Knowledge

Hydrogen production

Source 📝

701: 2142:(ATR) with integrated capture of carbon dioxide allows higher capture rates at satisfactory energy efficiencies and life cycle assessments have shown lower greenhouse gas emissions for such plants compared to SMRs with carbon dioxide capture. Application of ATR technology with integrated capture of carbon dioxide in Europe has been assessed to have a lower greenhouse gas footprint than burning natural gas, e.g. for the H21 project with a reported reduction of 68% due to a reduced carbon dioxide intensity of natural gas combined with a more suitable reactor type for capture of carbon dioxide. 686:. The lower the energy used by a generator, the higher would be its efficiency; a 100%-efficient electrolyser would consume 39.4 kilowatt-hours per kilogram (142 MJ/kg) of hydrogen, 12,749 joules per litre (12.75 MJ/m). Practical electrolysis typically uses a rotating electrolyser, where centrifugal force helps separate gas bubbles from water. Such an electrolyser at 15 bar pressure may consume 50 kilowatt-hours per kilogram (180 MJ/kg), and a further 15 kilowatt-hours (54 MJ) if the hydrogen is compressed for use in hydrogen cars. 585: 2081: 1601: 1509: 1546: 1645: 734:. The thermodynamic energy required for hydrogen by electrolysis translates to 33 kWh/kg, which is higher than steam reforming with carbon capture and higher than methane pyrolysis. One of the advantages of electrolysis over hydrogen from steam methane reforming (SMR) is that the hydrogen can be produced on-site, meaning that the costly process of delivery via truck or pipeline is avoided. 1891:. William Ayers at Energy Conversion Devices demonstrated and patented the first multijunction high efficiency photoelectrochemical system for direct splitting of water in 1983. This group demonstrated direct water splitting now referred to as an "artificial leaf" or "wireless solar water splitting" with a low cost thin film amorphous silicon multijunction sheet immersed directly in water. 390:(SMR), which uses natural gas. The energy content of the produced hydrogen is around 74% of the energy content of the original fuel, as some energy is lost as excess heat during production. In general, steam reforming emits carbon dioxide, a greenhouse gas, and is known as gray hydrogen. If the carbon dioxide is captured and stored, the hydrogen produced is known as blue hydrogen. 149: 1865:
potentially less energy is required to produce hydrogen. Nuclear heat could be used to split hydrogen from water. High temperature (950–1000 Â°C) gas cooled nuclear reactors have the potential to split hydrogen from water by thermochemical means using nuclear heat. High-temperature electrolysis has been demonstrated in a laboratory, at 108 
1435:/mol glucose can be produced. Sugars are convertible to volatile fatty acids (VFAs) and alcohols as by-products during this process. Photo fermentative bacteria are able to generate hydrogen from VFAs. Hence, metabolites formed in dark fermentation can be used as feedstock in photo fermentation to enhance the overall yield of hydrogen. 1280:(S-I cycle) is a thermochemical cycle processes which generates hydrogen from water with an efficiency of approximately 50%. The sulfur and iodine used in the process are recovered and reused, and not consumed by the process. The cycle can be performed with any source of very high temperatures, approximately 950 Â°C, such as by 570:, low pressure electrolysis of water, or a range of other emerging electrochemical processes such as high temperature electrolysis or carbon assisted electrolysis. However, current best processes for water electrolysis have an effective electrical efficiency of 70-80%, so that producing 1 kg of hydrogen (which has a 608:
reforming). Due to their use of water, a readily available resource, electrolysis and similar water-splitting methods have attracted the interest of the scientific community. With the objective of reducing the cost of hydrogen production, renewable sources of energy have been targeted to allow electrolysis.
2243:
by electrolysis. Although requiring expensive technologies, hydrogen can be cooled, compressed and purified for use in other processes on site or sold to a customer via pipeline, cylinders or trucks. The discovery and development of less expensive methods of production of bulk hydrogen is relevant to
1953:
which uses sunlight to obtain the required 800 to 1,200 Â°C to heat water. Hydrosol II has been in operation since 2008. The design of this 100-kilowatt pilot plant is based on a modular concept. As a result, it may be possible that this technology could be readily scaled up to the megawatt range
607:
Water electrolysis can operate at 50–80 Â°C (120–180 Â°F), while steam methane reforming requires temperatures at 700–1,100 Â°C (1,300–2,000 Â°F). The difference between the two methods is the primary energy used; either electricity (for electrolysis) or natural gas (for steam methane
577:
In parts of the world, steam methane reforming is between $ 1–3/kg on average excluding hydrogen gas pressurization cost. This makes production of hydrogen via electrolysis cost competitive in many regions already, as outlined by Nel Hydrogen and others, including an article by the IEA examining the
140:
is bonded to oxygen in water. Manufacturing elemental hydrogen requires the consumption of a hydrogen carrier such as a fossil fuel or water. The former carrier consumes the fossil resource and in the steam methane reforming (SMR) process produces greenhouse gas carbon dioxide. However, in the newer
1426:
Among hydrogen production methods biological routes are potentially less energy intensive. In addition, a wide variety of waste and low-value materials such as agricultural biomass as renewable sources can be utilized to produce hydrogen via biochemical or thermochemical pathways. Nevertheless, at
1908:
A method studied by Thomas Nann and his team at the University of East Anglia consists of a gold electrode covered in layers of indium phosphide (InP) nanoparticles. They introduced an iron-sulfur complex into the layered arrangement, which when submerged in water and irradiated with light under a
1016:
is used. The process of coal gasification uses steam and oxygen to break molecular bonds in coal and form a gaseous mixture of hydrogen and carbon monoxide. Carbon dioxide and pollutants may be more easily removed from gas obtained from coal gasification versus coal combustion. Another method for
721:
The US DOE target price for hydrogen in 2020 is $ 2.30/kg, requiring an electricity cost of $ 0.037/kWh, which is achievable given recent PPA tenders for wind and solar in many regions. The report by IRENA.ORG is an extensive factual report of present-day industrial hydrogen production consuming
1864:
Hydrogen can be generated from energy supplied in the form of heat and electricity through high-temperature electrolysis (HTE). Since some of the energy in HTE is supplied in the form of heat, less of the energy must be converted twice from heat to electricity, and then to hydrogen. Therefore,
712:
As of 2020, the cost of hydrogen by electrolysis is around $ 3–8/kg. Considering the industrial production of hydrogen, and using current best processes for water electrolysis (PEM or alkaline electrolysis) which have an effective electrical efficiency of 70–82%, producing 1 kg of hydrogen
689:
Conventional alkaline electrolysis has an efficiency of about 70%, however advanced alkaline water electrolysers with efficiency of up to 82% are available. Accounting for the use of the higher heat value (because inefficiency via heat can be redirected back into the system to create the steam
1894:
Hydrogen evolved on the front amorphous silicon surface decorated with various catalysts while oxygen evolved off the back metal substrate. A Nafion membrane above the multijunction cell provided a path for ion transport. Their patent also lists a variety of other semiconductor multijunction
1479:
Fermentative hydrogen production can be done using direct biophotolysis by green algae, indirect biophotolysis by cyanobacteria, photo-fermentation by anaerobic photosynthetic bacteria and dark fermentation by anaerobic fermentative bacteria. For example, studies on hydrogen production using
1655:
of methane (natural gas) with a one-step process bubbling methane through a molten metal catalyst is a "no greenhouse gas" approach to produce hydrogen that was demonstrated in laboratory conditions in 2017 and now being tested at larger scales. The process is conducted at high temperatures
1403:
systems. However, if this process is assisted by photocatalysts suspended directly in water instead of using photovoltaic and an electrolytic system the reaction is in just one step, it can be made more efficient. Current systems, however have low performance for commercial implementation.
1430:
Biochemical routes to hydrogen are classified as dark and photo fermentation processes. In dark fermentation, carbohydrates are converted to hydrogen by fermentative microorganisms including strict anaerobe and facultative anaerobic bacteria. A theoretical maximum of 4 mol
4040:
Sebbahi, Seddiq; Nabil, Nouhaila; Alaoui-Belghiti, Amine; Laasri, Said; Rachidi, Samir; Hajjaji, Abdelowahed (2022). "Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis".
5390: 758:
Carbon/hydrocarbon assisted water electrolysis (CAWE) has the potential to offer a less energy intensive, cleaner method of using chemical energy in various sources of carbon, such as low-rank and high sulfur coals, biomass, alcohols and methane (Natural Gas), where pure
2072:
in Mali, producing electricity for the surrounding villages. More discoveries of naturally occurring hydrogen in continental, on-shore geological environments have been made in recent years and open the way to the novel field of natural or native hydrogen, supporting
6830: 1538:, as the latter only uses algae and with the latter, the algae itself generates the hydrogen instantly, where with biocatalysed electrolysis, this happens after running through the microbial fuel cell and a variety of aquatic plants can be used. These include 7051:
Valenti, Giovanni; Boni, Alessandro; Melchionna, Michele; Cargnello, Matteo; Nasi, Lucia; Bertoni, Giovanni; Gorte, Raymond J.; Marcaccio, Massimo; Rapino, Stefania; Bonchio, Marcella; Fornasiero, Paolo; Prato, Maurizio; Paolucci, Francesco (December 2016).
801:
by electrolysis generates a sizable amount of Hydrogen as a byproduct. In the port of Antwerp a 1MW demonstration fuel cell power plant is powered by such byproduct. This unit has been operational since late 2011. The excess hydrogen is often managed with a
834:, resulting in a hydrogen- and carbon monoxide-rich syngas. More hydrogen and carbon dioxide are then obtained from carbon monoxide (and water) via the water-gas shift reaction. Carbon dioxide can be co-fed to lower the hydrogen to carbon monoxide ratio. 742:
In addition to reduce the voltage required for electrolysis via the increasing of the temperature of the electrolysis cell it is also possible to electrochemically consume the oxygen produced in an electrolyser by introducing a fuel (such as carbon/coal,
1899:
technology at universities and the photovoltaic industry. If this process is assisted by photocatalysts suspended directly in water instead of using photovoltaic and an electrolytic system, the reaction is in just one step, which can improve efficiency.
1427:
present hydrogen is produced mainly from fossil fuels, in particular, natural gas which are non-renewable sources. Hydrogen is not only the cleanest fuel but also widely used in a number of industries, especially fertilizer, petrochemical and food ones.
5669: 6404: 7451:
Larin, Nikolay; Zgonnik, Viacheslav; Rodina, Svetlana; Deville, Eric; Prinzhofer, Alain; Larin, Vladimir N. (September 2015). "Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia".
