Knowledge (XXG)

Biparental inheritance

Source 📝

120:
through which this occurs. Luo et al. explain that maternal transmission of mtDNA results from the active elimination of paternal mitochondria, and that the genes underlying this elimination process may have undergone certain mutations to allow mtDNA to continue through embryonic development. Mitochondrial endonuclease G relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization, where it proceeds to degrade or eliminate paternal mtDNA. A defect in such an EndoG-like pathway in humans might produce a paternal contribution, thus explaining a possible mechanism for biparental inheritance.
98:
Occasional biparental mitochondrial transmission may benefit offspring by facilitating the removal of disadvantageous mutations from a population, while at the same time, continuing to restrict the spread of selfish genetic elements, such as genes that have a replication and transmission advantage at the expense of other genes
119:
in humans, which was thought to be only transmitted maternally. Although paternal mitochondrial DNA, in addition to the typically inherited maternal mtDNA, was proven to have been inherited by 17 members in three unrelated multigenerational families, researchers are not yet sure of the mechanisms
97:
mitochondrial inheritance, which is largely inherited maternally. Within mitochondrial genomes, biparental inheritance and recombination have been documented in plants, animals and fungi by Barr et al. in 2005, but the extent of these phenomena are thought to vary substantially across taxa.
407:
Luo, Shiyu; Valencia, C. Alexander; Zhang, Jinglan; Lee, Ni-Chung; Slone, Jesse; Gui, Baoheng; Wang, Xinjian; Li, Zhuo; Dell, Sarah; Brown, Jenice; Chen, Stella Maris; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Fan, Pi-Chuan; Wong, Lee-Jun; Atwal, Paldeep S.; Huang, Taosheng (2018).
59:
Biparental inheritance is a requirement for a trait to be characterized as Mendelian. If the gene does not have alternate forms, described as alleles, which can differ in each parent and then come together in the resulting offspring, then this trait is
467:
Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L. J.; Lee, Eui-Seung; Harry, Brian L.; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S.; Kang, Byung-Ho; Xue, Ding (2016).
68:
of gametes which have been produced by random segregation. Without gametes created by random segregation, fertilization (which leads to biparental inheritance through these gametes) could not result in Mendelian inheritance.
35:
from two parents, is the most common form of biparental inheritance. While less common, cases of biparental inheritance in extranuclear genes have been documented, such as biparental inheritance of
43:
in plants. Biparental inheritance of nuclear DNA by way of sexual reproduction can allow for new combinations of alleles from each contributing parent. The production of gametes through
178:
Birky, C. William; Strausberg, Robert L.; Forster, Jean L.; Perlman, Philip S. (1978). "Vegetative segregation of mitochondria in yeast: Estimating parameters using a random model".
216:
Barr, Camille M.; Neiman, Maurine; Taylor, Douglas R. (2005). "Inheritance and recombination of mitochondrial genomes in plants, fungi and animals".
300:
Gyllensten, Ulf; Wharton, Dan; Josefsson, Agneta; Wilson, Allan C. (1991). "Paternal inheritance of mitochondrial DNA in mice".
64:. Part of the reason biparental inheritance is obligatory in Mendelian inheritance is because another requisite is the 531: 106: 61: 78: 48: 24: 481: 421: 309: 28: 333: 282: 195: 507: 449: 386: 325: 274: 233: 160: 116: 36: 470:"Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization" 497: 489: 439: 429: 376: 368: 317: 264: 225: 187: 150: 89:
cells of opposite mating types fuse together, both of which contribute mitochondria to the
253:"Further evidence for paternal inheritance of mitochondrial DNA in the sheep (Ovis aries)" 101:
While uncommon among most eukaryotes, biparental inheritance of mtDNA occurs regularly in
40: 251:
Zhao, X.; Li, N.; Guo, W.; Hu, X.; Liu, Z.; Gong, G.; Wang, A.; Feng, J.; Wu, C. (2004).
19:
is a type of biological inheritance where the progeny inherits a maternal and a paternal
485: 425: 313: 502: 469: 444: 409: 381: 352: 525: 229: 139:"Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility" 65: 199: 337: 286: 111: 493: 434: 94: 511: 453: 390: 278: 269: 252: 237: 164: 329: 102: 191: 115:. In 2018, Luo et al. documented evidence of biparental inheritance of 90: 86: 44: 32: 372: 155: 138: 137:
