Knowledge (XXG)

Active galactic nucleus

Source đź“ť

633:. These objects show nuclear and extended radio emission. Their other AGN properties are heterogeneous. They can broadly be divided into low-excitation and high-excitation classes. Low-excitation objects show no strong narrow or broad emission lines, and the emission lines they do have may be excited by a different mechanism. Their optical and X-ray nuclear emission is consistent with originating purely in a jet. They may be the best current candidates for AGN with radiatively inefficient accretion. By contrast, high-excitation objects (narrow-line radio galaxies) have emission-line spectra similar to those of Seyfert 2s. The small class of broad-line radio galaxies, which show relatively strong nuclear optical continuum emission probably includes some objects that are simply low-luminosity radio-loud quasars. The host galaxies of radio galaxies, whatever their emission-line type, are essentially always ellipticals. 595:/QSOs. These are essentially more luminous versions of Seyfert 1s: the distinction is arbitrary and is usually expressed in terms of a limiting optical magnitude. Quasars were originally 'quasi-stellar' in optical images as they had optical luminosities that were greater than that of their host galaxy. They always show strong optical continuum emission, X-ray continuum emission, and broad and narrow optical emission lines. Some astronomers use the term QSO (Quasi-Stellar Object) for this class of AGN, reserving 'quasar' for radio-loud objects, while others talk about radio-quiet and radio-loud quasars. The host galaxies of quasars can be spirals, irregulars or ellipticals. There is a correlation between the quasar's luminosity and the mass of its host galaxy, in that the most luminous quasars inhabit the most massive galaxies (ellipticals). 627:) classes are distinguished by rapidly variable, polarized optical, radio and X-ray emission. BL Lac objects show no optical emission lines, broad or narrow, so that their redshifts can only be determined from features in the spectra of their host galaxies. The emission-line features may be intrinsically absent or simply swamped by the additional variable component. In the latter case, emission lines may become visible when the variable component is at a low level. OVV quasars behave more like standard radio-loud quasars with the addition of a rapidly variable component. In both classes of source, the variable emission is believed to originate in a relativistic jet oriented close to the line of sight. Relativistic effects amplify both the luminosity of the jet and the amplitude of variability. 1067:
narrow-line radio galaxies show no nuclear optical continuum or reflected X-ray component, although they do occasionally show polarized broad-line emission). The large-scale radio structures of these objects provide compelling evidence that the orientation-based unified models really are true. X-ray evidence, where available, supports the unified picture: radio galaxies show evidence of obscuration from a torus, while quasars do not, although care must be taken since radio-loud objects also have a soft unabsorbed jet-related component, and high resolution is necessary to separate out thermal emission from the sources' large-scale hot-gas environment. At very small angles to the line of sight, relativistic beaming dominates, and we see a blazar of some variety.
588:. Seyferts were the earliest distinct class of AGN to be identified. They show optical range nuclear continuum emission, narrow and occasionally broad emission lines, occasionally strong nuclear X-ray emission and sometimes a weak small-scale radio jet. Originally they were divided into two types known as Seyfert 1 and 2: Seyfert 1s show strong broad emission lines while Seyfert 2s do not, and Seyfert 1s are more likely to show strong low-energy X-ray emission. Various forms of elaboration on this scheme exist: for example, Seyfert 1s with relatively narrow broad lines are sometimes referred to as narrow-line Seyfert 1s. The host galaxies of Seyferts are usually spiral or irregular galaxies. 1096:
neighbours of hundreds to thousands of AGN have shown that the neighbours of Seyfert 2s are intrinsically dustier and more star-forming than Seyfert 1s and a connection between AGN type, host galaxy morphology and collision history. Moreover, angular clustering studies of the two AGN types confirm that they reside in different environments and show that they reside within dark matter halos of different masses. The AGN environment studies are in line with evolution-based unification models where Seyfert 2s transform into Seyfert 1s during merger, supporting earlier models of merger-driven activation of Seyfert 1 nuclei.
144: 1071:
purely from a jet, with no heavily absorbed nuclear component in general. These objects cannot be unified with quasars, even though they include some high-luminosity objects when looking at radio emission, since the torus can never hide the narrow-line region to the required extent, and since infrared studies show that they have no hidden nuclear component: in fact there is no evidence for a torus in these objects at all. Most likely, they form a separate class in which only jet-related emission is important. At small angles to the line of sight, they will appear as BL Lac objects.
504:, the accreting matter does not form a thin disc and consequently does not efficiently radiate away the energy that it acquired as it moved close to the black hole. Radiatively inefficient accretion has been used to explain the lack of strong AGN-type radiation from massive black holes at the centres of elliptical galaxies in clusters, where otherwise we might expect high accretion rates and correspondingly high luminosities. Radiatively inefficient AGN would be expected to lack many of the characteristic features of standard AGN with an accretion disc. 4813: 472:, and fast outflows that emerge in opposite directions from close to the disc. The direction of the jet ejection is determined either by the angular momentum axis of the accretion disc or the spin axis of the black hole. The jet production mechanism and indeed the jet composition on very small scales are not understood at present due to the resolution of astronomical instruments being too low. The jets have their most obvious observational effects in the radio waveband, where 1032: 5643: 4666: 4678: 582:(LINERs). As the name suggests, these systems show only weak nuclear emission-line regions, and no other signatures of AGN emission. It is debatable whether all such systems are true AGN (powered by accretion on to a supermassive black hole). If they are, they constitute the lowest-luminosity class of radio-quiet AGN. Some may be radio-quiet analogues of the low-excitation radio galaxies (see below). 5653: 3869: 1054:
some of the nuclear emission into our line of sight, allowing us to see some optical and X-ray continuum and, in some cases, broad emission lines—which are strongly polarized, showing that they have been scattered and proving that some Seyfert 2s really do contain hidden Seyfert 1s. Infrared observations of the nuclei of Seyfert 2s also support this picture.
5679: 5703: 5691: 1084:
hidden broad-line region and thus split Seyfert 2 galaxies into two populations. The two classes of populations appear to differ by their luminosity, where the Seyfert 2s without a hidden broad-line region are generally less luminous. This suggests absence of broad-line region is connected to low Eddington ratio, and not to obscuration.
1125:
availability of cold gas near the centre of galaxies than at present. It also implies that many objects that were once luminous quasars are now much less luminous, or entirely quiescent. The evolution of the low-luminosity AGN population is much less well understood due to the difficulty of observing these objects at high redshifts.
445: 310:, at a cosmological distance) then its large redshift of 0.158 implied that it was the nuclear region of a galaxy about 100 times more powerful than other radio galaxies that had been identified. Shortly afterward, optical spectra were used to measure the redshifts of a growing number of quasars including 1103:
While it still might be valid that an obscured Seyfert 1 can appear as a Seyfert 2, not all Seyfert 2s must host an obscured Seyfert 1. Understanding whether it is the same engine driving all Seyfert 2s, the connection to radio-loud AGN, the mechanisms of the variability of some AGN that vary between
565:
It is convenient to divide AGN into two classes, conventionally called radio-quiet and radio-loud. Radio-loud objects have emission contributions from both the jet(s) and the lobes that the jets inflate. These emission contributions dominate the luminosity of the AGN at radio wavelengths and possibly
1091:
While studies of single AGN show important deviations from the expectations of the unified model, results from statistical tests have been contradictory. The most important short-coming of statistical tests by direct comparisons of statistical samples of Seyfert 1s and Seyfert 2s is the introduction
1039:
Unified models propose that different observational classes of AGN are a single type of physical object observed under different conditions. The currently favoured unified models are 'orientation-based unified models' meaning that they propose that the apparent differences between different types of
167:
During the first half of the 20th century, photographic observations of nearby galaxies detected some characteristic signatures of AGN emission, although there was not yet a physical understanding of the nature of the AGN phenomenon. Some early observations included the first spectroscopic detection
1053:
of obscuring material surrounding the accretion disc. It must be large enough to obscure the broad-line region but not large enough to obscure the narrow-line region, which is seen in both classes of object. Seyfert 2s are seen through the torus. Outside the torus there is material that can scatter
3727:
Ananna, Tonima Tasnim; Weigel, Anna K.; Trakhtenbrot, Benny; Koss, Michael J.; Urry, C. Megan; Ricci, Claudio; Hickox, Ryan C.; Treister, Ezequiel; Bauer, Franz E.; Ueda, Yoshihiro; Mushotzky, Richard; Ricci, Federica; Oh, Kyuseok; MejĂ­a-Restrepo, Julian E.; Brok, Jakob Den; Stern, Daniel; Powell,
286:
introduced Active Galactic Nuclei in the early 1950s. At the Solvay Conference on Physics in 1958, Ambartsumian presented a report arguing that "explosions in galactic nuclei cause large amounts of mass to be expelled. For these explosions to occur, galactic nuclei must contain bodies of huge mass
1095:
Studying neighbour galaxies rather than the AGN themselves first suggested the numbers of neighbours were larger for Seyfert 2s than for Seyfert 1s, in contradiction with the Unified Model. Today, having overcome the previous limitations of small sample sizes and anisotropic selection, studies of
1087:
The covering factor of the torus might play an important role. Some torus models predict how Seyfert 1s and Seyfert 2s can obtain different covering factors from a luminosity and accretion rate dependence of the torus covering factor, something supported by studies in the x-ray of AGN. The models
1057:
At higher luminosities, quasars take the place of Seyfert 1s, but, as already mentioned, the corresponding 'quasar 2s' are elusive at present. If they do not have the scattering component of Seyfert 2s they would be hard to detect except through their luminous narrow-line and hard X-ray emission.
1107:
A study of Swift/BAT AGN published in July 2022 adds support to the "radiation-regulated unification model" outlined in 2017. In this model, the relative accretion rate (termed the "Eddington ratio") of the black hole has a significant impact on the observed features of the AGN. Black Holes with
1083:
Therefore, one cannot know whether the gas in all Seyfert 2 galaxies is ionized due to photoionization from a single, non-stellar continuum source in the center or due to shock-ionization from e.g. intense, nuclear starbursts. Spectropolarimetric studies reveal that only 50% of Seyfert 2s show a
1070:
However, the population of radio galaxies is completely dominated by low-luminosity, low-excitation objects. These do not show strong nuclear emission lines—broad or narrow—they have optical continua which appear to be entirely jet-related, and their X-ray emission is also consistent with coming
1048:
At low luminosities, the objects to be unified are Seyfert galaxies. The unification models propose that in Seyfert 1s the observer has a direct view of the active nucleus. In Seyfert 2s the nucleus is observed through an obscuring structure which prevents a direct view of the optical continuum,
1124:
Most luminous classes of AGN (radio-loud and radio-quiet) seem to have been much more numerous in the early universe. This suggests that massive black holes formed early on and that the conditions for the formation of luminous AGN were more common in the early universe, such as a much higher
3795:
Ricci, Claudio; Trakhtenbrot, Benny; Koss, Michael J.; Ueda, Yoshihiro; Schawinski, Kevin; Oh, Kyuseok; Lamperti, Isabella; Mushotzky, Richard; Treister, Ezequiel; Ho, Luis C.; Weigel, Anna; Bauer, Franz E.; Paltani, Stephane; Fabian, Andrew C.; Xie, Yanxia; Gehrels, Neil (2017). "The close
1066:
Historically, work on radio-loud unification has concentrated on high-luminosity radio-loud quasars. These can be unified with narrow-line radio galaxies in a manner directly analogous to the Seyfert 1/2 unification (but without the complication of much in the way of a reflection component:
1088:
also suggest an accretion-rate dependence of the broad-line region and provide a natural evolution from more active engines in Seyfert 1s to more "dead" Seyfert 2s and can explain the observed break-down of the unified model at low luminosities and the evolution of the broad-line region.
1079:
In the recent literature on AGN, being subject to an intense debate, an increasing set of observations appear to be in conflict with some of the key predictions of the Unified Model, e.g. that each Seyfert 2 has an obscured Seyfert 1 nucleus (a hidden broad-line region).