1855:
is eliminated, the average energy consumption for internal compression is around 3%. European largest (1 400 000 kg/a, High-pressure Electrolysis of water, alkaline technology) hydrogen production plant is operating at Kokkola, Finland.
1773:, to the production of hydrogen. Biological hydrogen can also be produced using feedstocks other than algae, the most common feedstock being waste streams. The process involves bacteria feeding on hydrocarbons and excreting hydrogen and CO 1143:
can be divided into different types based on the pyrolysis temperature, namely low-temperature slow pyrolysis, medium-temperature rapid pyrolysis, and high-temperature flash pyrolysis. The source energy is mainly solar energy, with help of
2068:, and in petroleum refining. Although initially hydrogen gas was thought not to occur naturally in convenient reservoirs, it is now demonstrated that this is not the case; a hydrogen system is currently being exploited near Bourakebougou, 5784:
Ropero-Vega, J.L.; Pedraza-Avella, J.A.; Niño-GĂłmez, M.E. (September 2015). "Hydrogen production by photoelectrolysis of aqueous solutions of phenol using mixed oxide semiconductor films of Bi–Nb–M–O (M=Al, Fe, Ga, In) as photoanodes".
1324:, and water. The generator is small enough to fit a truck and requires only a small amount of electric power, the materials are stable and not combustible, and they do not generate hydrogen until mixed. The method has been in use since 7696:
Antonini, Cristina; Treyer, Karin; Streb, Anne; van der Spek, Mijndert; Bauer, Christian; Mazzotti, Marco (2020). "Hydrogen production from natural gas and biomethane with carbon capture and storage – A techno-environmental analysis".
397:), and water. It is the cheapest source of industrial hydrogen, being the source of nearly 50% of the world's hydrogen. The process consists of heating the gas to 700–1,100 Â°C (1,300–2,000 Â°F) in the presence of steam over a 5943:
Asadi, Nooshin; Karimi Alavijeh, Masih; Zilouei, Hamid (January 2017). "Development of a mathematical methodology to investigate biohydrogen production from regional and national agricultural crop residues: A case study of Iran".
1998:, are under research and in testing phase to produce hydrogen and oxygen from water and heat without using electricity. These processes can be more efficient than high-temperature electrolysis, typical in the range from 35% – 49% 1070:
Injecting appropriate microbes into depleted oil wells allows them to extract hydrogen from the remaining, unrecoverable oil. Since the only inputs are the microbes, production costs are low. The method also produces concentrated
1268:
is used because aside from water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled. If electricity is partially used as an input, the resulting thermochemical cycle is defined as a
2840: 6826: 755:, glycerol, etc.) into the oxygen side of the reactor. This reduces the required electrical energy and has the potential to reduce the cost of hydrogen to less than 40~60% with the remaining energy provided in this manner. 627:(AECs). Traditionally, alkaline electrolysers are cheaper in terms of investment (they generally use nickel catalysts), but less-efficient; PEM electrolysers, conversely, are more expensive (they generally use expensive 7619: 1936:
Very high temperatures are required to dissociate water into hydrogen and oxygen. A catalyst is required to make the process operate at feasible temperatures. Heating the water can be achieved through the use of water
638:
SOECs operate at high temperatures, typically around 800 Â°C (1,500 Â°F). At these high temperatures, a significant amount of the energy required can be provided as thermal energy (heat), and as such is termed
4755:
Lamy, Claude; Devadas, Abirami; Simoes, Mario; Coutanceau, Christophe (2012). "Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC)".
7121:
Navarro Yerga, Rufino M.; Álvarez Galvån, M. Consuelo; del Valle, F.; Villoria de la Mano, José A.; Fierro, José L. G. (22 June 2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation".
717:
of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity. At an electricity cost of $ 0.06/kWh, as set out in the Department of Energy hydrogen production targets for 2015, the hydrogen cost is $ 3/kg.
7830: 5115: 1168:
thermo-chemical cycle for splitting water and high-temperature steam electrolysis (HTSE) were selected as the main processes for nuclear hydrogen production. The S-I cycle follows three chemical reactions:
5703:
Navarro Yerga, Rufino M.; Álvarez Galvån, M. Consuelo; Del Valle, F.; Villoria De La Mano, José A.; Fierro, José L. G. (2009). "Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation".
4969: 5516:
Chukwu, C., Naterer, G. F., Rosen, M. A., "Process Simulation of Nuclear-Produced Hydrogen with a Cu-Cl Cycle", 29th Conference of the Canadian Nuclear Society, Toronto, Ontario, Canada, June 1–4, 2008.
4245: 6396: 1785:
Besides regular electrolysis, electrolysis using microbes is another possibility. With biocatalysed electrolysis, hydrogen is generated after running through the microbial fuel cell and a variety of
1332:
is filled with sodium hydroxide and ferrosilicon, closed, and a controlled amount of water is added; the dissolving of the hydroxide heats the mixture to about 93 Â°C and starts the reaction;
5686: 4482: 581:
A small part (2% in 2019) is produced by electrolysis using electricity and water, consuming approximately 50 to 55 kilowatt-hours of electricity per kilogram of hydrogen produced.
4725:
Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S; Mulder, Roger J (2016). "Electro-catalytic conversion of ethanol in solid electrolyte cells for distributed hydrogen generation".
6679:
Patlolla, Shashank Reddy; Katsu, Kyle; Sharafian, Amir; Wei, Kevin; Herrera, Omar E.; MĂ©rida, Walter (July 2023). "A review of methane pyrolysis technologies for hydrogen production".
5160:
Gemayel, Jimmy El; MacChi, Arturo; Hughes, Robin; Anthony, Edward John (2014). "Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture".
2832: 6796: 1656:(1065 Â°C). Producing 1 kg of hydrogen requires about 18 kWh of electricity for process heat. The pyrolysis of methane can be expressed by the following reaction equation. 654:
PEM electrolysis cells typically operate below 100 Â°C (212 Â°F). These cells have the advantage of being comparatively simple and can be designed to accept widely varying
6516:
Palmer, Clarke; Upham, D. Chester; Smart, Simon; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (January 2020). "Dry reforming of methane catalysed by molten metal alloys".
3725: 2191:
94 million tonnes of grey hydrogen are produced globally using fossil fuels as of 2022, primarily natural gas, and are therefore a significant source of greenhouse gas emissions.
1570:
powder reacts with water to produce hydrogen gas upon contact with water. It reportedly generates hydrogen at 100 percent of the theoretical yield. The process is not economical.
604:
between 70 and 85%. The electrical efficiency of electrolysis is expected to reach 82–86% before 2030, while also maintaining durability as progress in this area continues apace.
2002:
efficiency. Thermochemical production of hydrogen using chemical energy from coal or natural gas is generally not considered, because the direct chemical path is more efficient.
6134:
Strik, David P. B. T. B.; Hamelers (Bert), H. V. M.; Snel, Jan F. H.; Buisman, Cees J. N. (2008). "Green electricity production with living plants and bacteria in a fuel cell".
136:. It is unclear how much molecular hydrogen is available in natural reservoirs, but at least one company specializes in drilling wells to extract hydrogen. Most hydrogen in the 7800: 7733: 6560: 1148:
to decompose water or biomass to produce hydrogen. However, this process has relatively low hydrogen yields and high operating cost. It is not a feasible method for industry.
5219: 1869:(thermal) per kilogram of hydrogen produced, but not at a commercial scale. In addition, this is lower-quality "commercial" grade Hydrogen, unsuitable for use in fuel cells. 516:. This oxidation also provides energy to maintain the reaction. Additional heat required to drive the process is generally supplied by burning some portion of the methane. 4667:
Uhm, Sunghyun; Jeon, Hongrae; Kim, Tae Jin; Lee, Jaeyoung (2012). "Clean hydrogen production from methanol–water solutions via power-saved electrolytic reforming process".
7636: 4180:
Clarke, R.E.; Giddey, S.; Ciacchi, F.T.; Badwal, S.P.S.; Paul, B.; Andrews, J. (2009). "Direct coupling of an electrolyser to a solar PV system for generating hydrogen".
2704: 2517: 1027:
gas made from pyrolysis (oxygen free heating) of coal has about 60% hydrogen, the rest being methane, carbon monoxide, carbon dioxide, ammonia, molecular nitrogen, and
538:
O) into its components oxygen and hydrogen. When the source of energy for water splitting is renewable or low-carbon, the hydrogen produced is sometimes referred to as
6056:
Asadi, Nooshin; Zilouei, Hamid (March 2017). "Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes".
124:. The global hydrogen generation market was fairly valued at US$ 155 billion in 2022, and expected to grow at a compound annual growth rate of 9.3% from 2023 to 2030. 7408:
Prinzhofer, Alain; Tahara Cissé, Cheick Sidy; Diallo, Aliou Boubacar (October 2018). "Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)".
6373: 152:
Illustrating inputs and outputs of steam reforming of natural gas, a process to produce hydrogen. As of 2020, the carbon sequestrastion step is not in commercial use.
7822: 186:. If most of the carbon dioxide emission is captured, it is referred to as blue hydrogen. Hydrogen produced from coal may be referred to as brown or black hydrogen. 6931: 5072: 4412: 3902: 3840: 2983: 592:
Water electrolysis is using electricity to split water into hydrogen and oxygen. As of 2020, less than 0.1% of hydrogen production comes from water electrolysis.
3763: 4888:
Ju, Hyungkuk; Badwal, Sukhvinder; Giddey, Sarbjit (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production".
4354: 7376: 4966: 3271: 79:. Producing green hydrogen is currently more expensive than producing gray hydrogen, and the efficiency of energy conversion is inherently low. Other methods of 4543: 3655: 2540: 2005:
None of the thermochemical hydrogen production processes have been demonstrated at production levels, although several have been demonstrated in laboratories.
1895:
materials for the direct water splitting in addition to amorphous silicon and silicon germanium alloys. Research continues towards developing high-efficiency
5356:
Ping, Zhang; Laijun, Wang; Songzhe, Chen; Jingming, Xu (January 2018). "Progress of nuclear hydrogen production through the iodine–sulfur process in China".
1883:
Using electricity produced by photovoltaic systems offers the cleanest way to produce hydrogen. Water is broken into hydrogen and oxygen by electrolysis – a
7168:
Navarro, R.M.; Del Valle, F.; Villoria de la Mano, J.A.; Álvarez-Galvån, M.C.; Fierro, J.L.G. (2009). "Photocatalytic Water Splitting Under Visible Light".