Barnard‐Kubow, Karen B.; McCoy, Morgan A.; Galloway, Laura F. (2017).
351:
Nunes, Maria D. S.; Dolezal, Marlies; Schlötterer, Christian (2013).
321: 20: 51:, which is a possibility for novel combinations of alleles. 353:"Extensive paternal mtDNAleakage in natural populations of 410:"Biparental Inheritance of Mitochondrial DNA in Humans" 414:Proceedings of the National Academy of Sciences 93:offspring. This is contrary to the majority of 8: 31:, where offspring result from the fusion of 23:for one gene. It is one of the criteria for 501: 443: 433: 380: 268: 154: 109:has been documented in sheep, mice, and 47:can sometimes include recombination, or 129: 7: 73:Mitochondrial biparental inheritance 402: 400: 211: 209: 14: 230:10.1111/j.1469-8137.2005.01492.x 180:Molecular and General Genetics 1: 548: 83:Saccharomyces cerevisiae 79:extranuclear inheritance 494:10.1126/science.aaf4777 435:10.1073/pnas.1810946115 270:10.1038/sj.hdy.6800516 107:Paternal mtDNA leakage 17:Biparental inheritance 55:Mendelian inheritance 25:Mendelian inheritance 81:occurs in the yeast 486:2016Sci...353..394Z 426:2018PNAS..11513039L 420:(51): 13039–13044. 314:1991Natur.352..255G 85:, for example. Two 29:Sexual reproduction 532:Classical genetics 192:10.1007/BF00267196 480:(6297): 394–399. 373:10.1111/mec.12256 361:Molecular Ecology 308:(6332): 255–257. 156:10.1111/nph.14222 117:mitochondrial DNA 37:mitochondrial DNA 539: 516: 515: 505: 464: 458: 457: 447: 437: 404: 395: 394: 384: 367:(8): 2106–2117. 348: 342: 341: 322:10.1038/352255a0 297: 291: 290: 272: 248: 242: 241: 213: 204: 203: 175: 169: 168: 158: 149:(3): 1466–1476. 134: 547: 546: 542: 541: 540: 538: 537: 536: 522: 521: 520: 519: 466: 465: 461: 406: 405: 398: 350: 349: 345: 299: 298: 294: 250: 249: 245: 218:New Phytologist 215: 214: 207: 177: 176: 172: 143:New Phytologist 136: 135: 131: 126: 75: 57: 41:chloroplast DNA 12: 11: 5: 545: 543: 535: 534: 524: 523: 518: 517: 459: 396: 343: 292: 263:(4): 399–403. 243: 205: 186:(3): 251–261. 170: 128: 127: 125: 122: 74: 71: 56: 53: 13: 10: 9: 6: 4: 3: 2: 544: 533: 530: 529: 527: 513: 509: 504: 499: 495: 491: 487: 483: 479: 475: 471: 463: 460: 455: 451: 446: 441: 436: 431: 427: 423: 419: 415: 411: 403: 401: 397: 392: 388: 383: 378: 374: 370: 366: 362: 358: 357:melanogaster" 356: 347: 344: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 296: 293: 288: 284: 280: 276: 271: 266: 262: 258: 254: 247: 244: 239: 235: 231: 227: 223: 219: 212: 210: 206: 201: 197: 193: 189: 185: 181: 174: 171: 166: 162: 157: 152: 148: 144: 140: 133: 130: 123: 121: 118: 114: 113: 108: 104: 99: 96: 92: 88: 84: 80: 72: 70: 67: 66:fertilization 63: 62:non-Mendelian 54: 52: 50: 49:crossing-over 46: 42: 38: 34: 30: 26: 22: 18: 477: 473: 462: 417: 413: 364: 360: 354: 346: 305: 301: 295: 260: 256: 246: 224:(1): 39–50. 221: 217: 183: 179: 173: 146: 142: 132: 110: 100: 82: 76: 58: 16: 15: 77:Biparental 355:Drosophila 124:References 112:Drosophila 95:eukaryotic 526:Category 512:27338704 454:30478036 391:23452233 279:15266295 257:Heredity 238:16159319 200:24730742 165:27686577 103:bivalves 503:5469823 482:Bibcode 474:Science 445:6304937 422:Bibcode 382:3659417 338:4278149 330:1857422 310:Bibcode 287:8039497 91:diploid 87:haploid 45:meiosis 33:gametes 510:  500:  452:  442:  389:  379:  336:  328:  302:Nature 285:  277:  236:  198:  163:  21:allele 334:S2CID 283:S2CID 196:S2CID 39:, or 508:PMID 450:PMID 387:PMID 326:PMID 275:PMID 234:PMID 161:PMID 498:PMC 490:doi 478:353 440:PMC 430:doi 418:115 377:PMC 369:doi 318:doi 306:352 265:doi 226:doi 222:168 188:doi 184:158 151:doi 147:213 528:: 506:. 496:. 488:. 476:. 472:. 448:. 438:. 428:. 416:. 412:. 399:^ 385:. 375:. 365:22 363:. 359:. 332:. 324:. 316:. 304:. 281:. 273:. 261:93 259:. 255:. 232:. 220:. 208:^ 194:. 182:. 159:. 145:. 141:. 105:. 27:. 514:. 492:: 484:: 456:. 432:: 424:: 393:. 371:: 340:. 320:: 312:: 289:. 267:: 240:. 228:: 202:. 190:: 167:. 153::

Index

allele
Mendelian inheritance
Sexual reproduction
gametes
mitochondrial DNA
chloroplast DNA
meiosis
crossing-over
non-Mendelian
fertilization
extranuclear inheritance
haploid
diploid
eukaryotic
bivalves
Paternal mtDNA leakage
Drosophila
mitochondrial DNA
"Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility"
doi
10.1111/nph.14222
PMID
27686577
doi
10.1007/BF00267196
S2CID
24730742


doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.