1120:
objects known either in the optical or the radio spectrum, because of their high luminosity. They still have a role to play in studies of the early universe, but it is now recognised that an AGN gives a highly biased picture of the "typical" high-redshift galaxy.
598:'Quasar 2s'. By analogy with Seyfert 2s, these are objects with quasar-like luminosities but without strong optical nuclear continuum emission or broad line emission. They are scarce in surveys, though a number of possible candidate quasar 2s have been identified. 611:
Radio-loud quasars behave exactly like radio-quiet quasars with the addition of emission from a jet. Thus they show strong optical continuum emission, broad and narrow emission lines, and strong X-ray emission, together with nuclear and often extended radio
1099:
While controversy about the soundness of each individual study still prevails, they all agree on that the simplest viewing-angle based models of AGN Unification are incomplete. Seyfert-1 and Seyfert-2 seem to differ in star formation and AGN engine power.
407:. Dissipative processes in the accretion disc transport matter inwards and angular momentum outwards, while causing the accretion disc to heat up. The expected spectrum of an accretion disc peaks in the optical-ultraviolet waveband; in addition, a 333:
proposed that nearby galaxies contain supermassive black holes at their centers as relics of "dead" quasars, and that black hole accretion was the power source for the non-stellar emission in nearby Seyfert galaxies. In the 1960s and 1970s, early
1049:
broad-line region or (soft) X-ray emission. The key insight of orientation-dependent accretion models is that the two types of object can be the same if only certain angles to the line of sight are observed. The standard picture is of a
349:. AGN research encompasses observational surveys to find AGN over broad ranges of luminosity and redshift, examination of the cosmic evolution and growth of black holes, studies of the physics of black hole accretion and the emission of 377:, and as a result, it can provide the observed high persistent luminosity. Supermassive black holes are now believed to exist in the centres of most if not all massive galaxies since the mass of the black hole correlates well with the 569:
AGN terminology is often confusing, since the distinctions between different types of AGN sometimes reflect historical differences in how the objects were discovered or initially classified, rather than real physical differences.
3109:
Wang, J. M.; Du, P.; Baldwin, J. A.; Ge, J-Q.; Ferland, G. J.; Ferland, Gary J. (2012). "Star formation in self-gravitating disks in active galactic nuclei. II. Episodic formation of broad-line regions".
1104:
the two types at very short time scales, and the connection of the AGN type to small and large-scale environment remain important issues to incorporate into any unified model of active galactic nuclei.
1576: 373:). AGN are both compact and persistently extremely luminous. Accretion can potentially give very efficient conversion of potential and kinetic energy to radiation, and a massive black hole has a high 208:
published a paper in which he described observations of nearby galaxies having bright nuclei that were sources of unusually broad emission lines. Galaxies observed as part of this study included
104:
The observed characteristics of an AGN depend on several properties such as the mass of the central black hole, the rate of gas accretion onto the black hole, the orientation of the
2069:
Padovani, P.; Alexander, D. M.; Assef, R. J.; De Marco, B.; Giommi, P.; Hickox, R. C.; Richards, G. T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; Salvato, M. (November 2017).
287:
and unknown nature. From this point forward Active Galactic Nuclei (AGN) became a key component in theories of galactic evolution." His idea was initially accepted skeptically.
317:
The enormous luminosities of these quasars as well as their unusual spectral properties indicated that their power source could not be ordinary stars. Accretion of gas onto a
338:
observations demonstrated that Seyfert galaxies and quasars are powerful sources of X-ray emission, which originates from the inner regions of black hole accretion disks.
2014: 275:
sources associated with the radio emission. In photographic images, some of these objects were nearly point-like or quasi-stellar in appearance, and were classified as
496:
There exists a class of "radiatively inefficient" solutions to the equations that govern accretion. Several theories exist, but the most widely known of these is the
4488: 2605:
Garrington, S. T.; Leahy, J. P.; Conway, R. G.; Laing, R. A. (1988). "A systematic asymmetry in the polarization properties of double radio sources with one jet".
4535: 2259:
Laing, R. A.; Jenkins, C. R.; Wall, J. V.; Unger, S. W. (1994). "Spectrophotometry of a Complete Sample of 3CR Radio Sources: Implications for Unified Models".
1545: 1540: 5723: 1590: 4185: 1581: 579: 97:
in the universe and, as such, can be used as a means of discovering distant objects; their evolution as a function of cosmic time also puts constraints on
5275: 418:
up to X-ray energies. The radiation from the accretion disc excites cold atomic material close to the black hole and this in turn radiates at particular
268: 4939: 3558:
Donoso, E.; Yan, L.; Stern, D.; Assef, R. J. (2014). "The Angular Clustering of WISE-Selected AGN: Different Haloes for Obscured and Unobscured AGN".
5039: 5213: 2286:
Baum, S. A.; Zirbel, E. L.; O'Dea, Christopher P. (1995). "Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power".
1657: 3395:; Krongold, Y.; Fuentes-Guridi, I.; Marziani, P. (1999). "The Close Environment of Seyfert Galaxies and Its Implication for Unification Models". 353:
from AGN, examination of the properties of jets and outflows of matter from AGN, and the impact of black hole accretion and quasar activity on
2324:
Chiaberge, M.; Capetti, A.; Celotti, A. (2002). "Understanding the nature of FRII optical nuclei: a new diagnostic plane for radio galaxies".
566:
at some or all other wavelengths. Radio-quiet objects are simpler since jet and any jet-related emission can be neglected at all wavelengths.
4716: 1108:
higher Eddington ratios appear to be more likely to be unobscured, having cleared away locally obscuring material in a very short timescale.
518: 430:
close to the accretion disc, but (in a steady-state situation) this will be re-radiated at some other waveband, most likely the infrared.
3918: 4601: 2177:
Vermeulen, R. C.; Ogle, P. M.; Tran, H. D.; Browne, I. W. A.; Cohen, M. H.; Readhead, A. C. S.; Taylor, G. B.; Goodrich, R. W. (1995).
5255: 4520: 497: 385:) or with bulge luminosity. Thus, AGN-like characteristics are expected whenever a supply of material for accretion comes within the 123:
Numerous subclasses of AGN have been defined on the basis of their observed characteristics; the most powerful AGN are classified as
5344: 473: 5224: 5339: 3901: 3873: 386: 3056:
Ricci, C.; Walter, R.; Courvoisier, T. J-L.; Paltani, S. (2010). "Reflection in Seyfert galaxies and the unified model of AGN".
5260: 5056: 546: 4802: 5733: 5482: 5163: 4606: 159:
of 3C 273 appears to the left of the bright quasar, and the four straight lines pointing outward from the central source are
2742:
Ogle, P.; Whysong, D.; Antonucci, R. (2006). "Spitzer Reveals Hidden Quasar Nuclei in Some Powerful FR II Radio Galaxies".
5250: 5125: 4333: 143: 5669: 5071: 5728: 5168: 4859: 1501:
Baade, Walter; Minkowski, Rudolph (1954). "Identification of the Radio Sources in Cassiopeia, Cygnus A, and Puppis A.".
5472: 5437: 5427: 4503: 2889:
Wu, Y-Z; et al. (2001). "The Different Nature in Seyfert 2 Galaxies With and Without Hidden Broad-line Regions".
1558: 1040:
objects arise simply because of their different orientations to the observer. However, they are debated (see below).
5158: 5110: 5093: 4792: 4621: 4576: 4384: 3973: 3968: 3941: 1902:
Marconi, A.; L. K. Hunt (2003). "The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity".
5613: 5115: 5029: 4777: 4709: 4302: 2995:
Nicastro, F. (2000). "Broad Emission Line Regions in Active Galactic Nuclei: The Link with the Accretion Power".
350: 94: 3728:
Meredith C.; Caglar, Turgay; Ichikawa, Kohei; Wong, O. Ivy; Harrison, Fiona A.; Schawinski, Kevin (2022-07-01).
3505:
Villarroel, B.; Korn, A. J. (2014). "The different neighbours around Type-1 and Type-2 active galactic nuclei".
5290: 4586: 4498: 4493: 4399: 4295: 4253: 3963: 3936: 553: 366: 346: 83: 43: 5538: 1232:
Curtis, Heber D. (1918). "Descriptions of 762 Nebulae and Clusters Photographed with the Crossley Reflector".
5467: 5003: 4966: 4864: 4782: 4581: 4566: 4513: 4160: 4155: 4034: 4005: 3995: 1161: 342: 318: 87: 5656: 5229: 3670:"AGN luminosity and stellar age – two missing ingredients for AGN unification as seen with iPTF supernovae" 5497: 5385: 5370: 4922: 4812: 4736: 4084: 3983: 449: 152: 109: 2562:
Laing, R. A. (1988). "The sidedness of jets and depolarization in powerful extragalactic radio sources".
235:
was a major catalyst to understanding AGN. Some of the earliest detected radio sources are nearby active
5375: 5188: 4932: 4787: 4611: 4508: 4210: 1167: 461: 5105: 3668:
Villarroel, B.; Nyholm, A.; Karlsson, T.; Comeron, S.; Korn, A.; Sollerman, J.; Zackrisson, E. (2017).
1134: 382: 3730:"BASS. XXX. Distribution Functions of DR2 Eddington Ratios, Black Hole Masses, and X-Ray Luminosities" 5646: 5354: 5326: 5209: 5137: 4949: 4757: 4702: 4641: 4591: 4426: 4338: 4074: 3958: 3894: 3815: 3751: 3691: 3634: 3577: 3524: 3471: 3414: 3374: 3347: 3294: 3239: 3182: 3129: 3075: 3014: 2961: 2908: 2855: 2808: 2761: 2706: 2657: 2614: 2571: 2528: 2483: 2448: 2403: 2343: 2295: 2268: 2231: 2190: 2141: 2033: 1974: 1921: 1868: 1825: 1782: 1729: 1684: 1510: 1465: 1426: 1389: 1340: 1299: 1268: 1241: 1196: 480:
scales. However, they radiate in all wavebands from the radio through to the gamma-ray range via the
374: 264: 132: 5477: 5452: 5422: 5380: 5334: 4971: 4837: 4832: 4762: 4404: 4312: 4243: 4135: 4010: 1653: 378: 283: 236: 4677: 5707: 5311: 5183: 5088: 4894: 4879: 4847: 4772: 4767: 4636: 4631: 4616: 4571: 4540: 4525: 4443: 4411: 4248: 4200: 4190: 3847: 3805: 3777: 3741: 3709: 3681: 3650: 3624: 3593: 3567: 3540: 3514: 3487: 3461: 3430: 3404: 3337: 3310: 3284: 3257: 3229: 3198: 3172: 3145: 3119: 3091: 3065: 3038: 3004: 2977: 2951: 2924: 2898: 2871: 2845: 2777: 2751: 2724: 2696: 2630: 2587: 2544: 2518: 2421: 2393: 2359: 2333: 2159: 2131: 2082: 2051: 2023: 1990: 1964: 1937: 1911: 1884: 1841: 1798: 1772: 1745: 1702: 1483: 1358: 485: 412: 330: 160: 4899: 3328:
Antonucci, R. (2012). "A panchromatic review of thermal and nonthermal active galactic nuclei".
3365:
Laurikainen, E.; Salo H. (1995). "Environments of Seyfert galaxies. II. Statistical analyses".
2942:
Elitzur, M.; Shlosman I. (2006). "The AGN-obscuring Torus: The End of the Doughnut Paradigm?".
2836:
Tran, H. D. (2001). "Hidden Broad-Line Seyfert 2 Galaxies in the CFA and 12 $ \mu$ M Samples".