3691: 4208: 4150: 4073: 1231:
The hydrogen production rate of HTGR with IS cycle is approximately 0.68 kg/s, and the capital cost to build a unit of power plant is $ 100 million.
6966: 6173: 3372: 3141: 1789: 542:. The conversion can be accomplished in several ways, but all methods are currently considered more expensive than fossil-fuel based production methods. 6459:
Upham, D. Chester; Agarwal, Vishal; Khechfe, Alexander; Snodgrass, Zachary R.; Gordon, Michael J.; Metiu, Horia; McFarland, Eric W. (17 November 2017).
2962: 6178: 5519: 3001: 2095:
at scale for a renewable hydrogen economy. Water could be pumped down to hot iron-rich rock to produce hydrogen and the hydrogen could be extracted.
1289: 620: 6136: 2513: 1975: 651:. This has the potential to reduce the overall cost of the hydrogen produced by reducing the amount of electrical energy required for electrolysis. 5448: 4595: 2631: 1690:
Methane pyrolysis technologies are in the early development stages as of 2023. They have numerous obstacles to overcome before commercialization.
33:
gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Most hydrogen is
6015: 1345: 1731:
reactions do not require light energy, so they are capable of constantly producing hydrogen from organic compounds throughout the day and night.
101:
As of 2023, less than 1% of dedicated hydrogen production is low-carbon, i.e. blue hydrogen, green hydrogen, and hydrogen produced from biomass.
6324: 4845:
Ju, H; Badwal, S.P.S; Giddey, S (2018). "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production".
4474: 6591: 2127:
that is 20% greater than burning gas or coal for heat and 60% greater when compared to burning diesel for heat, assuming US up- and mid-stream
1699: 1550: 1535: 1357: 830:
Hydrogen production from natural gas and heavier hydrocarbons is achieved by partial oxidation. A fuel-air or fuel-oxygen mixture is partially
700: 5637: 697:
PEM efficiency is expected to increase to approximately 86% before 2030. Theoretical efficiency for PEM electrolysers is predicted up to 94%.
8035: 7243: 7185: 6864: 6210: 5924: 5768: 3479: 3414: 3237: 7016: 1620:, also called white hydrogen or gold hydrogen, can be extracted from wells in a similar manner as fossil fuels such as oil and natural gas. 7757: 7306: 6995: 6099:
Percival Zhang, Y-H; Sun, Jibin; Zhong, Jian-Jiang (2010). "Biofuel production by in vitro synthetic enzymatic pathway biotransformation".
3786: 7348: 7054:"Co-axial heterostructures integrating palladium/titanium dioxide with carbon nanotubes for efficient electrocatalytic hydrogen evolution" 6804: 5019: 5979:
Tao, Y; Chen, Y; Wu, Y; He, Y; Zhou, Z (2007). "High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose".
4990: 4300: 5232: 4442: 4250: 4100:
Hauch, Anne; Ebbesen, Sune Dalgaard; Jensen, SĂžren HĂžjgaard; Mogensen, Mogens (2008). "Highly efficient high temperature electrolysis".
3717: 3025: 1399:
The conversion of solar energy to hydrogen by means of water splitting process is one of the most interesting ways to achieve clean and
1157: 145:
process no greenhouse gas carbon dioxide is produced. These processes typically require no further energy input beyond the fossil fuel.
7771: 7278: 4620: 2541:"Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options" 45:, the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. When 7023: 6627:"Mathematical modelling and simulation of the thermo-catalytic decomposition of methane for economically improved hydrogen production" 3609: 1562: 5568: 4330: 2374: 2188:
As of 2020, estimated costs of production are $ 1–1.80/kg for grey hydrogen and blue hydrogen, and $ 2.50–6.80 for green hydrogen.
2165:
to produce hydrogen in a steam reformer. Hydrogen fuel, when produced by renewable sources of energy like wind or solar power, is a
679: 6552: 3541:
Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F. (24 September 2014).
5133:
Lee, Woon-Jae; Lee, Yong-Kuk (2001). "Internal Gas Pressure Characteristics Generated during Coal Carbonization in a Coke Oven".
3430:
Dincer, Ibrahim; Acar, Canan (September 2015). "Review and evaluation of hydrogen production methods for better sustainability".
1704: 1453: 1444: 841:
fuel-air mixture or fuel-oxygen is partially combusted in a reformer or partial oxidation reactor. A distinction is made between
4132: 1106:, researchers found bacteria in a naturally occurring high radiation zone. The bacterial community which was dominated by a new 6718: 5305: 4568: 2694: 2505: 1928:
of water to produce hydrogen gas. The company plans to achieve commercial application "as early as possible", not before 2020.
1851:). By pressurising the hydrogen in the electrolyser, through a process known as chemical compression, the need for an external 7580: 6350: 4967:
http://www.nedstack.com/images/stories/news/documents/20120202_Press%20release%20Solvay%20PEM%20Power%20Plant%20start%20up.pdf
2225:, the primary industrial method for the production of synthetic nitrogen fertilizer for growing 47 percent of food worldwide. 1132:
occurs at temperatures too high for usual process piping and equipment resulting in a rather low commercialization potential.
5812:
Low, Jingxiang; Yu, Jiaguo; Jaroniec, Mietek; Wageh, Swelm; Al-Ghamdi, Ahmed A. (May 2017). "Heterojunction Photocatalysts".
3997:
Badwal, Sukhvinder P.S.; Giddey, Sarbjit; Munnings, Christopher (2013). "Hydrogen production via solid electrolytic routes".
2182: 1394: 5486: 1946: 1385:(the conversion of sunlight into hydrogen) barrier. with a hydrogen production rate of 10–12 ml per liter culture per hour. 6365: 5329:
Guoxin, Hu; Hao, Huang (May 2009). "Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent".
5097: 194:
Hydrogen is often referred to by various colors to indicate its origin (perhaps because gray symbolizes "dirty hydrogen").
5250:; Eoin L. Brodie; Terry C. Hazen; Gary L. Andersen; Todd Z. DeSantis; Duane P. Moser; Dave Kershaw; T. C. Onstott (2006). 4459: 2358: 1381:, to the production of hydrogen. It seems that the production is now economically feasible by surpassing the 7–10 percent 1285: 640: 616: 557: 6938: 5076: 416: 8054: 5459:
Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. 2009
3759: 2379: 175:. When derived from natural gas by zero greenhouse emission methane pyrolysis, it is referred to as turquoise hydrogen. 4632:
Giddey, S; Kulkarni, A; Badwal, S.P.S (2015). "Low emission hydrogen generation through carbon assisted electrolysis".
4362: 3296: 8011: 7873: 7372: 5044: 3262: 2893: 2298: 1708: 1382: 159:
water, the latter carrier, requires electrical or heat input, generated from some primary energy source (fossil fuel,
4547: 4519: 3659: 3631: 1062:
S from the sulfur in the coke feed. Gasification is an option for producing hydrogen from almost any carbon source.
5549: 5421: 5404: 2120: 1995: 1878: 1808: 624: 567: 561: 448: 271: 46: 7201:
Nann, Thomas; Ibrahim, Saad K.; Woi, Pei-Meng; Xu, Shu; Ziegler, Jan; Pickett, Christopher J. (22 February 2010).
3959: 1293: 6366:"Researchers develop potentially low-cost, low-emissions technology that can convert methane without forming CO2" 6252: 4786:
Badwal, Sukhvinder P. S; Giddey, Sarbjit S; Munnings, Christopher; Bhatt, Anand I; Hollenkamp, Anthony F (2014).
4154: 3931: 3680: 3077: 2854: 2263: 1938: 1888: 1884: 1592:
are submerged and heated to about 80 Â°C (176 Â°F), causing a chemical reaction which produces hydrogen.
1281: 1036: 997: 6226: 4487:
green hydrogen .. current pricing of around $ 3 to $ 8 a kilogram .. gray hydrogen, which costs as little as $ 1
4219: 4158: 1423:, steam reforming, or biological conversion like biocatalysed electrolysis or fermentative hydrogen production. 3527: 2900: 2124: 2108: 2092: 1624: 1604: 776: 179: 7894:
Castelvecchi, Davide (2022-11-16). "How the hydrogen revolution can help save the planet — and how it can't".
6962: 6183: 3376: 3132: 1786: 1165: 3349: 2783: 7973: 7945: 7594: 5247: 4531:
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
3643:
Efficiency factors for PEM electrolysers up to 94% are predicted, but this is only theoretical at this time.
2954: 1534:, wastewater or plants can be used to generate power. Biocatalysed electrolysis should not be confused with 1473: 1040: 981:). Of the available energy of the feed, approximately 48% is contained in the hydrogen, 40% is contained in 648: 133: 38: 5526: 5469: 2997: 2436: 2048:. Of the available energy of the feed, approximately 48% is contained in the hydrogen, 40% is contained in 7495: 7396: 6277: 5061: 2726: 2369: 2288: 2153:. Two ways of producing hydrogen from renewable energy sources are claimed to be practical. One is to use 1844: 1292:
in Japan. There are other hybrid cycles that use both high temperatures and some electricity, such as the
588:
Illustrating inputs and outputs of electrolysis of water, for production of hydrogen and no greenhouse gas
584: 156: 5907:
HĂ€ussinger, Peter; LohmĂŒller, Reiner; Watson, Allan M. (2011). "Hydrogen, 1. Properties and Occurrence".
2539:
Griffiths, Steve; Sovacool, Benjamin K.; Kim, Jinsoo; Bazilian, Morgan; Uratani, Joao M. (October 2021).
5677:. Steering Committee Meeting and Workshop of APEC Research Network for Advanced Biohydrogen Technology. 5445: 4384: 3812: 2833:"A net-zero world 'would require 306 million tonnes of green hydrogen per year by 2050': IEA | Recharge" 2623: 2364: 2338: 2293: 2185:
made an agreement in January 2022 to supply commercial pink hydrogen in the order of kilograms per day.
2158: 2139: 1987: 1979: 1832: 593: 551: 6035: 1304:
reaction in one of the reaction steps, it operates at 530 Â°C and has an efficiency of 43 percent.
643:. The heat energy can be provided from a number of different sources, including waste industrial heat, 5747:
Navarro, R.M.; Del Valle, F.; Villoria De La Mano, J.A.; Álvarez-Galvån, M.C.; Fierro, J.L.G. (2009).
