: 334: 314: 285: 249: 225: 205: 185: 165: 129: 101: 66: 910:Transactions of the American Mathematical Society 736:, Courier Dover Publications, pp. 161–182, 8: 683: 1050: 969: 804: 665: 641: 602: 596: 575: 569: 516: 511: 509: 503: 480: 447: 427: 407: 387: 367: 347: 327: 301: 278: 264: 262: 242: 218: 198: 178: 152: 121: 120: 118: 93: 92: 90: 59: 1077:(1981), "Recognizing graphic matroids", 1035:(1969), "Euler and bipartite matroids", 991: 989: 838: 836: 834: 832: 16:Abstraction of mod-2 vector independence 721: 452: 1019: 1007: 995: 842: 7: 861: 859: 857: 855: 853: 851: 873:(1969), "Matroids versus graphs", 14: 78:It is the matroid defined from a 732:(2010) , "10. Binary Matroids", 109:of circuits of the matroid, the 1038:Journal of Combinatorial Theory 785:American Journal of Mathematics 279: 265: 130:{\displaystyle {\mathcal {S}}} 102:{\displaystyle {\mathcal {S}}} 1: 1052:10.1016/s0021-9800(69)80033-5 50:Alternative characterizations 461:{\displaystyle C\setminus B} 525:{\displaystyle U{}_{4}^{2}} 1144: 1022:, Theorem 10.5.1, p. 176. 1010:, Theorem 10.4.1, p. 175. 845:, Theorem 10.1.3, p. 162. 684:Harary & Welsh (1969) 286:{\displaystyle |C\cap D|} 74:is binary if and only if 27:is a matroid that can be 137:can be represented as a 617:{\displaystyle K_{3,3}} 954:"Lectures on matroids" 674: 650: 618: 585: 532:, the four-point line. 526: 489: 462: 436: 416: 396: 376: 356: 336: 316: 287: 251: 227: 207: 187: 167: 131: 103: 68: 971:10.6028/jres.069b.001 952:Tutte, W. T. (1965), 675: 651: 632:Additional properties 619: 586: 584:{\displaystyle K_{5}} 527: 490: 463: 437: 417: 397: 377: 357: 337: 317: 288: 252: 228: 208: 188: 168: 132: 104: 69: 664: 640: 595: 568: 502: 479: 446: 426: 406: 386: 366: 346: 326: 300: 261: 241: 233:is a circuit of the 217: 197: 177: 151: 117: 111:symmetric difference 89: 58: 44:linearly independent 711:independence oracle 521: 442:by the elements of 315:{\displaystyle B,C} 166:{\displaystyle C,D} 113:of the circuits in 1093:10.1007/BF02579179 883:10.1007/BFb0060114 806:10338.dmlcz/100694 670: 646: 614: 581: 522: 508: 485: 458: 432: 412: 392: 372: 352: 332: 312: 293:is an even number. 283: 247: 223: 203: 183: 163: 127: 99: 64: 688:bipartite matroid 673:{\displaystyle M} 649:{\displaystyle M} 537:geometric lattice 488:{\displaystyle M} 435:{\displaystyle B} 415:{\displaystyle C} 395:{\displaystyle M} 375:{\displaystyle C} 355:{\displaystyle M} 335:{\displaystyle B} 250:{\displaystyle M} 226:{\displaystyle D} 206:{\displaystyle M} 186:{\displaystyle C} 67:{\displaystyle M} 1135: 1113: 1111: 1071: 1065: 1063: 1054: 1029: 1023: 1017: 1011: 1005: 999: 993: 984: 982: 973: 949: 943: 941: 901: 895: 893: 863: 846: 840: 827: 825: 808: 781:Whitney, Hassler 777: 771: 769: 754: 748: 746: 726: 696:bipartite graphs 692:Eulerian matroid 679: 677: 676: 671: 655: 653: 652: 647: 623: 621: 620: 615: 613: 612: 590: 588: 587: 582: 580: 579: 544:Related matroids 531: 529: 528: 523: 520: 515: 510: 494: 492: 491: 486: 467: 465: 464: 459: 441: 439: 438: 433: 421: 419: 418: 413: 401: 399: 398: 393: 382:is a circuit of 381: 379: 378: 373: 361: 359: 358: 353: 341: 339: 338: 333: 321: 319: 318: 313: 292: 290: 289: 284: 282: 268: 256: 254: 253: 248: 232: 230: 229: 224: 212: 210: 209: 204: 193:is a circuit of 192: 190: 189: 184: 172: 170: 169: 164: 136: 134: 133: 128: 126: 125: 108: 106: 105: 100: 98: 97: 73: 71: 70: 65: 1143: 1142: 1138: 1137: 1136: 1134: 1133: 1132: 1118: 1117: 1116: 1073: 1072: 1068: 1033:Welsh, D. J. A. 1031: 1030: 1026: 1018: 1014: 1006: 1002: 994: 987: 951: 950: 946: 923:10.2307/1993244 903: 902: 898: 865: 864: 849: 841: 830: 797:10.2307/2371182 779: 778: 774: 756: 755: 751: 744: 730:Welsh, D. J. A. 728: 727: 723: 719: 700:Eulerian graphs 662: 661: 638: 637: 634: 598: 593: 592: 571: 566: 565: 554:graphic matroid 550:regular matroid 546: 500: 499: 497:uniform matroid 477: 476: 444: 