5457: 5447: 5442: 5178: 5142: 5130: 5083: 5024: 4993: 4983: 4917: 4669: 4651: 4626: 4596: 4475: 4317: 4307: 4290: 4222: 4051: 4017: 3978: 3931: 3839: 3831: 3769: 3030: 2120:"SDSS IV MaNGA – spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs" 2100: 1645: 1631: 1155: 427: 256: 181: 131:
is an AGN with a jet pointed toward the Earth, in which radiation from the jet is enhanced by
117: 5618: 5683: 5608: 5568: 5316: 5265: 5120: 5034: 4827: 4797: 4681: 4483: 4458: 4438: 4433: 4421: 4275: 4096: 4029: 3823: 3759: 3699: 3642: 3585: 3532: 3479: 3422: 3378: 3351: 3302: 3247: 3190: 3137: 3083: 3079: 3022: 2969: 2916: 2863: 2816: 2769: 2714: 2665: 2622: 2579: 2536: 2491: 2487: 2456: 2411: 2351: 2347: 2303: 2239: 2198: 2149: 2119: 2092: 2041: 1982: 1929: 1876: 1833: 1790: 1737: 1692: 1619: 1586: 1572: 1518: 1473: 1434: 1397: 1348: 1307: 1212: 1204: 585: 488:
process, and so AGN jets are a second potential source of any observed continuum radiation.
439: 423: 354: 225: 156: 63: 1720:
Greenstein, J. L.; Matthews, T. A. (1963). "Red-Shift of the Unusual Radio Source: 3C 48".
1031: 5628: 5578: 5553: 5349: 5193: 5100: 5066: 4978: 4530: 4453: 4145: 4118: 4089: 4041: 3887: 3612: 3452:; Krongold Y.; Goudis C. (2006). "Local and Large-Scale Environment of Seyfert Galaxies". 3449: 3392: 1536: 501: 335: 326: 299: 232: 201: 1402: 1377: 1187:
Fath, Edward A. (1909). "The spectra of some spiral nebulae and globular star clusters".
500:(ADAF). In this type of accretion, which is important for accretion rates well below the 5528: 3819: 3755: 3695: 3638: 3581: 3528: 3475: 3418: 3298: 3243: 3186: 3133: 3018: 2965: 2912: 2859: 2812: 2765: 2710: 2661: 2618: 2575: 2532: 2495: 2452: 2407: 2299: 2272: 2235: 2194: 2145: 2037: 1978: 1925: 1872: 1829: 1786: 1733: 1688: 1514: 1469: 1430: 1393: 1344: 1303: 1272: 1245: 1208: 1200: 1137: â€“ Relationship between the mass of a galaxy bulge and the mass of the supermassive 5543: 5295: 5234: 5078: 4752: 4394: 4227: 4130: 4125: 4079: 4022: 3163:
Laor, A. (2003). "On the Nature of Low-Luminosity Narrow-Line Active Galactic Nuclei".
1158: â€“ Beam of ionized matter flowing along the axis of a rotating astronomical object 767: 408: 404: 398: 322: 197: 169: 105: 3306: 3141: 2920: 1955:
Narayan, R.; Yi, I. (1994). "Advection-Dominated Accretion: A Self-Similar Solution".
5717: 5603: 5523: 5051: 5046: 4550: 4416: 4379: 4150: 4113: 4101: 3953: 3948: 3851: 3781: 3597: 3589: 3544: 3491: 3202: 3095: 2928: 2719: 2684: 2416: 2381: 2070: 1610: 1554: 1362: 1259:
Slipher, Vesto (1917). "The spectrum and velocity of the nebula N.G.C. 1068 (M 77)".
914: 620: 419: 303: 272: 271:
led to further progress in discovery of new radio sources as well as identifying the
260: 193: 3713: 3654: 3434: 3261: 3042: 2781: 2685:"High-redshift Faranoff-Riley type II radio galaxies: X-ray properties of the cores" 2591: 2548: 2425: 2055: 1941: 1802: 5695: 5558: 5432: 5400: 5008: 4927: 4545: 4448: 4389: 4374: 4280: 4205: 4000: 3990: 3314: 3149: 2981: 2875: 2728: 2634: 2363: 2163: 1994: 1888: 1845: 1749: 1706: 1487: 1149: 988: 630: 252: 205: 189: 67: 3087: 2261:
The First Stromlo Symposium: The Physics of Active Galaxies. ASP Conference Series
5598: 3796:
environments of accreting massive black holes are shaped by radiative feedback".
3615:; Marziani, D. (2002). "The Circumgalactic Environment of Bright IRAS Galaxies". 2355: 17: 5548: 5502: 5405: 5280: 5219: 4944: 4852: 4646: 4463: 4353: 4343: 4140: 4106: 4046: 3926: 1378:"The occurrence of λ3727 [O II] in the spectra of extragalactic nebulae" 513: 481: 244: 113: 51: 3764: 3729: 3704: 3669: 2474:
Antonucci, R. (1993). "Unified Models for Active Galactic Nuclei and Quasars".
1604:
Petrosian, Artashes R.; Harutyunian, Haik A.; Mickaelian, Areg M. (June 1997).
476:
can be used to study the synchrotron radiation they emit at resolutions of sub-
5588: 5518: 5487: 5462: 5415: 5410: 5395: 5061: 4998: 4988: 4889: 4725: 4348: 4285: 2821: 2796: 2439:
Grandi, S. A.; Osterbrock, D. E. (1978). "Optical spectra of radio galaxies".
2244: 2219: 2096: 2046: 2009: 951: 624: 469: 457: 453: 370: 240: 185: 177: 46:, with characteristics indicating that this luminosity is not produced by the 3835: 3773: 2104: 1217: 204:
noted the presence of unusual emission lines in some galaxy nuclei. In 1943,
5623: 5270: 5173: 4961: 4956: 4358: 3252: 3217: 2154: 536: 307: 192:(published in 1918). Further spectroscopic studies by astronomers including 98: 75: 55: 3843: 3034: 1541:"Obituary: Victor Amazaspovich Ambartsumian, 1912 [i.e. 1908]–1996" 1454:"Positions of Three Discrete Sources of Galactic Radio-Frequency Radiation" 403:
In the standard model of AGN, cold material close to a black hole forms an
3868: 2010:"The accretion luminosity of a massive black hole in an elliptical galaxy" 5533: 5492: 5390: 3629: 3466: 3409: 3177: 3009: 2956: 2850: 2797:"Is it possible to turn an elliptical radio galaxy into a BL Lac object?" 2756: 2701: 2523: 2398: 2338: 2028: 1969: 1916: 1777: 1117: 291: 248: 221: 217: 213: 209: 173: 59: 3827: 1859:
Lynden-Bell, Donald (1969). "Galactic Nuclei as Collapsed Old Quasars".
1816:
Lynden-Bell, Donald (1969). "Galactic Nuclei as Collapsed Old Quasars".
1152: â€“ Type of active galaxy that is very luminous at radio wavelengths 82:. The non-stellar radiation from an AGN is theorized to result from the 5573: 2509:
Urry, P.; Padovani, Paolo (1995). "Unified schemes for radioloud AGN".
365:
Since the late 1960s it has been argued that an AGN must be powered by
3536: 1741: 1697: 1672: 1116:
For a long time, active galaxies held all the records for the highest-
5593: 5583: 5563: 5285: 4884: 4874: 4195: 4180: 3910: 2626: 2583: 1880: 1837: 1624: 1605: 1478: 1453: 1143: 877: 840: 616: 592: 477: 415: 295: 276: 148: 128: 124: 39: 3275:
Elitzur, M. (2012). "On the Unification of Active Galactic Nuclei".
1763:
Shields, G. A. (1999). "A Brief History of Active Galactic Nuclei".
1146: â€“ Active galactic nucleus containing a supermassive black hole 5690: 3810: 3746: 3686: 3646: 3483: 3426: 3194: 3026: 2973: 2867: 2773: 2669: 2540: 2460: 2307: 2203: 2178: 2136: 2087: 1986: 1933: 1794: 1522: 1438: 1353: 1328: 1312: 1287: 444: 93:
Active galactic nuclei are the most luminous persistent sources of
27:
Compact region at a galaxy's center with abnormally high luminosity
4268: 4263: 4258: 4215: 3572: 3519: 3342: 3289: 3234: 3124: 3070: 2903: 1288:"The Emission Spectrum of the Extra-Galactic Nebula N. G. C. 1275" 1050: 1030: 730: 443: 311: 142: 71: 607:
There are several subtypes of radio-loud active galactic nuclei.
1644:
Komberg, B. V. (1992). "Quasars and Active Galactic Nuclei". In
47: 4698: 3883: 1417:
Seyfert, Carl K. (1943). "Nuclear Emission in Spiral Nebulae".
50:. Such excess, non-stellar emissions have been observed in the 4694: 3218:"Evolution of broad-line emission from active galactic nuclei" 422:. A large fraction of the AGN's radiation may be obscured by 341:
Today, AGN are a major topic of astrophysical research, both
180:
by Edward Fath (published in 1909), and the discovery of the
3879: 1092:
of selection biases due to anisotropic selection criteria.
321:
was suggested as the source of quasars' power in papers by
302:, published in 1963. Schmidt noted that if this object was 3804:(7673). Springer Science and Business Media LLC: 488–491. 2382:"The X-ray nuclei of intermediate-redshift radio sources" 512:
AGN are a candidate source of high and ultra-high energy
464:
contrasts with the yellow starlight from the host galaxy.
2380:
Hardcastle, M. J.; Evans, D. A.; Croston, J. H. (2006).
2683:
Belsole, E.; Worrall, D. M.; Hardcastle, M. J. (2006).
