Knowledge

Bogomolov–Miyaoka–Yau inequality

Source 📝

497: 404: 255: 561: 69: 131:
showed that the inequality is best possible by finding infinitely many cases where equality holds. The inequality is false in positive characteristic: William E. Lang (
688: 649: 320: 570:
the Bogomolov–Miyaoka–Yau inequality sets boundaries in the search for complex surfaces. Mapping out the topological types that are realized as complex surfaces is called
433: 1047: 1454: 1380: 1528: 439:
on the second cohomology, the Bogomolov–Miyaoka–Yau inequality can also be written as a restriction on the topological type of the surface of general type:
264:
is a quotient of a ball. The latter statement is a consequence of Yau's differential geometric approach which is based on his resolution of the
89:. Its major interest is the way it restricts the possible topological types of the underlying real 4-manifold. It was proved independently by 934: 904: 1222: 1583: 436: 1526:
Yau, Shing Tung (1978), "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I",
445: 327: 1573: 144: 332: 1578: 1324: 1268: 1157: 86: 575: 209: 505: 26: 1588: 722: 662: 571: 606: 1463: 1389: 1378:
Van de Ven, Antonius (1966), "On the Chern numbers of certain complex and almost complex manifolds",
1343: 1287: 1166: 922: 899:, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 4, Springer-Verlag, Berlin, 323: 128: 274: 1489: 1415: 1367: 1333: 1311: 1277: 1247: 1198: 1090: 1056: 1045:
Easton, Robert W. (2008), "Surfaces violating Bogomolov-Miyaoka-Yau in positive characteristic",
987: 567: 690:
by an infinite discrete group. Examples of surfaces satisfying this equality are hard to find.
409: 1545: 1515: 1481: 1441: 1407: 1239: 1182: 1120: 1074: 1006: 963: 930: 900: 265: 82: 1537: 1505: 1471: 1431: 1397: 1351: 1295: 1231: 1174: 1110: 1101:
Ishida, Masa-Nori (1988), "An elliptic surface covered by Mumford's fake projective plane",
1066: 1034: 996: 1557: 1501: 1427: 1363: 1307: 1259: 1194: 1148: 1132: 1086: 1025:
Cartwright, Donald I.; Steger, Tim (2010), "Enumeration of the 50 fake projective planes",
1018: 975: 944: 914: 1553: 1497: 1452:
Yau, Shing Tung (1977), "Calabi's conjecture and some new results in algebraic geometry",
1423: 1359: 1303: 1255: 1190: 1144: 1128: 1082: 1014: 971: 951: 940: 910: 114: 1467: 1393: 1347: 1291: 1170: 155:
The conventional formulation of the Bogomolov–Miyaoka–Yau inequality is as follows. Let
102: 90: 1510: 1436: 1567: 1213: 1209: 1202: 1001: 714: 79: 1371: 1139:
Lang, William E. (1983), "Examples of surfaces of general type with vector fields",
1094: 1315: 982: 160: 124: 75: 1070: 200: 1455:
Proceedings of the National Academy of Sciences of the United States of America
1381:
Proceedings of the National Academy of Sciences of the United States of America
1143:, Progr. Math., vol. 36, Boston, MA: Birkhäuser Boston, pp. 167–173, 1038: 895:
Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004),
1355: 1322:
Prasad, Gopal; Yeung, Sai-Kee (2010), "Addendum to "Fake projective planes"",
1299: 1549: 1485: 1411: 1243: 1186: 1124: 1115: 1078: 1010: 967: 1155:
Miyaoka, Yoichi (1977), "On the Chern numbers of surfaces of general type",