7903: 7552: 7511: 7461: 7417: 7131: 7065: 6905: 6752: 6688: 6638: 6472: 6295: 6145: 6065: 5988: 5953: 5876: 5821: 5713: 5682: 5593: 5520:"Process Simulation of Nuclear-Based Thermochemical Hydrogen Production with a Copper-Chlorine Cycle" 5365: 5263: 5169: 4897: 4854: 4799: 4641: 4006: 3987:
Hordeski, M. F. Alternative fuels: the future of hydrogen. 171–199 (The Fairmont Press, inc., 2007).
3554: 3439: 3183: 2665: 2591: 2552: 2467: 2214: 1297: 1245: 1240: 973:
company of the same name, for the production of hydrogen and carbon black from liquid hydrocarbons (C
323: 6583: 7844: 6896:
Carmo, M; Fritz D; Mergel J; Stolten D (2013). "A comprehensive review on PEM water electrolysis".
6397:"BASF researchers working on fundamentally new, low-carbon production processes, Methane Pyrolysis" 3470:
Press, Roman J.; Santhanam, K. S. V.; Miri, Massoud J.; Bailey, Alla V.; Takacs, Gerald A. (2008).
3049: 2278: 2240: 1999: 1991: 1983: 1896: 1852: 1836: 1748: 1744: 1724: 1531: 1527: 1521: 1517: 1277: 1001: 663: 644: 486: 405: 7274: 7253: 5644: 3228: 7927: 7477: 7433: 7027: 6987: 6654: 6612: 6533: 6498: 6286: 6161: 5845: 5287: 4913: 4870: 4501:"Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis" 4275: 4127: 4022: 3602:"Chapter 3: Production of Hydrogen. Part 4: Production from electricity by means of electrolysis" 3264:
National hydrogen roadmap: pathways to an economically sustainable hydrogen industry in Australia
3261:
Bruce, S; Temminghoff, M; Hayward, J; Schmidt, E; Munnings, C; Palfreyman, D; Hartley, P (2018).
2485: 2258: 1831:) by means of an electric current being passed through the water. The difference with a standard 1313: 1164:-free nuclear technique to produce hydrogen by splitting water in a large scale. In this method, 1018: 601: 7637:"Air Products to Build Europe’s Largest Blue Hydrogen Plant and Strengthens Long-term Agreement" 7299: 2806: 2060:
As of 2019, hydrogen is mainly used as an industrial feedstock, primarily for the production of
2014: 1942: 955: 817:
with 60% hydrogen by volume. The hydrogen can be extracted from the coke oven gas economically.
7341: 6461:"Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon" 5246:
Li-Hung Lin; Pei-Ling Wang; Douglas Rumble; Johanna Lippmann-Pipke; Erik Boice; Lisa M. Pratt;
5012: 4698:
in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis".
2080: 1600: 8031: 7919: 7801:"World first for nuclear-powered pink hydrogen as commercial deal signed in Sweden | Recharge" 7670: 7581:"The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey" 7224: 7181: 7147: 7091: 6878: 6870: 6860: 6778: 6490: 6351:"The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey" 6206: 6116: 6081: 5920: 5837: 5764: 5748: 5729: 5619: 5564: 5560: 5279: 4827: 4453: 4326: 3582: 3475: 3410: 3354: 3209: 2977: 2872: 2788: 2303: 2273: 2074: 1736: 1732: 1728: 1508: 1465: 1461: 1448: 1013: 986: 612: 256: 167:). Hydrogen produced by electrolysis of water using renewable energy sources such as wind and 142: 104:
In 2020, roughly 87 million tons of hydrogen was produced worldwide for various uses, such as
91: 7823:"A wake-up call on green hydrogen: the amount of wind and solar needed is immense | Recharge" 7275:"DLR Portal – DLR scientists achieve solar hydrogen production in a 100-kilowatt pilot plant" 3102: 1058:
via coal gasification. The produced syngas consists mainly of hydrogen, carbon monoxide and H
1000:
technology for the production of hydrogen, heat and carbon from methane and natural gas in a
7911: 7714: 7706: 7678: 7662: 7654: 7560: 7519: 7469: 7425: 7214: 7173: 7139: 7081: 7073: 6913: 6768: 6760: 6696: 6646: 6525: 6480: 6439: 6303: 6153: 6108: 6073: 5996: 5961: 5912: 5884: 5829: 5794: 5756: 5721: 5609: 5601: 5373: 5338: 5271: 5177: 5142: 4947: 4905: 4862: 4817: 4807: 4765: 4734: 4707: 4676: 4649: 4267: 4259: 4189: 4109: 4082: 4050: 4014: 3882: 3572: 3562: 3447: 3402: 3344: 3334: 3199: 3191: 2933: 2778: 2768: 2673: 2599: 2560: 2475: 2415: 2323: 2318: 2283: 2245: 2200: 2146: 2069: 2049: 1971: 1628: 1617: 1611: 1400: 1349: 1317: 1112: 1028: 982: 963: 691: 233: 164: 95: 76: 64: 5251: 4500: 3601: 3170:
Van de Graaf, Thijs; Overland, Indra; Scholten, Daniel; Westphal, Kirsten (December 2020).
1344: 7779: 5452: 5408: 4973: 4305: 2353: 2333: 2313: 2308: 2132: 2128: 1967: 1921: 1913: 1797: 1793: 1687:
The industrial quality solid carbon may be sold as manufacturing feedstock or landfilled.
1539: 1333: 1329: 1301: 714: 632: 597: 571: 531: 525: 387: 381: 121: 6741:"Analytical approaches to photobiological hydrogen production in unicellular green algae" 5582:"Analytical approaches to photobiological hydrogen production in unicellular green algae" 4136: 3227:
Sansom, Robert; Baxter, Jenifer; Brown, Andy; Hawksworth, Stuart; McCluskey, Ian (2020).
7907: 7556: 7515: 7465: 7421: 7135: 7069: 6909: 6756: 6692: 6642: 6476: 6299: 6149: 6069: 5992: 5957: 5880: 5825: 5717: 5597: 5369: 5267: 5196: 5173: 4901: 4858: 4803: 4694:
Ju, Hyungkuk; Giddey, Sarbjit; Badwal, Sukhvinder P.S (2017). "The role of nanosized SnO
4645: 4010: 3558: 3443: 3187: 2669: 2595: 2556: 2504:
Bonheure, Mike; Vandewalle, Laurien A.; Marin, Guy B.; Van Geem, Kevin M. (March 2021).
2471: 7969: 7086: 7053: 6773: 6740: 5749:"Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development" 5614: 5581: 4822: 4787: 3577: 3542: 3406: 3204: 3171: 2406: 2348: 2343: 2205:
Hydrogen is used for the conversion of heavy petroleum fractions into lighter ones via
2174: 2166: 2088: 1917: 1770: 1567: 1378: 1145: 1051: 803: 628: 539: 217: 172: 59: 7868: 7177: 5760: 4986: 4448:. The Bellona Foundation. p. 20. Archived from the original on 16 September 2013. 8048: 8004: 7931: 7746: 7481: 7437: 7248: 6991: 6658: 6537: 6502: 4917: 4874: 4026: 3508:
CISAP4 4th International Conference on Safety and Environment in the Process Industry
2489: 2328: 2222: 2210: 2206: 2170: 1925: 1584:
CC-HOD (Catalytic Carbon – Hydrogen On Demand) is a low-temperature process in which
1205: 838: 352: 183: 160: 113: 51: 6714: 6165: 5849: 5291: 4769: 4738: 4711: 4279: 4086: 3496: 1284:
systems (CSP) and is regarded as being well suited to the production of hydrogen by
635:, and can therefore be possibly cheaper if the hydrogen production is large enough. 393:
Steam methane reforming (SMR) produces hydrogen from natural gas, mostly methane (CH
7775: 7772:"WSJ News Exclusive: Green Hydrogen Gets a Boost in the U.S. With $ 4 Billion Plant 7640: 7429: 6917: 6650: 6077: 6000: 5965: 5342: 4909: 4866: 4680: 4653: 4193: 3451: 2699: 2162: 2154: 2104: 2029: 2018: 1648:
Illustrating inputs and outputs of methane pyrolysis, a process to produce Hydrogen
1644: 1545: 1420: 1321: 1103: 959: 798: 530:
Methods to produce hydrogen without the use of fossil fuels involve the process of
485:
In a second stage, additional hydrogen is generated through the lower-temperature,
436: 327: 225: 105: 87: 68: 41:. In this process, hydrogen is produced from a chemical reaction between steam and 7565: 7540: 6851:
Janssen, H.; Emonts, B.; Groehn, H. G.; Mai, H.; Reichel, R.; Stolten, D. (2001).
6626: 5916: 6112: 5798: 4596:"Xcel Attracts 'Unprecedented' Low Prices for Solar and Wind Paired With Storage" 4320: 4246:"Process intensification: water electrolysis in a centrifugal acceleration field" 4126:
In the laboratory, water electrolysis can be done with a simple apparatus like a
2678: 2653: 2604: 2579: 7329: 6426:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020).
5493: 4054: 2920:
Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas (October 2020).
2480: 2455: 2268: 1712: 1500:
Diverse enzymatic pathways have been designed to generate hydrogen from sugars.
1416: 1325: 1249: 1129: 889: 810: 752: 658:
inputs, which makes them ideal for use with renewable sources of energy such as
168: 137: 7915: 7719: 7342:"Development of Solar-powered Thermochemical Production of Hydrogen from Water" 6700: 5377: 5181: 4952: 4935: 4071:
Ogden, J.M. (1999). "Prospects for building a hydrogen energy infrastructure".
3787:"Green hydrogen is gaining traction, but still has massive hurdles to overcome" 3236:. London, United Kingdom: The Institution of Engineering and Technology (IET). 3195: 2564: 2420: 2401: 49:
is used to remove a large fraction of these emissions, the product is known as
7524: 7499: 7473: 7203:"Water Splitting by Visible Light: A Nanophotocathode for Hydrogen Production" 6764: 6529: 6308: 6287:
Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology
6281: 5605: 5563:, IstvĂĄn Hargittai, Magdolna Hargittai, p. 261, Imperial College Press (2000) 4322:
Hydrogen Science and Engineering: Materials, Processes, Systems and Technology
4263: 2236: 2229: 2025: 1848: 1840: 1758: 1366: 1117: 1092: 831: 659: 424: 17: 7674: 6874: 6200: 4812: 3760:"How Much Electricity/Water Is Needed to Produce 1 kg of H2 by Electrolysis?" 3567: 7682: 6485: 6460: 5401: 5275: 3321:
Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024).