2511:
Publications of the Astronomical Society of the Pacific
1765:
Publications of the Astronomical Society of the Pacific
1673:"3C 273 : A Star-Like Object with Large Red-Shift" 1333:
Publications of the Astronomical Society of the Pacific
1292:
Publications of the Astronomical Society of the Pacific
411:
of hot material forms above the accretion disc and can
5667: 369:
of mass onto massive black holes (10 to 10 times the
42:
that emits a significant amount of energy across the
1139:
Pages displaying wikidata descriptions as a fallback
531:
Among the many interesting characteristics of AGNs:
5511: 5363: 5325: 5304: 5243: 5202: 5151: 5017: 4910: 4820: 4745: 4559: 4474: 4367: 4326: 4236: 4171: 4062: 3917: 1452:Bolton, J. G.; Stanley, G. J.; Slee, O. B. (1949). 2648:Barthel, P. D. (1989). "Is every quasar beamed?". 542:small emitting regions, milli-parsecs in diameter, 468:Some accretion discs produce jets of twin, highly 3222:Monthly Notices of the Royal Astronomical Society 2801:Monthly Notices of the Royal Astronomical Society 2689:Monthly Notices of the Royal Astronomical Society 2386:Monthly Notices of the Royal Astronomical Society 2224:Monthly Notices of the Royal Astronomical Society 2124:Monthly Notices of the Royal Astronomical Society 2015:Monthly Notices of the Royal Astronomical Society 1650:Astrophysics on the Threshold of the 21st Century 290:A major breakthrough was the measurement of the 78:wavebands. A galaxy hosting an AGN is called an 535:very high luminosity, visible out to very high 259:as a tidally distorted galaxy with an unusual 4710: 4536:List of the most distant astronomical objects 3895: 3216:Elitzur, M.; Ho, L. C.; Trump, J. R. (2014). 2375: 2373: 1546:Bulletin of the American Astronomical Society 224:. Active galaxies such as these are known as 8: 3448:Koulouridis, E.; Plionis M.; Chavushyan V.; 2319: 2317: 1329:"The Spectrum of the Spiral Nebula NGC 4151" 580:Low-ionization nuclear emission-line regions 3734:The Astrophysical Journal Supplement Series 3330:Astronomical and Astrophysical Transactions 2476:Annual Review of Astronomy and Astrophysics 2071:"Active galactic nuclei: what's in a name?" 1582:Complete Dictionary of Scientific Biography 5276:Magnetospheric eternally collapsing object 4717: 4703: 4695: 3902: 3888: 3880: 3809: 3763: 3745: 3703: 3685: 3628: 3571: 3518: 3465: 3408: 3341: 3288: 3251: 3233: 3176: 3123: 3069: 3008: 2955: 2902: 2849: 2820: 2755: 2718: 2700: 2522: 2415: 2397: 2337: 2243: 2202: 2153: 2135: 2086: 2045: 2027: 1968: 1915: 1776: 1696: 1623: 1477: 1401: 1352: 1311: 1216: 38:) is a compact region at the center of a 2220:"Optical spectra of 3 CR radio galaxies" 1075:Criticism of the radio-quiet unification 638:Features of different types of galaxies 636: 5674: 3740:(1). American Astronomical Society: 9. 1179: 228:in honor of Seyfert's pioneering work. 2118:Belfiore, Francesco (September 2016). 552:detectable emission across the entire 314:, even more distant at redshift 0.37. 2075:The Astronomy and Astrophysics Review 519:Centrifugal mechanism of acceleration 267:of 16,700 kilometers per second. The 7: 5652: 2218:Hine, R. G.; Longair, M. S. (1979). 5724:Astronomical classification systems 2496:10.1146/annurev.aa.31.090193.002353 2008:Fabian, A. C.; Rees, M. J. (1995). 1577:"Ambartsumian, Viktor Amazaspovich" 1164: â€“ Largest type of black hole 498:Advection Dominated Accretion Flow 456:-long jet ejected from the active 279:(later abbreviated as "quasars"). 90:at the center of its host galaxy. 25: 2183:The Astrophysical Journal Letters 474:very-long-baseline interferometry 5701: 5689: 5677: 5651: 5642: 5641: 4940:Tolman–Oppenheimer–Volkoff limit 4811: 4676: 4665: 4664: 3867: 2720:10.1111/j.1365-2966.2005.09882.x 2417:10.1111/j.1365-2966.2006.10615.x 1403:10.5479/ADS/bib/1939LicOB.19.33M 1234:Publications of Lick Observatory 5057:Innermost stable circular orbit 1209:10.5479/ADS/bib/1909LicOB.5.71F 1170: â€“ Astrophysical technique 1112:Cosmological uses and evolution 282:Soviet Armenian astrophysicist 163:caused by the telescope optics. 5483:Timeline of black hole physics 4607:Galaxy formation and evolution 4602:Galaxy color–magnitude diagram 2179:"When Is BL Lac Not a BL Lac?" 1: 5251:Nonsingular black hole models 3397:Astrophysical Journal Letters 3277:Astrophysical Journal Letters 1606:"Victor Amazasp Ambartsumian" 527:Observational characteristics 116:, and presence or absence of 1376:Mayall, Nicholas U. (1939). 1327:Mayall, Nicholas U. (1934). 5473:Rossi X-ray Timing Explorer 5438:Hypercompact stellar system 5428:Gamma-ray burst progenitors 4489:Galaxies named after people 3307:10.1088/2041-8205/747/2/L33 3142:10.1088/0004-637X/746/2/137 3088:10.1051/0004-6361/201016409 2921:10.1088/0004-637X/730/2/121 1286:Humason, Milton L. (1932). 1261:Lowell Observatory Bulletin 492:Radiatively inefficient AGN 389:of the central black hole. 381:of the galactic bulge (the 277:quasi-stellar radio sources 5750: 5159:Black hole complementarity 5126:Bousso's holographic bound 5111:Quasi-periodic oscillation 4809: 4803:Malament–Hogarth spacetime 4622:Gravitational microlensing 4577:Galactic coordinate system 3590:10.1088/0004-637X/789/1/44 3367:Astronomy and Astrophysics 3058:Astronomy and Astrophysics 2356:10.1051/0004-6361:20021204 1027:Unification of AGN species 486:inverse-Compton scattering 437: 396: 5637: 5030:Gravitational singularity 4732: 4660: 3674:The Astrophysical Journal 3560:The Astrophysical Journal 3165:The Astrophysical Journal 3112:The Astrophysical Journal 2997:The Astrophysical Journal 2944:The Astrophysical Journal 2891:The Astrophysical Journal 2838:The Astrophysical Journal 2795:Browne, I. W. A. (1983). 2744:The Astrophysical Journal 2288:The Astrophysical Journal 2097:10.1007/s00159-017-0102-9 1904:The Astrophysical Journal 1671:Schmidt, Maarten (1963). 1503:The Astrophysical Journal 1419:The Astrophysical Journal 1382:Lick Observatory Bulletin 1189:Lick Observatory Bulletin 672: 669: 666: 660: 657: 654: 651: 645: 642: 351:electromagnetic radiation 95:electromagnetic radiation 5614:PSO J030947.49+271757.31 5539:SDSS J150243.09+111557.3 5072:Blandford–Znajek process 4587:Galactic magnetic fields 4400:Brightest cluster galaxy 4296:Luminous infrared galaxy 3765:10.3847/1538-4365/ac5b64 3705:10.3847/1538-4357/aa5d5a 554:electromagnetic spectrum 247:. Another radio source, 44:electromagnetic spectrum 4870:Active galactic nucleus 4582:Galactic habitable zone 4567:Extragalactic astronomy 4156:Supermassive black hole 4070:Active galactic nucleus 3379:1995A&A...293..683L 3352:2012A&AT...27..557A 3080:2011A&A...532A.102R 2822:10.1093/mnras/204.1.23p 2488:1993ARA&A..31..473A 2348:2002A&A...394..791C 2245:10.1093/mnras/188.1.111 2047:10.1093/mnras/277.1.L55 1162:Supermassive black hole 1044:Radio-quiet unification 413:inverse-Compton scatter 319:supermassive black hole 88:supermassive black hole 32:active galactic nucleus 5498:Tidal disruption event 5468:Supermassive dark star 5386:Black holes in fiction 5371:Outline of black holes 5004:Supermassive dark star 4923:Gravitational collapse 4334:Low surface brightness 4085:Central massive object 3874:Active galactic nuclei 1062:Radio-loud unification 1036: 561:Types of active galaxy 465: 450:Hubble Space Telescope 164: 153:Hubble Space Telescope 5734:Concepts in astronomy 5376:Black Hole Initiative 5189:Holographic principle 4612:Galaxy rotation curve 3617:Astrophysical Journal 3454:Astrophysical Journal 3253:10.1093/mnras/stt2445 2650:Astrophysical Journal 2441:Astrophysical Journal 2155:10.1093/mnras/stw1234 1573:McCutcheon, Robert A. 1168:Reverberation mapping 1034: 508:Particle acceleration 462:synchrotron radiation 447: 146: 5179:Final parsec problem 5138:Schwarzschild radius 4647:Population III stars 4642:Intergalactic travel 4592:Galactic orientation 4459:Voids and supervoids 3876:at Wikimedia Commons 1654:Taylor & Francis 962:stronger than BL Lac 547:luminosity functions 545:strong evolution of 375:Eddington luminosity 265:recessional velocity 251:, was identified by 133:relativistic beaming 99:models of the cosmos 5729:Active galaxy types 5478:Superluminal motion 5453:Population III star 5423:Gravitational waves 5381:Black hole starship 5164:Information paradox 4637:Intergalactic stars 4526:Large quasar groups 4521:Groups and clusters 4385:Groups and clusters 4244:Lyman-alpha emitter 4136:Interstellar medium 3828:10.1038/nature23906 3820:2017Natur.549..488R 3756:2022ApJS..261....9A 3696:2017ApJ...837..110V 3639:2002ApJ...572..169K 3582:2014ApJ...789...44D 3529:2014NatPh..10..417V 3476:2006ApJ...639...37K 3419:1999ApJ...513L.111D 3299:2012ApJ...747L..33E 3244:2014MNRAS.438.3340E 3187:2003ApJ...590...86L 3134:2012ApJ...746..137W 3019:2000ApJ...530L..65N 2966:2006ApJ...648L.101E 2913:2011ApJ...730..121W 2860:2001ApJ...554L..19T 2813:1983MNRAS.204P..23B 2766:2006ApJ...647..161O 2711:2006MNRAS.366..339B 2662:1989ApJ...336..606B 2619:1988Natur.331..147G 2576:1988Natur.331..149L 2533:1995PASP..107..803U 2453:1978ApJ...220..783G 2408:2006MNRAS.370.1893H 2300:1995ApJ...451...88B 2273:1994ASPC...54..201L 2236:1979MNRAS.188..111H 2195:1995ApJ...452L...5V 2146:2016MNRAS.461.3111B 2038:1995MNRAS.277L..55F 1979:1994ApJ...428L..13N 1926:2003ApJ...589L..21M 1873:1969Natur.223..690L 1830:1969Natur.223..690L 1787:1999PASP..111..661S 1734:1963Natur.197.1041G 1689:1963Natur.197.1040S 1593:on 3 December 2019. 