1541: 1519: 1476: 1445: 1402: 827:= 45, and taking unbranched coverings of this quotient gives examples with 781:
gave a method for finding examples, which in particular produced a surface
954:(1978), "Holomorphic tensors and vector bundles on projective manifolds", 651:, so that equality holds in the Bogomolov–Miyaoka–Yau inequality, then 1251: 1178: 929:, Aspects of Mathematics, D4, Braunschweig: Friedr. Vieweg & Sohn, 1493: 1419: 1282: 1061: 1235: 1338: 121:) proved weaker versions with the constant 3 replaced by 8 and 4. 1266:
Prasad, Gopal; Yeung, Sai-Kee (2007), "Fake projective planes",
985:(1963), "Compact Clifford-Klein forms of symmetric spaces", 775:) showed that there are exactly 50 fake projective planes. 854:. Donald I. Cartwright and Tim Steger ( 771:, Donald I. Cartwright and Tim Steger ( 778: 956:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
665: 609: 508: 448: 412: 335: 277: 212: 29: 203:
of the complex tangent bundle of the surface. Then
1230:(1), The Johns Hopkins University Press: 233–244, 682: 643: 555: 492:{\displaystyle \sigma (X)\leq {\frac {1}{3}}e(X),} 491: 427: 398: 314: 249: 63: 744:= 9, which is the minimum possible value because 1048:Proceedings of the American Mathematical Society 855: 772: 694:showed that there are infinitely many values of 659:is isomorphic to a quotient of the unit ball in 927:Geradenkonfigurationen und Algebraische Flächen 1529:Communications on Pure and Applied Mathematics 1462:(5), National Academy of Sciences: 1798–1799, 1388:(6), National Academy of Sciences: 1624–1627, 399:{\displaystyle c_{1}^{2}(X)=2e(X)+3\sigma (X)} 139:) gave examples of surfaces in characteristic 8: 1214:"An algebraic surface with K ample, (K)=9, p 768: 764: 110: 1509: 1475: 1435: 1401: 1337: 1281: 1114: 1060: 1000: 674: 669: 668: 667: 664: 635: 619: 614: 608: 530: 507: 464: 447: 411: 345: 340: 334: 282: 276: 238: 222: 217: 211: 118: 55: 39: 34: 28: 718: 563:then the universal covering is a ball. 109:), after Antonius Van de Ven ( 106: 808:found a quotient of this surface with 805: 779:Barthel, Hirzebruch & Höfer (1987) 136: 691: 250:{\displaystyle c_{1}^{2}\leq 3c_{2}.} 7: 556:{\displaystyle \sigma (X)=(1/3)e(X)} 132: 64:{\displaystyle c_{1}^{2}\leq 3c_{2}} 652: 98: 94: 683:{\displaystyle {\mathbb {C} }^{2}} 603:is a surface of general type with 14: 1033:(1), Elsevier Masson SAS: 11–13, 328:Thom–Hirzebruch signature theorem 135:) and Robert W. Easton ( 1141:Arithmetic and geometry, Vol. II 644:{\displaystyle c_{1}^{2}=3c_{2}} 260:Moreover if equality holds then 159:be a compact complex surface of 18:Bogomolov–Miyaoka–Yau inequality 1223:American Journal of Mathematics 1103:The Tohoku Mathematical Journal 763:is always divisible by 12, and 550: 544: 538: 524: 518: 512: 483: 477: 458: 452: 422: 416: 393: 387: 375: 369: 357: 351: 309: 303: 294: 288: 1: 1071:10.1090/S0002-9939-08-09466-5 315:{\displaystyle c_{2}(X)=e(X)} 151:Formulation of the inequality 1002:10.1016/0040-9383(63)90026-0 713:for which a surface exists. 