443: 424: 423: 404: 403: 384: 383: 364: 363: 344: 343: 324: 323: 298: 297: 296:For every pair 259: 258: 239: 238: 215: 214: 195: 194: 175: 174: 149: 148: 147:For every pair 115: 114: 87: 86: 56: 55: 52: 17: 12: 11: 5: 1141: 1139: 1131: 1130: 1128:Matroid theory 1120: 1119: 1115: 1114: 1075:Seymour, P. D. 1066: 1045:(4): 375–377, 1024: 1012: 1000: 985: 944: 917:(1): 144–174, 896: 871:Welsh, Dominic 847: 828: 772: 749: 742: 734:Matroid Theory 720: 718: 715: 669: 645: 633: 630: 611: 608: 605: 601: 578: 574: 545: 542: 541: 540: 533: 519: 514: 507: 484: 469: 457: 454: 451: 431: 411: 391: 371: 351: 342:is a basis of 331: 311: 308: 305: 294: 281: 277: 274: 271: 267: 246: 222: 202: 182: 162: 159: 156: 145: 142: 139:disjoint union 124: 96: 85:For every set 83: 63: 51: 48: 25:binary matroid 21:matroid theory 15: 13: 10: 9: 6: 4: 3: 2: 1140: 1129: 1126: 1125: 1123: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1081: 1080:Combinatorica 1076: 1070: 1067: 1062: 1058: 1053: 1048: 1044: 1040: 1039: 1034: 1028: 1025: 1021: 1016: 1013: 1009: 1004: 1001: 997: 992: 990: 986: 981: 977: 972: 967: 963: 959: 955: 948: 945: 940: 936: 932: 928: 924: 920: 916: 912: 911: 906: 900: 897: 892: 888: 884: 880: 876: 872: 868: 867:Harary, Frank 862: 860: 858: 856: 854: 852: 848: 844: 839: 837: 835: 833: 829: 824: 820: 816: 812: 807: 802: 798: 794: 790: 786: 782: 776: 773: 768: 764: 760: 753: 750: 745: 743:9780486474397 739: 735: 731: 725: 722: 716: 714: 712: 707: 705: 704:planar graphs 701: 697: 693: 689: 685: 681: 667: 659: 643: 631: 629: 627: 609: 606: 603: 599: 576: 572: 563: 559: 555: 551: 543: 538: 534: 517: 512: 505: 498: 482: 474: 473:matroid minor 470: 455: 449: 429: 409: 389: 369: 349: 329: 309: 306: 303: 295: 275: 272: 269: 244: 236: 220: 200: 180: 160: 157: 154: 146: 143: 140: 112: 84: 82:(0,1)-matrix. 81: 77: 76: 75: 61: 49: 47: 45: 41: 37: 34: 30: 26: 22: 1087:(1): 75–78, 1084: 1078: 1069: 1042: 1036: 1027: 1020:Welsh (2010) 1015: 1008:Welsh (2010) 1003: 996:Welsh (2010) 961: 957: 947: 914: 908: 905:Tutte, W. T. 899: 874: 843:Welsh (2010) 788: 784: 775: 758: 752: 733: 724: 708: 682: 635: 626:cactus graph 552:, and every 547: 235:dual matroid 141:of circuits. 53: 40:(0,1)-matrix 33:finite field 24: 18: 29:represented 717:References 558:Fano plane 54:A matroid 46:in GF(2). 686:define a 453:∖ 273:∩ 80:symmetric 31:over the 1122:Category 1109:35579707 964:: 1–47, 1101:0602418 1061:0237368 980:0179781 939:0101526 931:1993244 891:0263666 823:1507091 815:2371182 767:0841317 591:nor of 535:In the 495:is the 1107:  1099:  1059:  978:  937:  929:  889:  821:  813:  765:  740:  548:Every 322:where 173:where 1105:S2CID 927:JSTOR 811:JSTOR 658:minor 562:minor 36:GF(2) 738:ISBN 698:and 362:and 213:and 23:, a 1089:doi 1047:doi 966:doi 962:69B 919:doi 879:doi 801:hdl 793:doi 660:of 636:If 475:of 471:No 237:of 19:In 1124:: 1103:, 1097:MR 1095:, 1083:, 1057:MR 1055:, 1041:, 988:^ 976:MR 974:, 960:, 956:, 935:MR 933:, 925:, 915:88 913:, 887:MR 885:, 869:; 850:^ 831:^ 819:MR 817:, 809:, 799:, 789:57 787:, 763:MR 628:. 402:, 257:, 1112:. 1091:: 1085:1 1064:/ 1049:: 1043:6 983:. 968:: 942:. 921:: 894:. 881:: 826:. 803:: 795:: 770:. 747:. 668:M 644:M 610:3 607:, 604:3 600:K 577:5 573:K 518:2 513:4 506:U 483:M 468:. 456:B 450:C 430:B 410:C 390:M 370:C 350:M 330:B 310:C 307:, 304:B 280:| 276:D 270:C 266:| 245:M 221:D 201:M 181:C 161:D 158:, 155:C 123:S 95:S 62:M

Index

matroid theory
represented
finite field
GF(2)
(0,1)-matrix
linearly independent
symmetric
symmetric difference
disjoint union
dual matroid
matroid minor
uniform matroid
geometric lattice
regular matroid
graphic matroid
Fano plane
minor
cactus graph
minor
Harary & Welsh (1969)
bipartite matroid
Eulerian matroid
bipartite graphs
Eulerian graphs
planar graphs
independence oracle
Welsh, D. J. A.
ISBN
9780486474397
MR

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.