1575:(1 November 2019). 1515:1954ApJ...119..206B 1470:1949Natur.164..101B 1431:1943ApJ....97...28S 1394:1939LicOB..19...33M 1345:1934PASP...46..134M 1304:1932PASP...44..267H 1273:1917LowOB...3...59S 1246:1918PLicO..13....9C 1201:1909LicOB...5...71F 639: 448:Image taken by the 387:sphere of influence 379:velocity dispersion 284:Viktor Ambartsumian 263:spectrum, having a 237:elliptical galaxies 231:The development of 172:from the nuclei of 5312:Optical black hole 5225:Reissner–Nordström 5184:Firewall (physics) 5089:Gravitational lens 4632:Intergalactic dust 4617:Gravitational lens 4572:Galactic astronomy 4541:Starburst galaxies 4281:blue compact dwarf 4237:Energetic galaxies 4201:BL Lacertae object 3613:Dultzin-Hacyan, D. 3393:Dultzin-Hacyan, D. 1037: 1035:Unified AGN models 637: 466: 331:Donald Lynden-Bell 165: 161:diffraction spikes 112:of the nucleus by 5665: 5664: 5458:Supermassive star 5448:Naked singularity 5443:Membrane paradigm 5169:Cosmic censorship 5143:Spaghettification 5131:Immirzi parameter 5084:Hawking radiation 5025:Astrophysical jet 4994:Supermassive star 4984:Binary black hole 4918:Stellar evolution 4860:Intermediate-mass 4692: 4691: 4652:Galaxy X (galaxy) 4627:Illustris project 4597:Galactic quadrant 4318:Wolf-Rayet galaxy 4308:Green bean galaxy 4303:Hot dust-obscured 4254:Luminous infrared 4018:Elliptical galaxy 3872:Media related to 3537:10.1038/nphys2951 3450:Dultzin-Hacyan D. 2613:(6152): 147–149. 2570:(6152): 149–151. 2326:Astron. Astrophys 1867:(5207): 690–694. 1742:10.1038/1971041a0 1698:10.1038/1971040a0 1218:2027/uc1.c2914873 1024: 1023: 695:Normal (non-AGN) 434:Relativistic jets 329:in 1964. In 1969 257:Rudolph Minkowski 18:Broad-line region 16:(Redirected from 5741: 5706: 5705: 5704: 5694: 5693: 5682: 5681: 5680: 5673: 5655: 5654: 5645: 5644: 5317:Sonic black hole 5266:Dark-energy star 5121:Bekenstein bound 5106:M–sigma relation 5035:Ring singularity 4815: 4719: 4712: 4705: 4696: 4680: 4668: 4667: 4313:Hanny's Voorwerp 4223:Relativistic jet 4097:Dark matter halo 3904: 3897: 3890: 3881: 3871: 3856: 3855: 3813: 3792: 3786: 3785: 3767: 3749: 3724: 3718: 3717: 3707: 3689: 3665: 3659: 3658: 3632: 3630:astro-ph/0202412 3608: 3602: 3601: 3575: 3555: 3549: 3548: 3522: 3502: 3496: 3495: 3469: 3467:astro-ph/0509843 3445: 3439: 3438: 3412: 3410:astro-ph/9901227 3403:(2): L111–L114. 3389: 3383: 3382: 3362: 3356: 3355: 3345: 3325: 3319: 3318: 3292: 3272: 3266: 3265: 3255: 3237: 3228:(4): 3340–3351. 3213: 3207: 3206: 3180: 3178:astro-ph/0302541 3160: 3154: 3153: 3127: 3106: 3100: 3099: 3073: 3053: 3047: 3046: 3012: 3010:astro-ph/9912524 3003:(2): L101–L104. 2992: 2986: 2985: 2959: 2957:astro-ph/0605686 2950:(2): L101–L104. 2939: 2933: 2932: 2906: 2886: 2880: 2879: 2853: 2851:astro-ph/0105462 2833: 2827: 2826: 2824: 2792: 2786: 2785: 2759: 2757:astro-ph/0601485 2739: 2733: 2732: 2722: 2704: 2702:astro-ph/0511606 2680: 2674: 2673: 2645: 2639: 2638: 2627:10.1038/331147a0 2602: 2596: 2595: 2584:10.1038/331149a0 2559: 2553: 2552: 2526: 2524:astro-ph/9506063 2506: 2500: 2499: 2471: 2465: 2464: 2436: 2430: 2429: 2419: 2401: 2399:astro-ph/0603090 2392:(4): 1893–1904. 2377: 2368: 2367: 2341: 2339:astro-ph/0207654 2321: 2312: 2311: 2283: 2277: 2276: 2256: 2250: 2249: 2247: 2215: 2209: 2208: 2206: 2174: 2168: 2167: 2157: 2139: 2115: 2109: 2108: 2090: 2066: 2060: 2059: 2049: 2031: 2029:astro-ph/9509096 2005: 1999: 1998: 1972: 1970:astro-ph/9403052 1952: 1946: 1945: 1919: 1917:astro-ph/0304274 1899: 1893: 1892: 1881:10.1038/223690a0 1856: 1850: 1849: 1838:10.1038/223690a0 1813: 1807: 1806: 1780: 1778:astro-ph/9903401 1760: 1754: 1753: 1717: 1711: 1710: 1700: 1668: 1662: 1661: 1646:Kardashev, N. S. 1641: 1635: 1629: 1627: 1625:10.1063/1.881754 1601: 1595: 1594: 1589:. Archived from 1587:Encyclopedia.com 1569: 1563: 1562: 1557:. Archived from 1537:Israelian, Garik 1533: 1527: 1526: 1498: 1492: 1491: 1481: 1479:10.1038/164101b0 1449: 1443: 1442: 1414: 1408: 1407: 1405: 1373: 1367: 1366: 1356: 1324: 1318: 1317: 1315: 1283: 1277: 1276: 1256: 1250: 1249: 1229: 1223: 1222: 1220: 1184: 1156:Relativistic jet 1140: 1135:M–sigma relation 640: 586:Seyfert galaxies 440:Relativistic jet 424:interstellar gas 383:M–sigma relation 355:galaxy evolution 226:Seyfert galaxies 157:relativistic jet 151:observed by the 108:, the degree of 21: 5749: 5748: 5744: 5743: 5742: 5740: 5739: 5738: 5714: 5713: 5712: 5702: 5700: 5688: 5678: 5676: 5668: 5666: 5661: 5633: 5609:ULAS J1342+0928 5569:SDSS J0849+1114 5554:Phoenix Cluster 5507: 5359: 5321: 5300: 5239: 5198: 5194:No-hair theorem 5147: 5101:Bondi accretion 5067:Penrose process 5013: 4979:Gamma-ray burst 4906: 4816: 4807: 4793:Direct collapse 4741: 4728: 4723: 4693: 4688: 4656: 4555: 4470: 4363: 4322: 4232: 4167: 4146:Galaxy filament 4090:Galactic Center 4058: 3913: 3908: 3864: 3859: 3794: 3793: 3789: 3726: 3725: 3721: 3667: 3666: 3662: 3610: 3609: 3605: 3557: 3556: 3552: 3504: 3503: 3499: 3447: 3446: 3442: 3391: 3390: 3386: 3364: 3363: 3359: 3327: 3326: 3322: 3274: 3273: 3269: 3215: 3214: 3210: 3162: 3161: 3157: 3108: 3107: 3103: 3055: 3054: 3050: 2994: 2993: 2989: 2941: 2940: 2936: 2888: 2887: 2883: 2835: 2834: 2830: 2794: 2793: 2789: 2741: 2740: 2736: 2682: 2681: 2677: 2647: 2646: 2642: 2604: 2603: 2599: 2561: 2560: 2556: 2508: 2507: 2503: 2473: 2472: 2468: 2447:(Part 1): 783. 2438: 2437: 2433: 2379: 2378: 2371: 2323: 2322: 2315: 2285: 2284: 2280: 2258: 2257: 2253: 2217: 2216: 2212: 2176: 2175: 2171: 2117: 2116: 2112: 2068: 2067: 2063: 2007: 2006: 2002: 1954: 1953: 1949: 1901: 1900: 1896: 1858: 1857: 1853: 1815: 1814: 1810: 1762: 1761: 1757: 1719: 1718: 1714: 1670: 1669: 1665: 1643: 1642: 1638: 1603: 1602: 1598: 1571: 1570: 1566: 1535: 1534: 1530: 1500: 1499: 1495: 1451: 1450: 1446: 1416: 1415: 1411: 1375: 1374: 1370: 1326: 1325: 1321: 1285: 1284: 1280: 1258: 1257: 1253: 1231: 1230: 1226: 1186: 1185: 1181: 1177: 1138: 1131: 1114: 1077: 1064: 1046: 1029: 652:Emission lines 605: 576: 574:Radio-quiet AGN 563: 529: 510: 502:Eddington limit 494: 442: 436: 401: 395: 363: 336:X-ray astronomy 327:Yakov Zeldovich 300:Maarten Schmidt 269:3C radio survey 233:radio astronomy 202:Nicholas Mayall 141: 86:of matter by a 28: 23: 22: 15: 12: 11: 5: 5747: 5745: 5737: 5736: 5731: 5726: 5716: 5715: 5711: 5710: 5698: 5686: 5663: 5662: 5660: 5659: 5649: 5638: 5635: 5634: 5632: 5631: 5629:Swift J1644+57 5626: 5621: 5616: 5611: 5606: 5601: 5596: 5591: 5586: 5581: 5579:MS 0735.6+7421 5576: 5571: 5566: 5561: 5556: 5551: 5546: 5544:Sagittarius A* 5541: 5536: 5531: 5526: 5521: 5515: 5513: 5509: 5508: 5506: 5505: 5500: 5495: 5490: 5485: 5480: 5475: 5470: 5465: 5460: 5455: 5450: 5445: 5440: 5435: 5430: 5425: 5420: 5419: 5418: 5413: 5403: 5398: 5393: 5388: 5383: 5378: 5373: 5367: 5365: 5361: 5360: 5358: 5357: 5352: 5347: 5342: 5337: 5331: 5329: 5323: 5322: 5320: 5319: 5314: 5308: 5306: 5302: 5301: 5299: 5298: 5293: 5288: 5283: 5278: 5273: 5268: 5263: 5258: 5253: 5247: 5245: 5241: 5240: 5238: 5237: 5232: 5227: 5222: 5217: 5206: 5204: 5200: 5199: 5197: 5196: 5191: 5186: 5181: 5176: 5171: 5166: 5161: 5155: 5153: 5149: 5148: 5146: 5145: 5140: 5135: 5134: 5133: 5123: 5118: 5116:Thermodynamics 5113: 5108: 5103: 5098: 5097: 5096: 5086: 5081: 5079:Accretion disk 5076: 5075: 5074: 5069: 5059: 5054: 5049: 5044: 5043: 5042: 5037: 5027: 5021: 5019: 5015: 5014: 5012: 5011: 5006: 5001: 4996: 4991: 4986: 4981: 4976: 4975: 4974: 4969: 4964: 4954: 4953: 4952: 4942: 4937: 4936: 4935: 4925: 4920: 4914: 4912: 4908: 4907: 4905: 4904: 4903: 4902: 4897: 4892: 4887: 4882: 4877: 4872: 4862: 4857: 4856: 4855: 4845: 4844: 4843: 4840: 4835: 4824: 4822: 4818: 4817: 4810: 4808: 4806: 4805: 4800: 4795: 4790: 4785: 4780: 4775: 4770: 4765: 4760: 4755: 4753:BTZ black hole 4749: 4747: 4743: 4742: 4740: 4739: 4733: 4730: 4729: 4724: 4722: 4721: 4714: 4707: 4699: 4690: 4689: 4687: 4686: 4674: 4661: 4658: 4657: 4655: 4654: 4649: 4644: 4639: 4634: 4629: 4624: 4619: 4614: 4609: 4604: 4599: 4594: 4589: 4584: 4579: 4574: 4569: 4563: 4561: 4557: 4556: 4554: 4553: 4548: 4543: 4538: 4533: 4528: 4523: 4518: 4517: 4516: 4511: 4506: 4501: 4496: 4491: 4480: 4478: 4472: 4471: 4469: 4468: 4467: 4466: 4456: 4451: 4446: 4444:Stellar stream 4441: 4436: 4431: 4430: 4429: 4424: 4419: 4409: 4408: 4407: 4402: 4397: 4392: 4382: 4377: 4371: 4369: 4365: 4364: 4362: 4361: 4356: 4351: 4346: 4341: 4336: 4330: 4328: 4324: 4323: 4321: 4320: 4315: 4310: 4305: 4300: 4299: 4298: 4293: 4288: 4283: 4273: 4272: 4271: 4266: 4261: 4251: 4246: 4240: 4238: 4234: 4233: 4231: 4230: 4225: 4220: 4219: 4218: 4213: 4203: 4198: 4193: 4188: 4183: 4177: 4175: 4169: 4168: 4166: 4165: 4164: 4163: 4153: 4148: 4143: 4138: 4133: 4131:Galactic ridge 4128: 4126:Galactic plane 4123: 4122: 4121: 4111: 4110: 4109: 4099: 4094: 4093: 4092: 4082: 4077: 4072: 4066: 4064: 4060: 4059: 4057: 4056: 4055: 4054: 4044: 4039: 4038: 4037: 4027: 4026: 4025: 4015: 4014: 4013: 4008: 4003: 3998: 3988: 3987: 3986: 3981: 3976: 3971: 3966: 3961: 3956: 3946: 3945: 3944: 3939: 3929: 3923: 3921: 3915: 3914: 3909: 3907: 3906: 3899: 3892: 3884: 3878: 3877: 3863: 3862:External links 3860: 3858: 3857: 3787: 3719: 3660: 3647:10.1086/340299 3623:(1): 169–177. 