145:generalized Raynaud surfaces 1027:Comptes Rendus Mathématique 881:for every positive integer 1605: 1039:10.1016/j.crma.2009.11.016 428:{\displaystyle \sigma (X)} 199:) be the first and second 1356:10.1007/s00222-010-0259-6 1300:10.1007/s00222-007-0034-5 850:for any positive integer 769:Prasad & Yeung (2010) 765:Prasad & Yeung (2007) 1325:Inventiones Mathematicae 1269:Inventiones Mathematicae 1158:Inventiones Mathematicae 925:; Höfer, Thomas (1987), 897:Compact Complex Surfaces 576:surfaces of general type 435:is the signature of the 1542:10.1002/cpa.3160310304 1477:10.1073/pnas.74.5.1798 1403:10.1073/pnas.55.6.1624 1116:10.2748/tmj/1178227980 858:) found examples with 684: 645: 557: 493: 429: 400: 316: 251: 147:, for which it fails. 65: 1584:Differential geometry 923:Hirzebruch, Friedrich 723:fake projective plane 685: 646: 572:geography of surfaces 558: 494: 430: 401: 317: 252: 66: 921:Barthel, Gottfried; 663: 607: 506: 446: 410: 333: 324:Euler characteristic 275: 210: 129:Friedrich Hirzebruch 27: 16:In mathematics, the 1468:1977PNAS...74.1798Y 1394:1966PNAS...55.1624V 1348:2010InMat.182..213P 1292:2007InMat.168..321P 1171:1977InMat..42..225M 952:Bogomolov, Fedor A. 624: 350: 322:is the topological 227: 115:Fedor Bogomolov 44: 1574:Algebraic surfaces 1179:10.1007/BF01389789 680: 641: 610: 568:Noether inequality 566:Together with the 553: 489: 425: 396: 336: 312: 247: 213: 103:Yoichi Miyaoka 91:Shing-Tung Yau 61: 30: 20:is the inequality 1105:, Second Series, 936:978-3-528-08907-8 906:978-3-540-00832-3 715:David Mumford 472: 437:intersection form 266:Calabi conjecture 1596: 1579:Complex surfaces 1560: 1522: 1513: 1479: 1448: 1439: 1405: 1374: 1341: 1318: 1285: 1262: 1205: 1151: 1135: 1118: 1097: 1064: 1055:(7): 2271–2278, 1041: 1021: 1004: 995:(1–2): 111–122, 978: 962:(6): 1227–1287, 947: 917: 869: 868: 838: 837: 819: 818: 796: 795: 755: 754: 736: 735: 705: 704: 689: 687: 686: 681: 679: 678: 673: 672: 650: 648: 647: 642: 640: 639: 623: 618: 562: 560: 559: 554: 534: 498: 496: 495: 490: 473: 465: 434: 432: 431: 426: 405: 403: 402: 397: 349: 344: 321: 319: 318: 313: 287: 286: 256: 254: 253: 248: 243: 242: 226: 221: 83:complex surfaces 70: 68: 67: 62: 60: 59: 43: 38: 1604: 1603: 1599: 1598: 1597: 1595: 1594: 1593: 1564: 1563: 1525: 1451: 1377: 1321: 1265: 1236:10.2307/2373947 1217: 1208: 1154: 1138: 1100: 1044: 1024: 981: 950: 937: 920: 907: 894: 891: 876: 867: 864: 863: 862: 845: 836: 833: 832: 831: 826: 817: 814: 813: 812: 803: 794: 791: 790: 789: 762: 753: 750: 749: 748: 743: 734: 731: 730: 729: 712: 703: 700: 699: 698: 666: 661: 660: 631: 605: 604: 597: 595: 588: 504: 503: 444: 443: 408: 407: 331: 330: 278: 273: 272: 234: 208: 207: 194: 187: 176: 169: 153: 51: 25: 24: 12: 11: 5: 1602: 1600: 1592: 1591: 1586: 1581: 1576: 1566: 1565: 1562: 1561: 1536:(3): 339–411, 1523: 1449: 1375: 1332:(1): 213–227, 1319: 1276:(2): 321–370, 1263: 1215: 1210:Mumford, David 1206: 1165:(1): 225–237, 1152: 1136: 1109:(3): 367–396, 1098: 1042: 1022: 979: 948: 935: 918: 905: 890: 887: 874: 865: 843: 834: 824: 815: 801: 792: 760: 751: 741: 732: 710: 701: 677: 671: 638: 634: 630: 627: 622: 617: 613: 596: 593: 586: 582:Surfaces with 580: 552: 549: 546: 543: 540: 537: 533: 529: 526: 523: 520: 517: 514: 511: 500: 499: 488: 485: 482: 479: 476: 471: 468: 463: 460: 457: 454: 