3230:
Transitioning to hydrogen: assessing the engineering risks and uncertainties
3140:. Berlin, Germany: Federal Ministry for Economic Affairs and Energy (BMWi). 2755:
Hassanpouryouzband, Aliakbar; Wilkinson, Mark; Haszeldine, R Stuart (2024).
1955: 1866: 1652: 1631:. Water could be pumped down to hot iron-rich rock to extract the hydrogen. 1589: 1484:, an anaerobic photosynthetic bacteria, coupled to a hydrogenase donor like 1140: 1107: 1099: 1024: 966: 401: 7923: 7228: 7219: 7202: 7151: 7143: 7095: 6782: 6494: 6444: 6427: 6120: 6085: 5841: 5833: 5733: 5725: 5623: 5283: 4831: 3586: 3358: 3213: 2938: 2921: 2792: 6231:
U.S. Army Combat Capabilities Development Command Army Research Laboratory
4523: 4151:"Nuclear power plants can produce hydrogen to fuel the 'hydrogen economy'" 3887: 3870: 3635: 2232:
for local electricity generation or potentially as a transportation fuel.
1954:
by multiplying the available reactor units and by connecting the plant to
512:(O) atom is stripped from the additional water (steam) to oxidize CO to CO 489:, water-gas shift reaction, performed at about 360 Â°C (680 Â°F): 443:, etc.), one ton of hydrogen produced will also produce 9 to 12 tons of CO 419:, the carbon monoxide reacts with steam to obtain further quantities of H 5678: 5671:
Renewable Energy Technology And Prospect On Biohydrogen Study In Thailand
5402:
IEA Energy Technology Essentials – Hydrogen Production & Distribution
3871:"Hydrogen Production Technologies: Current State and Future Developments" 2695:"In-depth Q&A: Does the world need hydrogen to solve climate change?" 2456:"Is heating homes with hydrogen all but a pipe dream? An evidence review" 2065: 2021:
and hydrogen process (CB&H) is a method, developed in the 1980s by a
1716: 1457: 794: 744: 578:
conditions which could lead to a competitive advantage for electrolysis.
117: 30: 7244:"Panasonic moves closer to home energy self-sufficiency with fuel cells" 7077: 5425: 5252:"Long-Term Sustainability of a High-Energy, Low-Diversity Crustal Biome" 1369:. In the late 1990s it was discovered that if the algae are deprived of 1270: 849:
partial oxidation (CPOX). The chemical reaction takes the general form:
148: 7710: 7397:
https://www.hfpeurope.org/infotools/energyinfos__e/hydrogen/main03.html
7116: 7114: 6882: 4936:"Carbon Neutral Fuels and Chemicals from Standalone Biomass Refineries" 4301:«Coca-Cola-oppskrift» kan gjÞre hydrogen til nytt norsk industrieventyr 3339: 3322: 3172:"The new oil? The geopolitics and international governance of hydrogen" 2773: 2756: 2437:"Hydrogen Is One Answer to Climate Change. Getting It Is the Hard Part" 2218: 2061: 2041: 1761:. In the late 1990s it was discovered that if the algae is deprived of 1412: 1096: 748: 662:. AECs optimally operate at high concentrations of electrolyte (KOH or 655: 440: 251: 109: 84: 42: 6797:"NanoLogix generates energy on-site with bioreactor-produced hydrogen" 6739:
Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (December 2009).
6428:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 6202:
Electricity generation by living plants in a plant microbial fuel cell
5889: 5864: 5470:"Status report 101 – Gas Turbine High Temperature Reactor (GTHTR300C)" 5306:"Dream or Reality? Electrification of the Chemical Process Industries" 5146: 2922:"State of the Art of Hydrogen Production via Pyrolysis of Natural Gas" 2652:
Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023).
2578:
Squadrito, Gaetano; Maggio, Gaetano; Nicita, Agatino (November 2023).
2506:"Dream or Reality? Electrification of the Chemical Process Industries" 7666: 5550:
Report No 40: The ferrosilicon process for the generation of hydrogen
5446:
https://smr.inl.gov/Document.ashx?path=DOCS%2FGCR-Int%2FNHDDELDER.pdf
4929: 4927: 4788:"Emerging electrochemical energy conversion and storage technologies" 4271: 4113: 3543:"Emerging electrochemical energy conversion and storage technologies" 2402:"Recent development of hydrogen and fuel cell technologies: A review" 2045: 2022: 1909:
small electric current, produced hydrogen with an efficiency of 60%.
1820: 1766: 1762: 1720: 1585: 1579: 1374: 1370: 1312:
Ferrosilicon is used by the military to quickly produce hydrogen for
1261: 1055: 970: 814: 772: 694:
are around 80%, or 82% using the most modern alkaline electrolysers.
509: 463: 398: 7500:"New Perspectives in the Industrial Exploration for Native Hydrogen" 7163: 7161: 7108:
William Ayers, US Patent 4,466,869 Photolytic Production of Hydrogen
6282:"New Perspectives in the Industrial Exploration for Native Hydrogen" 6157: 4018: 2727:"Natural Hydrogen: A Potential Clean Energy Source Beneath Our Feet" 1966:
There are more than 352 thermochemical cycles which can be used for
763:
produced can be easily sequestered without the need for separation.
574:
of 143 MJ/kg or about 40 kWh/kg) requires 50–55 kWh of electricity.
7620:"First element in periodic table: Why all the fuss about hydrogen?" 5863:
Djuriơić, Aleksandra B.; He, Yanling; Ng, Alan M. C. (March 2020).
5755:. Advances in Chemical Engineering. Vol. 36. pp. 111–43. 5197:"Oil-eating microbes excrete the world's cheapest "clean" hydrogen" 5487:"JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION: GTHTR300C" 3397:
Velazquez Abad, A.; Dodds, P.E. (2017). "Production of Hydrogen".
2079: 1950: 1812: 1755: 1740: 1643: 1599: 1544: 1507: 1469: 1363: 1343: 788: 699: 666:) and at high temperatures, often near 200 Â°C (392 Â°F). 631:
metal catalysts) but are more efficient and can operate at higher
583: 428: 232:
include hydrogen produced from other low-emission sources such as
147: 75:
include hydrogen produced from other low-emission sources such as
4569:"DOE Technical Targets for Hydrogen Production from Electrolysis" 4355:"Hydrogen from water electrolysis – solutions for sustainability" 3718:"Commentary: Producing industrial hydrogen from renewable energy" 1128:
Water spontaneously dissociates at around 2500 Â°C, but this
775:
by gasification and syngas is further converted into hydrogen by
3791: 1476:
SH2C can be employed to convert some fatty acids into hydrogen.
303: 7845:"How does the energy crisis affect the transition to net zero?" 6988:"Steam heat: researchers gear up for full-scale hydrogen plant" 7170:
Advances in Chemical Engineering - Photocatalytic Technologies
6853:
High-pressure electrolysis, the key technology for efficient H
4413:"Cost reduction and performance increase of PEM electrolysers" 3903:"Cost reduction and performance increase of PEM electrolysers" 3841:"Cost reduction and performance increase of PEM electrolysers" 3071: 3069: 708:
production cost ($ -gge untaxed) at varying natural gas prices
7330:
UNLV Thermochemical cycle automated scoring database (public)
5580:
Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas (2009).
2953:
Sampson2019-02-11T10:48:00+00:00, Joanna (11 February 2019).
2111:. Hydrogen produced by this technology has been described as 1456:
converts organic substrates to hydrogen. A diverse group of
359:
Hydrogen that occurs naturally deep within the Earth's crust
7595:"Executive summary – Global Hydrogen Review 2023 – Analysis" 6553:"The reaction that would give us clean fossil fuels forever" 6227:"Aluminum Based Nanogalvanic Alloys for Hydrogen Generation" 4441:
BjĂžrnar Kruse; Sondre Grinna; Cato Buch (13 February 2002).
1958:
fields (fields of sun-tracking mirrors) of a suitable size.
1530:(electrolysis using microbes) is another possibility. Using 1035:
S). Hydrogen can be separated from other impurities by the
722:
about 53 to 70 kWh per kg could go down to about 45 kWh/kg
690:
required by the catalyst), average working efficiencies for
5073:"KvĂŠrner-process with plasma arc waste disposal technology" 2157:, in which electric power is used to produce hydrogen from 2056:
Extraction of naturally-occurring hydrogen – White Hydrogen
288:
Fossil hydrocarbons, mainly steam reforming of natural gas
4385:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 3813:"ITM – Hydrogen Refuelling Infrastructure – February 2017" 3026:"Can a viable industry emerge from the hydrogen shakeout?" 4209:"Development of water electrolysis in the European Union" 3165: 3163: 3161: 330:
of water, or contributing steam to natural gas reforming
5865:"Visible-light photocatalysts: Prospects and challenges" 1043:
have carried out production of hydrogen by this method.
996:
A variation of this process was presented in 2009 using
674:
Efficiency of modern hydrogen generators is measured by
7734:"Facts on low-carbon hydrogen – A European perspective" 4781: 4779: 3999:
Wiley Interdisciplinary Reviews: Energy and Environment
3869:
Kalamaras, Christos M.; Efstathiou, Angelos M. (2013).
3681:"Wide Spread Adaption of Competitive Hydrogen Solution" 2868: 7643:
press release, November 6, 2023. Retrieved 2023-11-14.
4518:
BjĂžrnar Kruse; Sondre Grinna; Cato Buch (2002-02-13).
3630:
BjĂžrnar Kruse; Sondre Grinna; Cato Buch (2002-02-13).