3611:Krongold, Y.; 3603: 3550: 3513:(6): 417–420. 3507:Nature Physics 3497: 3484:10.1086/498421 3440: 3427:10.1086/311925 3384: 3357: 3320: 3283:(2): L33–L35. 3267: 3208: 3195:10.1086/375008 3155: 3118:(2): 137–165. 3101: 3048: 3027:10.1086/312491 2987: 2974:10.1086/508158 2934: 2897:(2): 121–130. 2881: 2868:10.1086/320926 2844:(1): L19–L23. 2828: 2787: 2774:10.1086/505337 2750:(1): 161–171. 2734: 2695:(1): 339–352. 2675: 2670:10.1086/167038 2640: 2597: 2554: 2541:10.1086/133630 2501: 2482:(1): 473–521. 2466: 2461:10.1086/155966 2431: 2369: 2332:(3): 791–800. 2313: 2308:10.1086/176202 2278: 2251: 2210: 2204:10.1086/309716 2169: 2110: 2061: 2022:(2): L55–L58. 2000: 1987:10.1086/187381 1947: 1934:10.1086/375804 1910:(1): L21–L24. 1894: 1851: 1808: 1795:10.1086/316378 1755: 1728:(4872): 1041. 1712: 1683:(4872): 1040. 1663: 1636: 1596: 1564: 1561:on 2015-09-11. 1528: 1523:10.1086/145812 1493: 1444: 1439:10.1086/144488 1409: 1368: 1354:10.1086/124429 1319: 1313:10.1086/124242 1278: 1251: 1224: 1178: 1176: 1173: 1172: 1171: 1165: 1159: 1153: 1147: 1141: 1130: 1127: 1113: 1110: 1076: 1073: 1063: 1060: 1045: 1042: 1028: 1025: 1022: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 985: 984: 981: 978: 975: 972: 969: 966: 963: 960: 957: 954: 948: 947: 944: 941: 938: 935: 932: 929: 926: 923: 920: 917: 911: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 880: 874: 873: 870: 867: 864: 861: 858: 855: 852: 849: 846: 843: 837: 836: 833: 830: 827: 824: 821: 818: 815: 812: 809: 806: 802: 801: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 764: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 727: 726: 723: 720: 717: 714: 711: 708: 705: 702: 699: 696: 692: 691: 688: 685: 682: 678: 677: 671: 668: 665: 659: 656: 653: 650: 644: 635: 634: 631:Radio galaxies 628: 621:BL Lac objects 613: 604: 603:Radio-loud AGN 601: 600: 599: 596: 589: 583: 575: 572: 562: 559: 558: 557: 550: 543: 540: 528: 525: 509: 506: 493: 490: 438:Main article: 435: 432: 420:emission lines 405:accretion disc 399:Accretion disc 397:Main article: 394: 393:Accretion disc 391: 362: 359: 323:Edwin Salpeter 294:of the quasar 198:Milton Humason 170:emission lines 140: 137: 106:accretion disk 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5746: 5735: 5732: 5730: 5727: 5725: 5722: 5721: 5719: 5709: 5699: 5697: 5692: 5687: 5685: 5675: 5671: 5658: 5650: 5648: 5640: 5639: 5636: 5630: 5627: 5625: 5622: 5620: 5617: 5615: 5612: 5610: 5607: 5605: 5604:Markarian 501 5602: 5600: 5597: 5595: 5592: 5590: 5587: 5585: 5582: 5580: 5577: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5557: 5555: 5552: 5550: 5547: 5545: 5542: 5540: 5537: 5535: 5532: 5530: 5529:XTE J1118+480 5527: 5525: 5524:XTE J1650-500 5522: 5520: 5517: 5516: 5514: 5510: 5504: 5501: 5499: 5496: 5494: 5491: 5489: 5486: 5484: 5481: 5479: 5476: 5474: 5471: 5469: 5466: 5464: 5461: 5459: 5456: 5454: 5451: 5449: 5446: 5444: 5441: 5439: 5436: 5434: 5431: 5429: 5426: 5424: 5421: 5417: 5414: 5412: 5409: 5408: 5407: 5404: 5402: 5399: 5397: 5394: 5392: 5389: 5387: 5384: 5382: 5379: 5377: 5374: 5372: 5369: 5368: 5366: 5362: 5356: 5353: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5333: 5332: 5330: 5328: 5324: 5318: 5315: 5313: 5310: 5309: 5307: 5303: 5297: 5294: 5292: 5289: 5287: 5284: 5282: 5279: 5277: 5274: 5272: 5269: 5267: 5264: 5262: 5259: 5257: 5254: 5252: 5249: 5248: 5246: 5242: 5236: 5233: 5231: 5228: 5226: 5223: 5221: 5218: 5215: 5211: 5210:Schwarzschild 5208: 5207: 5205: 5201: 5195: 5192: 5190: 5187: 5185: 5182: 5180: 5177: 5175: 5172: 5170: 5167: 5165: 5162: 5160: 5157: 5156: 5154: 5150: 5144: 5141: 5139: 5136: 5132: 5129: 5128: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5095: 5092: 5091: 5090: 5087: 5085: 5082: 5080: 5077: 5073: 5070: 5068: 5065: 5064: 5063: 5060: 5058: 5055: 5053: 5052:Photon sphere 5050: 5048: 5047:Event horizon 5045: 5041: 5038: 5036: 5033: 5032: 5031: 5028: 5026: 5023: 5022: 5020: 5016: 5010: 5007: 5005: 5002: 5000: 4997: 4995: 4992: 4990: 4987: 4985: 4982: 4980: 4977: 4973: 4972:Related links 4970: 4968: 4965: 4963: 4960: 4959: 4958: 4955: 4951: 4950:Related links 4948: 4947: 4946: 4943: 4941: 4938: 4934: 4933:Related links 4931: 4930: 4929: 4926: 4924: 4921: 4919: 4916: 4915: 4913: 4909: 4901: 4898: 4896: 4893: 4891: 4888: 4886: 4883: 4881: 4878: 4876: 4873: 4871: 4868: 4867: 4866: 4863: 4861: 4858: 4854: 4851: 4850: 4849: 4846: 4841: 4839: 4836: 4834: 4831: 4830: 4829: 4826: 4825: 4823: 4819: 4814: 4804: 4801: 4799: 4796: 4794: 4791: 4789: 4786: 4784: 4781: 4779: 4776: 4774: 4771: 4769: 4766: 4764: 4761: 4759: 4758:Schwarzschild 4756: 4754: 4751: 4750: 4748: 4744: 4738: 4735: 4734: 4731: 4727: 4720: 4715: 4713: 4708: 4706: 4701: 4700: 4697: 4685: 4684: 4679: 4675: 4673: 4672: 4663: 4662: 4659: 4653: 4650: 4648: 4645: 4643: 4640: 4638: 4635: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4613: 4610: 4608: 4605: 4603: 4600: 4598: 4595: 4593: 4590: 4588: 4585: 4583: 4580: 4578: 4575: 4573: 4570: 4568: 4565: 4564: 4562: 4558: 4552: 4549: 4547: 4546:Superclusters 4544: 4542: 4539: 4537: 4534: 4532: 4529: 4527: 4524: 4522: 4519: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4486: 4485: 4482: 4481: 4479: 4477: 4473: 4465: 4462: 4461: 4460: 4457: 4455: 4452: 4450: 4449:Superclusters 4447: 4445: 4442: 4440: 4437: 4435: 4432: 4428: 4425: 4423: 4420: 4418: 4415: 4414: 4413: 4410: 4406: 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4387: 4386: 4383: 4381: 4380:Galactic tide 4378: 4376: 4373: 4372: 4370: 4366: 4360: 4357: 4355: 4352: 4350: 4347: 4345: 4342: 4340: 4339:Ultra diffuse 4337: 4335: 4332: 4331: 4329: 4325: 4319: 4316: 4314: 4311: 4309: 4306: 4304: 4301: 4297: 4294: 4292: 4289: 4287: 4284: 4282: 4279: 4278: 4277: 4274: 4270: 4267: 4265: 4262: 4260: 4257: 4256: 4255: 4252: 4250: 4247: 4245: 4242: 4241: 4239: 4235: 4229: 4226: 4224: 4221: 4217: 4214: 4212: 4209: 4208: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4189: 4187: 4184: 4182: 4179: 4178: 4176: 4174: 4173:Active nuclei 4170: 4162: 4159: 4158: 4157: 4154: 4152: 4149: 4147: 4144: 4142: 4139: 4137: 4134: 4132: 4129: 4127: 4124: 4120: 4117: 4116: 4115: 4112: 4108: 4105: 4104: 4103: 4100: 4098: 4095: 4091: 4088: 4087: 4086: 4083: 4081: 4078: 4076: 4073: 4071: 4068: 4067: 4065: 4061: 4053: 4050: 4049: 4048: 4045: 4043: 4040: 4036: 4033: 4032: 4031: 4028: 4024: 4021: 4020: 4019: 4016: 4012: 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3993: 3992: 3989: 3985: 3982: 3980: 3977: 3975: 3972: 3970: 3967: 3965: 3962: 3960: 3957: 3955: 3952: 3951: 3950: 3947: 3943: 3940: 3938: 3935: 3934: 3933: 3930: 3928: 3925: 3924: 3922: 3920: 3916: 3912: 3905: 3900: 3898: 3893: 3891: 3886: 3885: 3882: 3875: 3870: 3866: 3865: 3861: 3853: 3849: 3845: 3841: 3837: 3833: 3829: 3825: 3821: 3817: 3812: 3807: 3803: 3799: 3791: 3788: 3783: 3779: 3775: 3771: 3766: 3761: 3757: 3753: 3748: 3743: 3739: 3735: 3731: 3723: 3720: 3715: 3711: 3706: 3701: 3697: 3693: 3688: 3683: 3679: 3675: 3671: 3664: 3661: 3656: 3652: 3648: 3644: 3640: 3636: 3631: 3626: 3622: 3618: 3614: 3607: 3604: 3599: 3595: 3591: 3587: 3583: 3579: 3574: 3569: 3565: 3561: 3554: 3551: 3546: 3542: 3538: 3534: 3530: 3526: 3521: 3516: 3512: 3508: 3501: 3498: 3493: 3489: 3485: 3481: 3477: 3473: 3468: 3463: 3459: 3455: 3451: 3444: 3441: 3436: 3432: 3428: 3424: 3420: 3416: 3411: 3406: 3402: 3398: 3394: 3388: 3385: 3380: 3376: 3372: 3368: 3361: 3358: 3353: 3349: 3344: 3339: 3335: 3331: 3324: 3321: 3316: 3312: 3308: 3304: 3300: 3296: 3291: 3286: 3282: 3278: 3271: 3268: 3263: 3259: 3254: 3249: 3245: 3241: 3236: 3231: 3227: 3223: 3219: 3212: 3209: 3204: 3200: 3196: 3192: 3188: 3184: 3179: 3174: 3170: 3166: 3159: 3156: 3151: 3147: 3143: 3139: 3135: 3131: 3126: 3121: 3117: 3113: 3105: 3102: 