451: 424: 421: 418: 415: 395: 392: 389: 386: 383: 380: 377: 374: 371: 368: 365: 362: 359: 356: 353: 348: 343: 339: 311: 308: 305: 302: 299: 296: 293: 290: 285: 281: 258: 257: 246: 241: 237: 233: 230: 225: 220: 216: 192: 185: 174: 167: 152: 149: 72: 71: 58: 54: 50: 47: 42: 37: 33: 13: 10: 9: 6: 4: 3: 2: 1601: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1571: 1569: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1530: 1524: 1521: 1517: 1512: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1478: 1473: 1469: 1465: 1461: 1457: 1456: 1450: 1447: 1443: 1438: 1433: 1429: 1425: 1421: 1417: 1413: 1409: 1404: 1399: 1395: 1391: 1387: 1383: 1382: 1376: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1340: 1335: 1331: 1327: 1326: 1320: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1284: 1279: 1275: 1271: 1270: 1264: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1224: 1219: 1211: 1207: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1159: 1153: 1150: 1146: 1142: 1137: 1134: 1130: 1126: 1122: 1117: 1112: 1108: 1104: 1099: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1063: 1058: 1054: 1050: 1049: 1043: 1040: 1036: 1032: 1028: 1023: 1020: 1016: 1012: 1008: 1003: 998: 994: 990: 989: 984: 983:Borel, Armand 980: 977: 973: 969: 965: 961: 957: 953: 949: 946: 942: 938: 932: 928: 924: 919: 916: 912: 908: 902: 898: 893: 892: 888: 886: 884: 880: 873: 861: 857: 853: 849: 842: 830: 823: 811: 807: 806:Ishida (1988) 800: 788: 784: 780: 776: 774: 770: 766: 759: 747: 740: 728: 724: 720: 716: 709: 697: 693: 675: 658: 654: 636: 632: 628: 625: 620: 615: 611: 602: 592: 585: 581: 579: 577: 573: 569: 564: 547: 541: 535: 531: 527: 521: 515: 509: 486: 480: 474: 469: 466: 461: 455: 449: 442: 441: 440: 438: 419: 413: 390: 384: 381: 378: 372: 366: 363: 360: 354: 346: 341: 337: 329: 325: 306: 300: 297: 291: 283: 279: 269: 267: 263: 244: 239: 235: 231: 228: 223: 218: 214: 206: 205: 204: 202: 198: 191: 184: 180: 173: 166: 162: 158: 150: 148: 146: 142: 138: 134: 130: 126: 122: 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 81: 77: 76:Chern numbers 56: 52: 48: 45: 40: 35: 31: 23: 22: 21: 19: 1589:Inequalities 1533: 1527: 1459: 1453: 1385: 1379: 1329: 1323: 1283:math/0512115 1273: 1267: 1227: 1221: 1162: 1156: 1140: 1106: 1102: 1062:math/0511455 1052: 1046: 1030: 1026: 992: 986: 959: 955: 926: 896: 882: 878: 871: 859: 851: 847: 840: 828: 821: 809: 798: 786: 782: 777: 757: 745: 738: 726: 707: 695: 692:Borel (1963) 656: 655:proved that 600: 598: 590: 583: 565: 502:moreover if 501: 270: 261: 259: 196: 189: 182: 178: 171: 164: 161:general type 156: 154: 140: 125:Armand Borel 123: 87:general type 73: 17: 15: 326:and by the 201:Chern class 1568:Categories 889:References 721:) found a 653:Yau (1977) 163:, and let 143:, such as 1550:0010-3640 1486:0027-8424 1412:0027-8424 1339:0906.4932 1244:0002-9327 1203:120699065 1187:0020-9910 1125:0040-8735 1079:0002-9939 1011:0040-9383 968:0373-2436 510:σ 462:≤ 450:σ 414:σ 385:σ 229:≤ 46:≤ 1520:16592394 1446:16578639 1372:17216453 1212:(1979), 1095:35276117 988:Topology 74:between 1558:0480350 1502:0451180 1464:Bibcode 1428:0198496 1390:Bibcode 1364:2672284 1344:Bibcode 1316:1990160 1308:2289867 1288:Bibcode 1260:0527834 1252:2373947 1195:0460343 1167:Bibcode 1149:0717611 1133:0957050 1087:2390492 1019:0146301 976:0522939 945:0912097 915:2030225 804:= 35. 