2998:"Brown coal the hydrogen economy stepping stone | ECT" 4544:"high-rate and high efficiency 3D water electrolysis" 3656:"high-rate and high efficiency 3D water electrolysis" 2855:"Global Hydrogen Generation Market Size Report, 2030" 1616:
Hydrogen is also present naturally underground. This
1549:
Nano-galvanic aluminum-based powder developed by the
1415:
and waste streams can in principle be converted into
596:
is 70–80% efficient (a 20–30% conversion loss) while
423:. The WGSR also requires a catalyst, typically over 6859:. HYPOTHESIS IV. Kluwer Academic. pp. 172–177. 2209:. It is also used in other processes including the 2173:
via electrolysis is sometimes viewed as a subset of
2115:when emissions are released to the atmosphere, and 1017:conversion is low-temperature and high-temperature 783:
Hydrogen as a byproduct of other chemical processes
8003: 5561:Candid science: conversations with famous chemists 4750: 4748: 3528:"HFCIT Hydrogen Production: Natural Gas Reforming" 3295:Department of Earth Sciences (12 September 2022). 2693:Evans, Simon; Gabbatiss, Josh (30 November 2020). 2123:(CCS). Blue hydrogen has been estimated to have a 7974:"How many people does synthetic fertilizer feed?" 7657:(12 August 2021). "How green is blue hydrogen?". 5938: 5936: 5668:Jenvanitpanjakul, Peesamai (February 3–4, 2010). 5013:"Production of Liquefied Hydrogen Sourced by COG" 4987:"Different Gases from Steel Production Processes" 4475:"Hydrogen Is a Trillion Dollar Bet on the Future" 4207:Luca Bertuccioli; et al. (7 February 2014). 4133:"Electrolysis of water and the concept of charge" 3350:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d 2784:20.500.11820/b23e204c-744e-44f6-8cf5-b6761775260d 2400:Fan, Lixin; Tu, Zhengkai; Chan, Siew Hwa (2021). 1811:is the electrolysis of water by decomposition of 1623:White hydrogen could be found or produced in the 342:Sometimes understood to mean solar photovoltaics 7541:"Natural hydrogen the fuel of the 21 st century" 5422:"HTTR High Temperature engineering Test Reactor" 5221:An Introduction to Radiation Chemistry Chapter 7 4505:HyWeb: Knowledge – Hydrogen in the Energy Sector 4216:Client Fuel Cells and Hydrogen Joint Undertaking 3606:HyWeb: Knowledge – Hydrogen in the Energy Sector 3497:"Hydrogen Production via Steam Reforming with CO 3323:"Hydrogen energy futures – foraging or farming?" 2757:"Hydrogen energy futures – foraging or farming?" 1800:, cordgrass, rice, tomatoes, lupines, and algae 1542:, cordgrass, rice, tomatoes, lupines and algae. 1091:Nuclear radiation can break water bonds through 6715:"Hydrogen production from organic solid matter" 3932:"Report and Financial Statements 30 April 2016" 3373:"Actual Worldwide Hydrogen Production from ..." 3301:Department of Earth Sciences, Oxford University 2135:(SMR) retrofitted with carbon dioxide capture. 1924:that can absorb 57% of sunlight to support the 1260:reactions to split water into its hydrogen and 676:energy consumed per standard volume of hydrogen 408:forms carbon monoxide and molecular hydrogen (H 308:Via coal gasification or in a suitable reactor 224:In most definitions, renewable electricity via 7816: 7814: 5909:Ullmann's Encyclopedia of Industrial Chemistry 5234:Nuclear Hydrogen Production Handbook Chapter 8 4499:Werner Zittel; Reinhold Wurster (1996-07-08). 3600:Werner Zittel; Reinhold Wurster (1996-07-08). 362:Obtained by mining; also referred to as white 302:Fossil hydrocarbons: brown (lignite) or black 7539:Truche, Laurent; Bazarkina, Elena F. (2019). 6827:"Power from plants using microbial fuel cell" 6584:"Hydrogen from methane without CO2 emissions" 5391:Producing hydrogen: The Thermochemical cycles 4066: 4064: 1970:, around a dozen of these cycles such as the 837:The partial oxidation reaction occurs when a 546:Electrolysis of water – green, pink or yellow 8: 8026:Francesco Calise; et al., eds. (2019). 6253:"Army discovery may offer new energy source" 6024:using milk plasma as fermentative substrate" 3960:"Hydrogen Production: Natural Gas Reforming" 3126: 3124: 3122: 1739:because it only proceeds in the presence of 1468:because it only proceeds in the presence of 5902: 5900: 4422:. Fuel Cells and Hydrogen Joint Undertaking 4074:Annual Review of Energy and the Environment 3983: 3981: 3850:. Fuel Cells and Hydrogen Joint Undertaking 3375:Arno A Evers. December 2008. Archived from 2982:: CS1 maint: numeric names: authors list ( 2750: 2748: 2746: 2435:Reed, Stanley; Ewing, Jack (13 July 2021). 454:For this process, high temperature steam (H 27:Industrial production of molecular hydrogen 7786:, December 8, 2022. Retrieved 2023-11-14. 7774:: The planned factory, a joint venture by 4934:Sasidhar, Nallapaneni (30 November 2023). 3912:. Fuel Cell and Hydrogen Joint Undertaking 1754:Biological hydrogen can be produced in an 1362:Biological hydrogen can be produced in an 1158:high-temperature gas-cooled reactor (HTGR) 1012:For the production of hydrogen from coal, 228:of water. Less frequently, definitions of 198:Colors that refer to method of production 71:of water. Less frequently, definitions of 63:is usually understood to be produced from 7718: 7564: 7523: 7218: 7085: 6772: 6484: 6443: 6307: 6179:Wageningen University and Research Centre 6014:Rajanandam, Brijesh; Kiran, Siva (2011). 5888: 5613: 5122:. U.S. Energy Information Administration. 4951: 4940:Indian Journal of Environment Engineering 4821: 4811: 3886: 3576: 3566: 3465: 3463: 3461: 3348: 3338: 3203: 2937: 2782: 2772: 2677: 2603: 2479: 2419: 1751:to produce hydrogen from organic matter. 1723:systems involving three steps similar to 1290:High-temperature engineering test reactor 190:Classification based on production method 132:Molecular hydrogen was discovered in the 7410:International Journal of Hydrogen Energy 6681:Renewable and Sustainable Energy Reviews 6631:International Journal of Hydrogen Energy 6137:International Journal of Energy Research 6016:"Optimization of hydrogen production by 5981:International Journal of Hydrogen Energy 5946:International Journal of Hydrogen Energy 5358:Renewable and Sustainable Energy Reviews 4634:International Journal of Hydrogen Energy 4522:. The Bellona Foundation. Archived from 4359:thyssenkrupp-uhde-chlorine-engineers.com 4182:International Journal of Hydrogen Energy 3634:. The Bellona Foundation. Archived from 3530:. U.S. Department of Energy. 2008-12-15. 3432:International Journal of Hydrogen Energy 3399:Encyclopedia of Sustainable Technologies 2514:American Institute of Chemical Engineers 1976:cerium(IV) oxide-cerium(III) oxide cycle 196: 7827:Recharge | Latest renewable energy news 7805:Recharge | Latest renewable energy news 7207:Angewandte Chemie International Edition 6963:"Finland exporting TEN-T fuel stations" 2837:Recharge | Latest renewable energy news 2392: 1472:. For example, photo-fermentation with 1288:, and as such, is being studied in the 1054:can also be converted to hydrogen-rich 386:Hydrogen is industrially produced from 5098:"Emissions Advantages of Gasification" 4485:from the original on 2 December 2020. 4451: 4325:. John Wiley & Sons. p. 898. 3746: 3474:. John Wiley & Sons. p. 249. 3103:"What potential for natural hydrogen?" 2975: 2028:, for the production of hydrogen from 1765:it will switch from the production of 1700:Biological hydrogen production (Algae) 1373:it will switch from the production of 1358:Biological hydrogen production (Algae) 462:) in an endothermic reaction to yield 7869:"Hydrogen – Fuels & Technologies" 7736:, ZEP Oct 2021. Confirmed 2023-12-12. 7242:Yamamura, Tetsushi (August 2, 2015). 6205:(PhD Thesis). Wageningen University. 5102:National Energy Technology Laboratory 4244:L. Lao; C. Ramshaw; H. Yeung (2011). 3632:"Hydrogen – Status and Possibilities" 3020: 3018: 2624:"So, What Exactly Is Green Hydrogen?" 1945:is a 100-kilowatt pilot plant at the 1083:that could in principle be captured. 962:and hydrogen process (CB&H) is a 247: 7: 7758:National Renewable Energy Laboratory 6803:. September 20, 2007. Archived from 6594:from the original on 21 October 2020 6563:from the original on 26 October 2020 6407:from the original on 19 October 2020 6376:from the original on 19 October 2020 5025:from the original on 8 February 2021 3608:. Ludwig-Bölkow-Systemtechnik GmbH. 3176:Energy Research & Social Science 2707:from the original on 1 December 2020 2617: 2615: 2545:Energy Research & Social Science 2119:when emissions are captured through 1873:Photoelectrochemical water splitting 969:method, developed in the 1980s by a 534:, or splitting the water molecule (H 6582:Karlsruhe Institute of Technology. 4520:"Hydrogen—Status and Possibilities" 4507:. Ludwig-Bölkow-Systemtechnik GmbH. 4473:Fickling, David (2 December 2020). 4443:"Hydrogen—Status and Possibilities" 4299:Stensvold, Tore (26 January 2016). 4251:Journal of Applied Electrochemistry 3472:Introduction to hydrogen Technology 2284:Hydrogen economy § Color codes 1711:conversion of organic substrate to 1336:, hydrogen and steam are produced. 