Knowledge

Bing metrization theorem

Source 📝

184: 117: 157: 137: 76: 252: 198: 205:(1950) and Smirnov (1951). Both theorems are often merged in the Bing-Nagata-Smirnov metrization theorem. It is a common tool to prove other 246: 270: 229:
which provides a sufficient condition for metrization, this theorem provides both a necessary and sufficient condition for a
285: 95:. A family of sets is called σ-discrete when it is a union of countably many discrete collections, where a family 214: 210: 162: 98: 226: 206: 17: 266: 230: 43: 92: 84: 202: 142: 122: 61: 279: 79: 234: 47: 39: 249: – A topological vector space whose topology can be defined by a metric 31: 265:"General Topology", Ryszard Engelking, Heldermann Verlag Berlin, 1989. 194: 255: – Characterizes when a topological space is metrizable 168: 104: 159:
has a neighborhood that intersects at most one member of
165: 145: 125: 101: 64: 27:
Characterizes when a topological space is metrizable
197:in 1951 and was an independent discovery with the 178: 151: 131: 111: 70: 8: 58:The theorem states that a topological space 221:Comparison with other metrization theorems 217:is metrizable – is a direct consequence. 209:, e.g. the Moore metrization theorem – a 167: 166: 164: 144: 124: 103: 102: 100: 63: 139:is called discrete, when every point of 201:that was proved independently by both 7: 247:Metrizable topological vector space 78:is metrizable if and only if it is 253:Nagata–Smirnov metrization theorem 199:Nagata–Smirnov metrization theorem 25: 179:{\displaystyle {\mathcal {F}}.} 18:Bing's metrization theorem 112:{\displaystyle {\mathcal {F}}} 1: 302: 193:The theorem was proven by 36:Bing metrization theorem 42:, characterizes when a 180: 153: 133: 119:of subsets of a space 113: 72: 225:Unlike the Urysohn's 211:collectionwise normal 181: 154: 134: 114: 91:and has a σ-discrete 73: 286:Theorems in topology 207:metrization theorems 163: 143: 123: 99: 62: 227:metrization theorem 176: 149: 129: 109: 68: 231:topological space 152:{\displaystyle X} 132:{\displaystyle X} 71:{\displaystyle X} 44:topological space 16:(Redirected from 293: 185: 183: 182: 177: 172: 171: 158: 156: 155: 150: 138: 136: 135: 130: 118: 116: 115: 110: 108: 107: 77: 75: 74: 69: 54:Formal statement 21: 301: 300: 296: 295: 294: 292: 291: 290: 276: 275: 262: 243: 223: 191: 161: 160: 141: 140: 121: 120: 97: 96: 88: 60: 59: 56: 28: 23: 22: 15: 12: 11: 5: 299: 297: 289: 288: 278: 277: 274: 273: 261: 258: 257: 256: 250: 242: 239: 222: 219: 190: 187: 175: 170: 148: 128: 106: 86: 67: 55: 52: 38:, named after 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 298: 287: 284: 283: 281: 272: 271:3-88538-006-4 268: 264: 263: 259: 254: 251: 248: 245: 244: 240: 238: 236: 232: 228: 220: 218: 216: 212: 208: 204: 200: 196: 188: 186: 173: 146: 126: 94: 90: 89: 81: 65: 53: 51: 49: 45: 41: 37: 33: 19: 224: 192: 83: 57: 35: 29: 215:Moore space 260:References 235:metrizable 48:metrizable 40:R. H. Bing 280:Category 241:See also 32:topology 189:History 80:regular 269:  233:to be 203:Nagata 34:, the 93:basis 267:ISBN 195:Bing 82:and 46:is 30:In 282:: 237:. 213:, 50:. 174:. 169:F 147:X 127:X 105:F 87:0 85:T 66:X 20:)

Index

Bing's metrization theorem
topology
R. H. Bing
topological space
metrizable
regular
T0
basis
Bing
Nagata–Smirnov metrization theorem
Nagata
metrization theorems
collectionwise normal
Moore space
metrization theorem
topological space
metrizable
Metrizable topological vector space
Nagata–Smirnov metrization theorem
ISBN
3-88538-006-4
Category
Theorems in topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.