3097: 3093: 3089: 3085: 3081: 3077: 3072: 3067: 3063: 3059: 3052: 3049: 3044: 3040: 3036: 3032: 3028: 3024: 3020: 3016: 3011: 3006: 3002: 2998: 2991: 2988: 2983: 2979: 2975: 2971: 2967: 2963: 2958: 2953: 2949: 2945: 2938: 2935: 2930: 2926: 2922: 2918: 2914: 2910: 2905: 2900: 2896: 2892: 2885: 2882: 2877: 2873: 2869: 2865: 2861: 2857: 2852: 2847: 2843: 2839: 2832: 2829: 2823: 2818: 2814: 2810: 2806: 2802: 2798: 2791: 2788: 2783: 2779: 2775: 2771: 2767: 2763: 2758: 2753: 2749: 2745: 2738: 2735: 2730: 2726: 2721: 2716: 2712: 2708: 2703: 2698: 2694: 2690: 2686: 2679: 2676: 2671: 2667: 2663: 2659: 2655: 2651: 2644: 2641: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2601: 2598: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2565: 2558: 2555: 2550: 2546: 2542: 2538: 2534: 2530: 2525: 2520: 2516: 2512: 2505: 2502: 2497: 2493: 2489: 2485: 2481: 2477: 2470: 2467: 2462: 2458: 2454: 2450: 2446: 2442: 2435: 2432: 2427: 2423: 2418: 2413: 2409: 2405: 2400: 2395: 2391: 2387: 2383: 2376: 2374: 2370: 2365: 2361: 2357: 2353: 2349: 2345: 2340: 2335: 2331: 2327: 2320: 2318: 2314: 2309: 2305: 2301: 2297: 2293: 2289: 2282: 2279: 2274: 2270: 2266: 2262: 2255: 2252: 2246: 2241: 2237: 2233: 2229: 2225: 2221: 2214: 2211: 2205: 2200: 2196: 2192: 2188: 2184: 2180: 2173: 2170: 2165: 2161: 2156: 2151: 2147: 2143: 2138: 2133: 2129: 2125: 2121: 2114: 2111: 2106: 2102: 2098: 2094: 2089: 2084: 2080: 2076: 2072: 2065: 2062: 2057: 2053: 2048: 2043: 2039: 2035: 2030: 2025: 2021: 2017: 2016: 2011: 2004: 2001: 1996: 1992: 1988: 1984: 1980: 1976: 1971: 1966: 1962: 1958: 1951: 1948: 1943: 1939: 1935: 1931: 1927: 1923: 1918: 1913: 1909: 1905: 1898: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1855: 1852: 1847: 1843: 1839: 1835: 1831: 1827: 1824:(5207): 690. 1823: 1819: 1812: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1779: 1774: 1770: 1766: 1759: 1756: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1716: 1713: 1708: 1704: 1699: 1694: 1690: 1686: 1682: 1678: 1674: 1667: 1664: 1659: 1655: 1651: 1647: 1640: 1637: 1633: 1626: 1621: 1617: 1613: 1612: 1611:Physics Today 1607: 1600: 1597: 1592: 1588: 1584: 1583: 1578: 1574: 1568: 1565: 1560: 1556: 1552: 1548: 1547: 1542: 1538: 1532: 1529: 1524: 1520: 1516: 1512: 1508: 1504: 1497: 1494: 1489: 1485: 1480: 1475: 1471: 1467: 1464:(4159): 101. 1463: 1459: 1455: 1448: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1413: 1410: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1372: 1369: 1364: 1360: 1355: 1350: 1346: 1342: 1338: 1334: 1330: 1323: 1320: 1314: 1309: 1305: 1301: 1297: 1293: 1289: 1282: 1279: 1274: 1270: 1266: 1262: 1255: 1252: 1247: 1243: 1239: 1235: 1228: 1225: 1219: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1183: 1180: 1174: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1136: 1133: 1132: 1128: 1126: 1122: 1119: 1111: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1074: 1072: 1068: 1061: 1059: 1055: 1052: 1043: 1041: 1033: 1026: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 990: 987: 986: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 953: 950: 949: 945: 942: 939: 936: 933: 930: 927: 924: 921: 918: 916: 913: 912: 908: 905: 902: 899: 896: 893: 890: 887: 884: 881: 879: 876: 875: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 842: 839: 838: 834: 831: 828: 825: 822: 819: 816: 813: 810: 807: 804: 803: 799: 796: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 765: 761: 758: 755: 752: 749: 746: 743: 740: 737: 734: 732: 729: 728: 724: 721: 718: 715: 712: 709: 706: 703: 700: 697: 694: 693: 689: 686: 683: 680: 679: 676: 664: 649: 641: 632: 629: 626: 622: 618: 614: 610: 609: 608: 602: 597: 594: 590: 587: 584: 581: 578: 577: 573: 571: 567: 560: 555: 551: 548: 544: 541: 538: 534: 533: 532: 526: 524: 522: 520: 515: 507: 505: 503: 499: 491: 489: 487: 483: 479: 475: 471: 463: 459: 455: 451: 446: 441: 433: 431: 429: 425: 421: 417: 414: 410: 406: 400: 392: 390: 388: 384: 380: 376: 372: 368: 360: 358: 356: 352: 348: 344: 343:observational 339: 337: 332: 328: 324: 320: 315: 313: 309: 306:(outside the 305: 304:extragalactic 301: 297: 293: 288: 285: 280: 278: 274: 273:visible-light 270: 266: 262: 261:emission-line 258: 254: 250: 246: 242: 238: 234: 229: 227: 223: 219: 215: 211: 207: 203: 199: 195: 194:Vesto Slipher 191: 187: 183: 179: 175: 171: 162: 158: 154: 150: 145: 138: 136: 134: 130: 126: 121: 119: 115: 111: 107: 102: 100: 96: 91: 89: 85: 81: 80:active galaxy 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 5559:PKS 1302-102 5433:Gravity well 5401:Compact star 5355:Microquasars 5340:Most massive 5244:Alternatives 5009:X-ray binary 4928:Neutron star 4869: 4865:Supermassive 4842:Hawking star 4783:Supermassive 4682: 4670: 4405:fossil group 4327:Low activity 4172: 4161:Ultramassive 4069: 3991:Dwarf galaxy 3974:intermediate 3969:grand design 3801: 3797: 3790: 3737: 3733: 3722: 3677: 3673: 3663: 3620: 3616: 3606: 3563: 3559: 3553: 3510: 3506: 3500: 3460:(1): 37–45. 3457: 3453: 3443: 3400: 3396: 3387: 3370: 3366: 3360: 3333: 3329: 3323: 3280: 3276: 3270: 3225: 3221: 3211: 3171:(1): 86–94. 3168: 3164: 3158: 3115: 3111: 3104: 3061: 3057: 3051: 3000: 2996: 2990: 2947: 2943: 2937: 2894: 2890: 2884: 2841: 2837: 2831: 2804: 2800: 2790: 2747: 2743: 2737: 2692: 2688: 2678: 2653: 2649: 2643: 2610: 2606: 2600: 2567: 2563: 2557: 2514: 2510: 2504: 2479: 2475: 2469: 2444: 2440: 2434: 2389: 2385: 2329: 2325: 2291: 2287: 2281: 2264: 2260: 2254: 2227: 2223: 2213: 2186: 2182: 2172: 2127: 2123: 2113: 2078: 2074: 2064: 2019: 2013: 2003: 1960: 1957:Astrophys. J 1956: 1950: 1907: 1903: 1897: 1864: 1860: 1854: 1821: 1817: 1811: 1771:(760): 661. 1768: 1764: 1758: 1725: 1721: 1715: 1680: 1676: 1666: 1649: 1639: 1615: 1609: 1599: 1591:the original 1580: 1567: 1559:the original 1550: 1544: 1531: 1506: 1502: 1496: 1461: 1457: 1447: 1422: 1418: 1412: 1385: 1381: 1371: 1339:(271): 134. 1336: 1332: 1322: 1298:(260): 267. 1295: 1291: 1281: 1264: 1260: 1254: 1237: 1233: 1227: 1192: 1188: 1182: 1150:Radio galaxy 1123: 1115: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1069: 1065: 1056: 1047: 1038: 989:Radio galaxy 674: 662: 647: 643:Galaxy type 606: 591:Radio-quiet 568: 564: 530: 516: 511: 495: 467: 402: 364: 340: 316: 289: 281: 253:Walter Baade 230: 206:Carl Seyfert 190:Heber Curtis 166: 122: 103: 92: 79: 68:ultra-violet 35: 31: 29: 5708:Outer space 5549:Centaurus A 5503:Planet Nine 5406:Exotic star 5335:Black holes 5281:Planck star 5230:Kerr–Newman 4945:White dwarf 4895:Radio-Quiet 4853:Microquasar 4726:Black holes 4464:void galaxy 4427:cannibalism 4412:Interacting 4368:Interaction 4354:Blue Nugget 4344:Dark galaxy 4249:Lyman-break 4141:Protogalaxy 4107:Disc galaxy 3064:: A102–21. 2656:: 606–611. 2517:: 803–845. 2230:: 111–130. 2130:(3): 3111. 805:Seyfert II 625:OVV quasars 514:cosmic rays 482:synchrotron 460:. The blue 347:theoretical 245:Centaurus A 110:obscuration 5718:Categories 5599:Q0906+6930 5589:Hercules A 5519:Cygnus X-1 5488:White hole 5463:Quasi-star 5416:Preon star 5411:Quark star 5396:Big Bounce 5256:Black star 5214:Derivation 5062:Ergosphere 5018:Properties 4999:Quasi-star 4989:Quark star 4900:Radio-Loud 4788:Primordial 4778:Kugelblitz 4504:Polar-ring 4349:Red nugget 4291:faint blue 4151:Spiral arm 4006:spheroidal 3996:elliptical 3979:Magellanic 3964:flocculent 3932:Lenticular 3919:Morphology 3811:1709.09651 3747:2201.05603 3687:1701.08647 3680:(2): 110. 3336:(4): 557. 2807:: 23–27P. 2189:(1): 5–8. 2137:1605.07189 2088:1707.07134 1656:. p.  1618:(6): 106. 1175:References 658:Excess of 537:red shifts 517:(see also 470:collimated 458:galaxy M87 454:light-year 452:of a 5000- 371:Solar mass 241:Messier 87 186:Messier 87 178:Messier 81 5684:Astronomy 5624:AT2018hyz 5271:Gravastar 5261:Dark star 5094:Microlens 4967:Hypernova 4962:Micronova 4957:Supernova 4911:Formation 4439:Satellite 4434:Jellyfish 4422:collision 4359:Dead disk 4276:Starburst 4191:Markarian 4063:Structure 4030:Irregular 4001:irregular 3852:205260182 3836:0028-0836 3782:245986416 3774:0067-0049 3598:118512526 3573:1309.2277 3566:(1): 44. 3545:119199124 3520:1211.0528 3492:118938514 3343:1210.2716 3290:1202.1776 3235:1312.4922 3203:118648122 3125:1202.0062 3096:119309875 3071:1101.4132 2929:119209693 2904:1101.4132 2105:0935-4956 1555:1466–1467 1363:119741164 670:Variable 612:emission. 367:accretion 308:Milky Way 84:accretion 76:gamma ray 56:microwave 5647:Category 5534:A0620-00 5493:Wormhole 5391:Big Bang 5291:Fuzzball 5174:ER = EPR 5040:Theorems 4838:Electron 4833:Extremal 4763:Rotating 4671:Category 4560:See also 4484:Galaxies 4211:X-shaped 4042:Peculiar 3984:unbarred 3942:unbarred 3911:Galaxies 3844:28959966 3714:67809219 3655:17282005 3435:15568552 3262:52024863 3043:23313718 3035:10655166 2782:15122568 2592:45906162 2549:17198955 2426:14632376 2056:18890265 1942:15911138 1803:18953602 1539:(1997). 