7799:Collins, Leigh (25 January 2022). 7172:. Vol. 36. pp. 111–143. 4993:from the original on 27 March 2016 3728:from the original on 22 April 2018 3407:10.1016/B978-0-12-409548-9.10117-4 2955:"Blue hydrogen for a green future" 2454:Rosenow, Jan (27 September 2022). 2091:could be found or produced in the 1887:(PEC) process which is also named 1563:Aluminum based nanogalvanic alloys 1557:Nanogalvanic aluminum alloy powder 813:in steel production is similar to 621:polymer electrolyte membrane cells 435:. Depending on the quality of the 356: 339: 317: 299: 285: 267: 25: 7833:from the original on 4 June 2021. 7618:Hessler, Uwe (December 6, 2020). 6372:. American Institute of Physics. 6028:Journal of Biochemical Technology 5424:. Httr.jaea.go.jp. Archived from 3785:Petrova, Magdalena (2020-12-04). 3766:from the original on 17 June 2020 2520:from the original on 17 July 2021 2177:, but can also be referred to as 1715:manifested by a diverse group of 1286:high-temperature nuclear reactors 892:and coal, assuming compositions C 680:standard temperature and pressure 7821:Collins, Leigh (19 March 2020). 7659:Energy Science & Engineering 6251:McNally, David (July 25, 2017). 6101:Current Opinion in Biotechnology 4546:. Grid-shift.com. Archived from 4157:. March 25, 2012. Archived from 3658:. Grid-shift.com. Archived from 2843:from the original on 2021-05-21. 2813:. 10 July 2023. "Energy" section 2361:(partly for hydrogen production) 2149:sources is often referred to as 1904:Photoelectrocatalytic production 1705:Fermentative hydrogen production 1488:, are reported in literature. 1454:Fermentative hydrogen production 1445:fermentative hydrogen production 1439:Fermentative hydrogen production 993:is not produced in the process. 738:Chemically assisted electrolysis 670:Industrial output and efficiency 7379:from the original on 2016-06-03 7354:from the original on 2007-04-17 7312:from the original on 2009-02-05 7281:from the original on 2013-06-22 7017:"Nuclear Hydrogen R&D Plan" 6998:from the original on 2008-09-21 6969:from the original on 2016-08-28 6833:from the original on 2021-02-08 6721:from the original on 2011-07-20 6182:(Press release). Archived from 4770:10.1016/j.electacta.2011.11.006 4739:10.1016/j.electacta.2016.07.062 4712:10.1016/j.electacta.2017.01.106 4319:Stolten, Detlef (Jan 4, 2016). 4087:10.1146/annurev.energy.24.1.227 3724:. International Energy Agency. 3697:from the original on 2018-04-22 3612:from the original on 2007-02-07 3277:from the original on 2020-12-08 3243:from the original on 2020-05-08 3147:from the original on 2020-12-13 3004:from the original on 2019-04-08 2965:from the original on 2019-05-09 2875:from the original on 2020-10-25 2654:"The green hydrogen revolution" 2634:from the original on 2022-03-23 2580:"The green hydrogen revolution" 2103:Most hydrogen is produced from 1635:Experimental production methods 1340:Photobiological water splitting 1296:, it is classified as a hybrid 1160:is one of the most promising CO 447:, a greenhouse gas that may be 7699:Sustainable Energy & Fuels 7430:10.1016/j.ijhydene.2018.08.193 6918:10.1016/j.ijhydene.2013.01.151 6651:10.1016/j.ijhydene.2021.11.057 6174:"Living plants produce energy" 6078:10.1016/j.biortech.2016.12.073 6001:10.1016/j.ijhydene.2006.06.034 5966:10.1016/j.ijhydene.2016.10.021 5343:10.1016/j.biombioe.2009.02.006 4910:10.1016/j.apenergy.2018.09.125 4867:10.1016/j.apenergy.2018.09.125 4681:10.1016/j.jpowsour.2011.09.083 4654:10.1016/j.ijhydene.2014.11.033 4194:10.1016/j.ijhydene.2009.01.053 4102:Journal of Materials Chemistry 3452:10.1016/j.ijhydene.2014.12.035 3134:The national hydrogen strategy 3078:"The hydrogen colour spectrum" 2894:"Definition of Green Hydrogen" 2183:Oskarshamn Nuclear Power Plant 2052:and 10% in superheated steam. 1912:In 2015, it was reported that 1536:biological hydrogen production 1492:is another hydrogen producer. 1395:Photocatalytic water splitting 1389:Photocatalytic water splitting 908:respectively, are as follows: 617:solid oxide electrolyser cells 611:There are three main types of 376:Steam reforming – gray or blue 324:Thermochemical water splitting 182:, is generally referred to as 178:When fossil fuel derived with 1: 7178:10.1016/S0065-2377(09)00404-9 5917:10.1002/14356007.a13_297.pub2 5761:10.1016/S0065-2377(09)00404-9 5116:"Emissions from burning coal" 3495:Collodi, Guido (2010-03-11). 2869:"Natural Hydrogen Energy LLC" 2831:Collins, Leigh (2021-05-18). 2359:Next Generation Nuclear Plant 1996:aluminum aluminum-oxide cycle 1860:High-temperature electrolysis 1640:Methane pyrolysis – turquoise 1551:U.S. Army Research Laboratory 1512:A microbial electrolysis cell 1496:Enzymatic hydrogen generation 1460:promote this transformation. 1316:. The chemical reaction uses 1146:photosynthetic microorganisms 845:partial oxidation (TPOX) and 793:The industrial production of 767:Hydrogen from biomass – green 641:high-temperature electrolysis 558:High-temperature electrolysis 7026:. March 2004. Archived from 6401:United States Sustainability 6113:10.1016/j.copbio.2010.05.005 5799:10.1016/j.cattod.2014.11.007 5104:. U.S. Department of Energy. 4043:Materials Today: Proceedings 2679:10.1016/j.renene.2023.119041 2605:10.1016/j.renene.2023.119041 2380:Underground hydrogen storage 1152:Nuclear-assisted thermolysis 8012:International Energy Agency 7747:"New Horizons for Hydrogen" 7566:10.1051/e3sconf/20199803006 7300:"353 Thermochemical cycles" 5753:Photocatalytic Technologies 5638:"DOE 2008 Report 25 %" 4055:10.1016/j.matpr.2022.04.264 3875:Conference Papers in Energy 2622:Deign, Jason (2020-06-29). 2481:10.1016/j.joule.2022.08.015 2299:Hydrogen pipeline transport 2093:Mid-continental Rift System 2084:Mid-continental Rift System 1947:Plataforma Solar de AlmerĂ­a 1932:Concentrating solar thermal 1796:can be used. These include 1625:Mid-continental Rift System 1605:Mid-continental Rift System 1526:Besides dark fermentation, 1116:, was feeding on primarily 625:alkaline electrolysis cells 116:, and in the production of 8071: 7916:10.1038/d41586-022-03699-0 7454:Natural Resources Research 6898:Journal of Hydrogen Energy 6701:10.1016/j.rser.2023.113323 6034:(2): 242–4. Archived from 5457:Progress in Nuclear Energy 5378:10.1016/j.rser.2017.05.275 5182:10.1016/j.fuel.2013.06.045 4953:10.54105/ijee.B1845.113223 3196:10.1016/j.erss.2020.101667 3050:"Hydrogen Color Explained" 2565:10.1016/j.erss.2021.102208 2421:10.1016/j.egyr.2021.08.003 2235:Hydrogen is produced as a 2198: 2161:, and the other is to use 2121:carbon capture and storage 1879:Photoelectrolysis of water 1876: 1809:High pressure electrolysis 1804:High-pressure electrolysis 1697: 1609: 1577: 1560: 1515: 1442: 1392: 1355: 1238: 786: 771:Biomass is converted into 568:high pressure electrolysis 562:High-pressure electrolysis 555: 549: 523: 458:O) reacts with methane (CH 379: 371:Current production methods 272:carbon capture and storage 47:carbon capture and storage 8028:Solar Hydrogen Production 7525:10.2138/gselements.16.1.8 7474:10.1007/s11053-014-9257-5 7375:. Interstatetraveler.us. 6765:10.1007/s11120-009-9415-5 6530:10.1038/s41929-019-0416-2 6309:10.2138/gselements.16.1.8 5606:10.1007/s11120-009-9415-5 5195:Blain, Loz (2022-10-04). 5049:www.interstatetraveler.us 4575:. US Department of Energy 4458:: CS1 maint: unfit URL ( 4264:10.1007/s10800-011-0275-2 4155:American Chemical Society 3966:. US Department of Energy 2264:Artificial photosynthesis 2169:. Hydrogen produced from 2131:rates and production via 1962:Thermochemical production 1939:concentrating solar power 1889:artificial photosynthesis 1885:photoelectrochemical cell 1781:Biocatalysed electrolysis 1627:at scale for a renewable 1504:Biocatalysed electrolysis 1282:Concentrating solar power 1037:pressure swing adsorption 998:plasma arc waste disposal 821:Other fossil fuel methods 660:photovoltaic solar panels 566:Hydrogen can be made via 216: 208: 205: 202: 7980:. Global Change Data Lab 7849:European Investment Bank 7373:"Bellona-HydrogenReport" 6018:Halobacterium salinarium 4813:10.3389/fchem.2014.00079 4669:Journal of Power Sources 3568:10.3389/fchem.2014.00079 3327:Chemical Society Reviews 3303:. Oxford, United Kingdom 3084:. London, United Kingdom 2901:Clean Energy Partnership 2761:Chemical Society Reviews 2375:Linde–Frank–Caro process 2228:Hydrogen may be used in 2125:greenhouse gas footprint 2109:carbon dioxide emissions 2026:company of the same name 1352:for hydrogen production. 1041:Japanese steel companies 777:water-gas shift reaction 417:water-gas shift reaction 221: 180:greenhouse gas emissions 7788:(subscription required) 6745:Photosynthesis Research 6625:Lumbers, Brock (2022). 