717: ( 188:=  170:=  117: ( 105: ( 93: ( 80:compact 1556:  1548:  1518:  1511:431004 1508:  1500:  1492:  1484:  1444:  1437:224368 1434:  1426:  1418:  1410:  1370:  1362:  1314:  1306:  1258:  1250:  1242:  1201:  1193:  1185:  1147:  1131:  1123:  1093:  1085:  1077:  1017:  1009:  974:  966:  943:  933:  913:  903:  574:. see 406:where 271:Since 181:) and 113:) and 101:) and 1494:67110 1490:JSTOR 1420:57245 1416:JSTOR 1368:S2CID 1334:arXiv 1312:S2CID 1278:arXiv 1248:JSTOR 1218:=q=0" 1199:S2CID 1091:S2CID 1057:arXiv 785:with 725:with 1546:ISSN 1516:PMID 1482:ISSN 1442:PMID 1408:ISSN 1240:ISSN 1183:ISSN 1121:ISSN 1075:ISSN 1007:ISSN 964:ISSN 931:ISBN 901:ISBN 856:2010 846:= 45 773:2010 719:1979 137:2008 133:1983 127:and 119:1978 111:1966 107:1977 99:1978 95:1977 1538:doi 1506:PMC 1472:doi 1432:PMC 1398:doi 1352:doi 1330:182 1296:doi 1274:168 1232:doi 1228:101 1175:doi 1111:doi 1067:doi 1053:136 1035:doi 1031:348 997:doi 877:= 9 870:= 3 839:= 3 820:= 3 797:= 3 737:= 3 706:= 3 599:If 589:= 3 85:of 78:of 1570:: 1554:MR 1552:, 1544:, 1534:31 1532:, 1514:, 1504:, 1498:MR 1496:, 1488:, 1480:, 1470:, 1460:74 1458:, 1440:, 1430:, 1424:MR 1422:, 1414:, 1406:, 1396:, 1386:55 1384:, 1366:, 1360:MR 1358:, 1350:, 1342:, 1328:, 1310:, 1304:MR 1302:, 1294:, 1286:, 1272:, 1256:MR 1254:, 1246:, 1238:, 1226:, 1220:, 1197:, 1191:MR 1189:, 1181:, 1173:, 1163:42 1161:, 1145:MR 1129:MR 1127:, 1119:, 1107:40 1089:, 1083:MR 1081:, 1073:, 1065:, 1051:, 1029:, 1015:MR 1013:, 1005:, 991:, 972:MR 970:, 960:42 958:, 941:MR 939:, 911:MR 909:, 885:. 767:, 756:+ 578:. 268:. 97:, 1540:: 1474:: 1466:: 1400:: 1392:: 1354:: 1346:: 1336:: 1298:: 1290:: 1280:: 1234:: 1216:g 1177:: 1169:: 1113:: 1069:: 1059:: 1037:: 999:: 993:2 883:n 879:n 875:2 872:c 866:1 860:c 852:k 848:k 844:2 841:c 835:1 829:c 825:2 822:c 816:1 810:c 802:2 799:c 793:1 787:c 783:X 761:2 758:c 752:1 746:c 742:2 739:c 733:1 727:c 711:2 708:c 702:1 696:c 676:2 670:C 657:X 637:2 633:c 629:3 626:= 621:2 616:1 612:c 601:X 594:2 591:c 587:1 584:c 551:) 548:X 545:( 542:e 539:) 536:3 532:/ 528:1 525:( 522:= 519:) 516:X 513:( 487:, 484:) 481:X 478:( 475:e 470:3 467:1 459:) 456:X 453:( 423:) 420:X 417:( 394:) 391:X 388:( 382:3 379:+ 376:) 373:X 370:( 367:e 364:2 361:= 358:) 355:X 352:( 347:2 342:1 338:c 310:) 307:X 304:( 301:e 298:= 295:) 292:X 289:( 284:2 280:c 262:X 245:. 240:2 236:c 232:3 224:2 219:1 215:c 197:X 195:( 193:2 190:c 186:2 183:c 179:X 177:( 175:1 172:c 168:1 165:c 157:X 141:p 57:2 53:c 49:3 41:2 36:1 32:c

Index

Chern numbers
compact
complex surfaces
general type
Shing-Tung Yau
1977
1978
Yoichi Miyaoka
1977
1966
Fedor Bogomolov
1978
Armand Borel
Friedrich Hirzebruch
1983
2008
generalized Raynaud surfaces
general type
Chern class
Calabi conjecture
Euler characteristic
Thom–Hirzebruch signature theorem
intersection form
Noether inequality
geography of surfaces
surfaces of general type
Yau (1977)
Borel (1963)
David Mumford
1979

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.