1129:See also 1118:redshift 925:no/faint 484:and the 292:redshift 249:Cygnus A 239:such as 222:NGC 7469 218:NGC 3516 214:NGC 4151 210:NGC 1068 174:NGC 1068 60:infrared 5670:Portals 5657:Commons 5619:P172+18 5574:TON 618 5512:Notable 5364:Related 5350:Quasars 5345:Nearest 5305:Analogs 5235:Hayward 5203:Metrics 4848:Stellar 4773:Virtual 4768:Charged 4737:Outline 4531:Quasars 4499:Nearest 4494:Largest 4395:cluster 4228:Seyfert 3816:Bibcode 3752:Bibcode 3692:Bibcode 3635:Bibcode 3578:Bibcode 3525:Bibcode 3472:Bibcode 3415:Bibcode 3375:Bibcode 3373:: 683. 3348:Bibcode 3315:5037009 3295:Bibcode 3240:Bibcode 3183:Bibcode 3150:5037595 3130:Bibcode 3076:Bibcode 3015:Bibcode 2982:1972144 2962:Bibcode 2909:Bibcode 2876:2753150 2856:Bibcode 2809:Bibcode 2762:Bibcode 2729:9509179 2707:Bibcode 2658:Bibcode 2635:4347023 2615:Bibcode 2572:Bibcode 2529:Bibcode 2484:Bibcode 2449:Bibcode 2404:Bibcode 2364:4308057 2344:Bibcode 2296:Bibcode 2269:Bibcode 2267:: 201. 2232:Bibcode 2191:Bibcode 2164:3353122 2142:Bibcode 2034:Bibcode 1995:8998323 1975:Bibcode 1963:: L13. 1922:Bibcode 1889:4164497 1869:Bibcode 1846:4164497 1826:Bibcode 1783:Bibcode 1750:4193798 1730:Bibcode 1707:4186361 1685:Bibcode 1648:(ed.). 1511:Bibcode 1509:: 206. 1488:4073162 1466:Bibcode 1427:Bibcode 1390:Bibcode 1341:Bibcode 1300:Bibcode 1269:Bibcode 1242:Bibcode 1197:Bibcode 768:Seyfert 735:unknown 690:Far-IR 661:Strong 655:X-rays 648:nuclei 646:Active 617:Blazars 593:quasars 416:photons 147:Quasar 139:History 125:quasars 64:optical 5594:3C 273 5584:NeVe 1 5564:OJ 287 5286:Q star 5152:Issues 4885:Blazar 4875:Quasar 4683:Portal 4514:Spiral 4417:merger 4196:Quasar 4181:Blazar 4119:corona 4035:barred 4011:spiral 3959:barred 3954:anemic 3949:Spiral 3937:barred 3850:  3842:  3834:  3798:Nature 3780:  3772:  3712:  3653:  3596:  3543:  3490:  3433:  3313:  3260:  3201:  3148:  3094:  3041:  3033:  2980:  2927:  2874:  2780:  2727:  2633:  2607:Nature 2590:  2564:Nature 2547:  2424:  2362:  2294:: 88. 2162:  2103:  2054:  1993:  1940:  1887:  1861:Nature 1844:  1818:Nature 1801:  1748:  1722:Nature 1705:  1677:Nature 1486:  1458:Nature 1425:: 28. 1388:: 33. 1361:  1267:: 59. 1195:: 71. 1144:Quasar 915:BL Lac 878:Blazar 841:Quasar 681:Narrow 673:Radio 663:radio 478:parsec 409:corona 361:Models 296:3C 273 220:, and 200:, and 155:. The 149:3C 273 129:blazar 40:galaxy 5696:Stars 5327:Lists 4828:Micro 4798:Rogue 4746:Types 4551:Voids 4476:Lists 4454:Walls 4390:group 4375:Field 4269:ELIRG 4264:HLIRG 4259:ULIRG 4216:DRAGN 4206:Radio 4186:LINER 4080:Bulge 4052:Polar 3848:S2CID 3806:arXiv 3778:S2CID 3742:arXiv 3710:S2CID 3682:arXiv 3651:S2CID 3625:arXiv 3594:S2CID 3568:arXiv 3541:S2CID 3515:arXiv 3488:S2CID 3462:arXiv 3431:S2CID 3405:arXiv 3338:arXiv 3311:S2CID 3285:arXiv 3258:S2CID 3230:arXiv 3199:S2CID 3173:arXiv 3146:S2CID 3120:arXiv 3092:S2CID 3066:arXiv 3039:S2CID 3005:arXiv 2978:S2CID 2952:arXiv 2925:S2CID 2899:arXiv 2872:S2CID 2846:arXiv 2778:S2CID 2752:arXiv 2725:S2CID 2697:arXiv 2631:S2CID 2588:S2CID 2545:S2CID 2519:arXiv 2422:S2CID 2394:arXiv 2360:S2CID 2334:arXiv 2160:S2CID 2132:arXiv 2083:arXiv 2081:(1). 2052:S2CID 2024:arXiv 1991:S2CID 1965:arXiv 1938:S2CID 1912:arXiv 1885:S2CID 1842:S2CID 1799:S2CID 1773:arXiv 1746:S2CID 1703:S2CID 1553:(4): 1484:S2CID 1359:S2CID 1240:: 9. 1051:torus 872:some 731:LINER 684:Broad 675:loud 667:Jets 312:3C 48 72:X-ray 52:radio 48:stars 5296:Geon 5220:Kerr 4821:Size 4509:Ring 4114:Halo 4102:Disc 4047:Ring 3927:Disc 3840:PMID 3832:ISSN 3770:ISSN 3031:PMID 2101:ISSN 1020:yes 1005:some 1002:some 999:some 996:some 983:yes 946:yes 909:yes 888:some 866:some 863:some 854:some 820:some 817:some 785:some 782:some 744:weak 741:weak 738:weak 707:weak 701:weak 623:and 428:dust 426:and 345:and 325:and 255:and 243:and 176:and 127:. A 118:jets 114:dust 74:and 4890:OVV 4880:LQG 4286:pea 4075:Bar 3824:doi 3802:549 3760:doi 3738:261 3700:doi 3678:837 3643:doi 3621:572 3586:doi 3564:789 3533:doi 3480:doi 3458:639 3423:doi 3401:513 3371:293 3303:doi 3281:747 3248:doi 3226:438 3191:doi 3169:590 3138:doi 3116:746 3084:doi 3062:532 3023:doi 3001:530 2970:doi 2948:648 2917:doi 2895:730 2864:doi 2842:554 2817:doi 2805:204 2770:doi 2748:647 2715:doi 2693:366 2666:doi 2654:336 2623:doi 2611:331 2580:doi 2568:331 2537:doi 2515:107 2492:doi 2457:doi 2445:220 2412:doi 2390:370 2352:doi 2330:394 2304:doi 2292:451 2240:doi 2228:188 2199:doi 2187:452 2150:doi 2128:461 2093:doi 2042:doi 2020:277 1983:doi 1961:428 1930:doi 1908:589 1877:doi 1865:223 1834:doi 1822:223 1791:doi 1769:111 1738:doi 1726:197 1693:doi 1681:197 1658:253 1632:PDF 1620:doi 1519:doi 1507:119 1474:doi 1462:164 1435:doi 1398:doi 1349:doi 1308:doi 1213:hdl 1205:doi 1017:yes 1014:yes 1011:yes 1008:yes 993:yes 980:yes 977:yes 974:yes 968:yes 965:yes 956:yes 952:OVV 943:yes 940:yes 937:yes 931:yes 928:yes 919:yes 906:yes 903:yes 900:yes 894:yes 891:yes 882:yes 869:yes 860:yes 857:yes 851:yes 848:yes 845:yes 835:no 832:yes 826:few 823:yes 811:yes 808:yes 800:no 797:yes 791:few 788:yes 779:yes 776:yes 773:yes 762:no 725:no 619:" ( 298:by 188:by 184:in 182:jet 168:of 36:AGN 30:An 5720:: 4023:cD 3846:. 3838:. 3830:. 3822:. 3814:. 3800:. 3776:. 3768:. 3758:. 3750:. 3736:. 3732:. 3708:. 3698:. 3690:. 3676:. 3672:. 3649:. 3641:. 3633:. 3619:. 3592:. 3584:. 3576:. 3562:. 3539:. 3531:. 3523:. 3511:10 3509:. 3486:. 3478:. 3470:. 3456:. 3429:. 3421:. 3413:. 3399:. 3369:. 3346:. 3334:27 3332:. 3309:. 3301:. 3293:. 3279:. 3256:. 3246:. 3238:. 3224:. 3220:. 3197:. 3189:. 3181:. 3167:. 3144:. 3136:. 3128:. 3114:. 3090:. 3082:. 3074:. 3060:. 3037:. 3029:. 3021:. 3013:. 2999:. 2976:. 2968:. 2960:. 2946:. 2923:. 2915:. 2907:. 2893:. 2870:. 2862:. 2854:. 2840:. 2815:. 2803:. 2799:. 2776:. 2768:. 2760:. 2746:. 2723:. 2713:. 2705:. 2691:. 2687:. 2664:. 2652:. 2629:. 2621:. 2609:. 2586:. 2578:. 2566:. 2543:. 2535:. 2527:. 2513:. 2490:. 2480:31 2478:. 2455:. 2443:. 2420:. 2410:. 2402:. 2388:. 2384:. 2372:^ 2358:. 2350:. 2342:. 2328:. 2316:^ 2302:. 2290:. 2265:54 2263:. 2238:. 2226:. 2222:. 2197:. 2185:. 2181:. 2158:. 2148:. 2140:. 2126:. 2122:. 2099:. 2091:. 2079:25 2077:. 2073:. 2050:. 2040:. 2032:. 2018:. 2012:. 1989:. 1981:. 1973:. 1959:. 1936:. 1928:. 1920:. 1906:. 1883:. 1875:. 1863:. 1840:. 1832:. 1820:. 1797:. 1789:. 1781:. 1767:. 1744:. 1736:. 1724:. 1701:. 1691:. 1679:. 1675:. 1652:. 1616:50 1614:. 1608:. 1585:. 1579:. 1551:29 1549:. 1543:. 1517:. 1505:. 1482:. 1472:. 1460:. 1456:. 1433:. 1423:97 1421:. 1396:. 1386:19 1384:. 1380:. 1357:. 1347:. 1337:46 1335:. 1331:. 1306:. 1296:44 1294:. 1290:. 1263:. 1238:13 1236:. 1211:. 1203:. 1191:. 971:no 959:no 934:no 922:no 897:no 885:no 829:no 814:no 794:no 770:I 759:no 756:no 753:no 750:no 747:no 722:no 719:no 716:no 713:no 710:no 704:no 698:no 687:UV 523:. 357:. 216:, 212:, 196:, 135:. 120:. 101:. 70:, 66:, 62:, 58:, 54:, 5672:: 5216:) 5212:( 4718:e 4711:t 4704:v 3903:e 3896:t 3889:v 3854:. 3826:: 3818:: 3808:: 3784:. 3762:: 3754:: 3744:: 3716:. 3702:: 3694:: 3684:: 3657:. 3645:: 3637:: 3627:: 3600:. 3588:: 3580:: 3570:: 3547:. 3535:: 3527:: 3517:: 3494:. 3482:: 3474:: 3464:: 3437:. 3425:: 3417:: 3407:: 3381:. 3377:: 3354:. 3350:: 3340:: 3317:. 3305:: 3297:: 3287:: 3264:. 3250:: 3242:: 3232:: 3205:. 3193:: 3185:: 3175:: 3152:. 3140:: 3132:: 3122:: 3098:. 3086:: 3078:: 3068:: 3045:. 3025:: 3017:: 3007:: 2984:. 2972:: 2964:: 2954:: 2931:. 2919:: 2911:: 2901:: 2878:. 2866:: 2858:: 2848:: 2825:. 2819:: 2811:: 2784:. 2772:: 2764:: 2754:: 2731:. 2717:: 2709:: 2699:: 2672:. 2668:: 2660:: 2637:. 2625:: 2617:: 2594:. 2582:: 2574:: 2551:. 2539:: 2531:: 2521:: 2498:. 2494:: 2486:: 2463:. 2459:: 2451:: 2428:. 2414:: 2406:: 2396:: 2366:. 2354:: 2346:: 2336:: 2310:. 2306:: 2298:: 2275:. 2271:: 2248:. 2242:: 2234:: 2207:. 2201:: 2193:: 2166:. 2152:: 2144:: 2134:: 2107:. 2095:: 2085:: 2058:. 2044:: 2036:: 2026:: 1997:. 1985:: 1977:: 1967:: 1944:. 1932:: 1924:: 1914:: 1891:. 1879:: 1871:: 1848:. 1836:: 1828:: 1805:. 1793:: 1785:: 1775:: 1752:. 1740:: 1732:: 1709:. 1695:: 1687:: 1660:. 1634:) 1630:( 1628:. 1622:: 1525:. 1521:: 1513:: 1490:. 1476:: 1468:: 1441:. 1437:: 1429:: 1406:. 1400:: 1392:: 1365:. 1351:: 1343:: 1316:. 1310:: 1302:: 1275:. 1271:: 1265:3 1248:. 1244:: 1221:. 1215:: 1207:: 1199:: 1193:5 615:" 556:. 549:, 539:, 521:) 34:( 20:)

Index

Broad-line region
galaxy
electromagnetic spectrum
stars
radio
microwave
infrared
optical
ultra-violet
X-ray
gamma ray
accretion
supermassive black hole
electromagnetic radiation
models of the cosmos
accretion disk
obscuration
dust
jets
quasars
blazar
relativistic beaming

3C 273
Hubble Space Telescope
relativistic jet
diffraction spikes
emission lines
NGC 1068
Messier 81

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