6486:10.1126/science.aao5023 5586:Photosynthesis Research 5276:10.1126/science.1127376 5248:Barbara Sherwood Lollar 5045:"Hydrogen technologies" 2244:the establishment of a 2145:Hydrogen produced from 2133:steam methane reformers 1474:Rhodobacter sphaeroides 1195:HI decomposition: 2HI→H 888:Idealized examples for 134:Kola Superdeep Borehole 108:, in the production of 39:steam methane reforming 8006:The Future of Hydrogen 7545:E3S Web of Conferences 7277:. Dlr.de. 2008-11-25. 7220:10.1002/anie.200906262 7144:10.1002/cssc.200900018 6801:Solid State Technology 6445:10.1002/cben.202000014 6199:Timmers, Ruud (2012). 6058:Bioresource Technology 5834:10.1002/adma.201601694 5726:10.1002/cssc.200900018 4792:Frontiers in Chemistry 4621:accessed June 22, 2021 3547:Frontiers in Chemistry 2939:10.1002/cben.202000014 2370:Lane hydrogen producer 2289:Hydrogen embrittlement 2217:and the production of 2085: 1839:output around 120–200 1649: 1607: 1553: 1513: 1490:Enterobacter aerogenes 1353: 709: 645:nuclear power stations 589: 276:CCS networks required 153: 7058:Nature Communications 6559:. New Scientist Ltd. 5331:Biomass and Bioenergy 2339:Hydrogen technologies 2294:Hydrogen leak testing 2159:electrolysis of water 2140:autothermal reformers 2083: 1988:copper-chlorine cycle 1980:zinc zinc-oxide cycle 1827:) and hydrogen gas (H 1694:Biological production 1683:(g) ΔH° = 74.8 kJ/mol 1647: 1603: 1548: 1511: 1347: 1294:Copper–chlorine cycle 1264:components. The term 1246:Thermochemical cycles 703: 600:of natural gas has a 594:Electrolysis of water 587: 552:Electrolysis of water 431:. The byproduct is CO 250:Thermal splitting of 151: 120:through reduction of 7024:U.S. Dept. of Energy 6932:"2003-PHOEBUS-Pag.9" 5683:Feng Chia University 4161:on December 10, 2019 3401:. pp. 293–304. 3270:. Australia: CSIRO. 2215:hydrodesulfurization 2099:Environmental impact 1749:microbial fuel cells 1725:anaerobic conversion 1532:microbial fuel cells 1298:thermochemical cycle 1241:thermochemical cycle 1235:Thermochemical cycle 1136:Pyrolysis on biomass 649:solar thermal plants 406:endothermic reaction 96:underground hydrogen 94:, and extraction of 8055:Hydrogen production 7950:energy.ec.europa.eu 7908:2022Natur.611..440C 7784:Wall Street Journal 7720:20.500.11850/422246 7653:Robert W. Howarth; 7557:2019E3SWC..9803006T 7516:2020Eleme..16....8G 7498:(1 February 2020). 7466:2015NRR....24..369L 7422:2018IJHE...4319315P 7416:(42): 19315–19326. 7136:2009ChSCh...2..471N 7078:10.1038/ncomms13549 7070:2016NatCo...713549V 6910:2013IJHE...38.4901C 6757:2009PhoRe.102..523H 6693:2023RSERv.18113323P 6643:2022IJHE...47.4265L 6477:2017Sci...358..917U 6300:2020Eleme..16....8G 6150:2008IJER...32..870S 6070:2017BiTec.227..335A 5993:2007IJHE...32..200T 5958:2017IJHE...42.1989A 5881:2020APLM....8c0903D 5826:2017AdM....2901694L 5718:2009ChSCh...2..471N 5598:2009PhoRe.102..523H 5370:2018RSERv..81.1802P 5268:2006Sci...314..479L 5174:2014Fuel..117.1288G 4902:2018ApEn..231..502J 4859:2018ApEn..231..502J 4804:2014FrCh....2...79B 4758:Electrochimica Acta 4727:Electrochimica Acta 4700:Electrochimica Acta 4646:2015IJHE...40...70G 4011:2013WIREE...2..473B 3888:10.1155/2013/690627 3716:Philibert, CĂ©dric. 3559:2014FrCh....2...79B 3444:2015IJHE...4011094D 3438:(34): 11094–11111. 3188:2020ERSS...7001667V 3082:National Grid Group 2670:2023REne..21619041S 2596:2023REne..21619041S 2557:2021ERSS...8002208G 2472:2022Joule...6.2225R 2279:Hydrogen compressor 2241:chlorine production 1992:hybrid sulfur cycle 1984:sulfur-iodine cycle 1897:multi-junction cell 1853:hydrogen compressor 1837:compressed hydrogen 1745:Electrohydrogenesis 1528:electrohydrogenesis 1522:microbial fuel cell 1518:electrohydrogenesis 1308:Ferrosilicon method 1300:because it uses an 1278:sulfur-iodine cycle 1120:produced hydrogen. 809:Gas generated from 664:potassium carbonate 315:Red, pink or purple 199: 81:hydrogen production 8030:. Academic Press. 7760:: 2–9. April 2004. 7711:10.1039/D0SE00222D 6717:. Biohydrogen.nl. 6432:ChemBioEng Reviews 6364:Fernandez, Sonia. 5814:Advanced Materials 5451:2016-12-21 at the 5407:2011-11-03 at the 5135:Energy & Fuels 4972:2014-12-08 at the 4600:greentechmedia.com 4128:Hofmann voltameter 3340:10.1039/D3CS00723E 3131:BMWi (June 2020). 2926:ChemBioEng Reviews 2774:10.1039/D3CS00723E 2441:The New York Times 2259:Ammonia production 2086: 2044:, natural gas and 1792:2010-05-17 at the 1650: 1608: 1554: 1514: 1408:Biohydrogen routes 1354: 1172:Bunsen reaction: I 1166:iodine-sulfur (IS) 1066:Depleted oil wells 1019:coal carbonization 710: 613:electrolytic cells 602:thermal efficiency 590: 478:O → CO + 3 H 270:Hydrocarbons with 206:Production source 197: 154: 8037:978-0-12-814853-2 7978:Our World in Data 7902:(7936): 440–443. 7626:. Deutsche Welle. 7256:on August 7, 2015 7187:978-0-12-374763-1 6990:(Press release). 6965:. December 2015. 6904:(12): 4901–4934. 6866:978-3-9807963-0-9 6551:Cartwright, Jon. 6471:(6365): 917–921. 6325:"Hidden hydrogen" 6280:(February 2020). 6212:978-94-6191-282-4 5926:978-3-527-30673-2 5890:10.1063/1.5140497 5770:978-0-12-374763-1 5310:www.aiche-cep.com 5147:10.1021/ef990178a 4392:level-network.com 4153:(Press release). 3820:level-network.com 3481:978-0-471-77985-8 3416:978-0-12-804792-7 2494:Article in press. 2466:(10): 2225–2228. 2304:Hydrogen purifier 2274:Hydrogen analyzer 2075:energy transition 1737:dark fermentation 1733:Photofermentation 1729:Dark fermentation 1466:dark fermentation 1462:Photofermentation 1449:dark fermentation 1383:energy efficiency 1328:. A heavy steel 1014:coal gasification 987:superheated steam 839:substoichiometric 826:Partial oxidation 762: 678:(MJ/m), assuming 633:current densities 508:Essentially, the 368: 367: 257:Methane pyrolysis 171:, referred to as 143:methane pyrolysis 92:methane pyrolysis 16:(Redirected from 8062: 8041: 8015: 8009: 7990: 7989: 7987: 7985: 7966: 7960: 7959: 7957: 7956: 7942: 7936: 7935: 7891: 7885: 7884: 7882: 7881: 7865: 7859: 7858: 7856: 7855: 7841: 7835: 7834: 7818: 7809: 7808: 7796: 7790: 7789: 7768: 7762: 7761: 7751: 7743: 7737: 7731: 7725: 7724: 7722: 7705:(6): 2967–2986. 7693: 7687: 7686: 7667:10.1002/ESE3.956 7655:Mark Z. Jacobson 7650: 7644: 7634: 7628: 7627: 7615: 7609: 7608: 7606: 7605: 7591: 7585: 7584: 7577: 7571: 7570: 7568: 7536: 7530: 7529: 7527: 7496:Gaucher, Eric C. 7492: 7486: 7485: 7448: 7442: 7441: 7405: 7399: 7394: 7388: 7387: 7385: 7384: 7369: 7363: 7362: 7360: 7359: 7353: 7346: 7338: 7332: 7327: 7321: 7320: 7318: 7317: 7311: 7304: 7296: 7290: 7289: 7287: 7286: 7271: 7265: 7264: 7262: 7261: 7252:. Archived from 7239: 7233: 7232: 7222: 7213:(9): 1574–1577. 7198: 7192: 7191: 7165: 7156: 7155: 7118: 7109: 7106: 7100: 7099: 7089: 7048: 7042: 7041: 7039: 7038: 7032: 7021: 7013: 7007: 7006: 7004: 7003: 6984: 6978: 6977: 6975: 6974: 6959: 6953: 6952: 6950: 6949: 6943: 6937:. Archived from 6936: 6928: 6922: 6921: 6893: 6887: 6886: 6848: 6842: 6841: 6839: 6838: 6823: 6817: 6816: 6814: 6812: 6793: 6787: 6786: 6776: 6751:(2–3): 523–540. 6736: 6730: 6729: 6727: 6726: 6711: 6705: 6704: 6676: 6670: 6669: 6667: 6665: 6637:(7): 4265–4283. 6622: 6616: 6610: 6604: 6603: 6601: 6599: 6579: 6573: 6572: 6570: 6568: 6548: 6542: 6541: 6518:Nature Catalysis 6513: 6507: 6506: 6488: 6456: 6450: 6449: 6447: 6423: 6417: 6416: 6414: 6412: 6392: 6386: 6385: 6383: 6381: 6361: 6355: 6354: 6347: 6341: 6340: 6338: 6336: 6320: 6314: 6313: 6311: 6278:Gaucher, Éric C. 6274: 6268: 6267: 6265: 6263: 6248: 6242: 6241: 6239: 6237: 6223: 6217: 6216: 6196: 6190: 6187: 6169: 6131: 6125: 6124: 6096: 6090: 6089: 6053: 6047: 6046: 6044: 6043: 6011: 6005: 6004: 5976: 5970: 5969: 5952:(4): 1989–2007. 5940: 5931: 5930: 5904: 5895: 5894: 5892: 5860: 5854: 5853: 5809: 5803: 5802: 5781: 5775: 5774: 5744: 5738: 5737: 5700: 5694: 5693: 5692:on July 4, 2013. 5691: 5685:. Archived from 5676: 5665: 5659: 5658: 5656: 5655: 5649: 5643:. Archived from 5642: 5634: 5628: 5627: 5617: 5577: 5571: 5558: 5552: 5547: 5541: 5540: 5538: 5537: 5531: 5525:. Archived from 5524: 5514: 5508: 5507: 5505: 5504: 5498: 5492:. Archived from 5491: 5483: 5477: 5476: 5474: 5466: 5460: 5443: 5437: 5436: 5434: 5433: 5418: 5412: 5399: 5393: 5388: 5382: 5381: 5353: 5347: 5346: 5326: 5320: 5319: 5317: 5316: 5302: 5296: 5295: 5262:(5798): 479–82. 5243: 5237: 5230: 5224: 5217: 5211: 5210: 5208: 5207: 5192: 5186: 5185: 5157: 5151: 5150: 5130: 5124: 5123: 5112: 5106: 5105: 5094: 5088: 5087: 5085: 5084: 5075:. Archived from 5069: 5063: 5059: 5053: 5052: 5041: 5035: 5034: 5032: 5030: 5024: 5017: 5009: 5003: 5002: 5000: 4998: 4983: 4977: 4964: 4958: 4957: 4955: 4931: 4922: 4921: 4885: 4879: 4878: 4842: 4836: 4835: 4825: 4815: 4783: 4774: 4773: 4752: 4743: 4742: 4722: 4716: 4715: 4691: 4685: 4684: 4664: 4658: 4657: 4629: 4623: 4618: 4612: 4611: 4609: 4607: 4602:. Wood MacKenzie 4591: 4585: 4584: 4582: 4580: 4565: 4559: 4558: 4556: 4555: 4540: 4534: 4533: 4528: 4515: 4509: 4508: 4496: 4490: 4489: 4470: 4464: 4463: 4457: 4449: 4447: 4438: 4432: 4431: 4429: 4427: 4417: 4409: 4403: 4402: 4400: 4398: 4389: 4381: 4375: 4374: 4372: 4370: 4361:. Archived from 4350: 4344: 4343: 4341: 4339: 4316: 4310: 4297: 4291: 4290: 4288: 4286: 4241: 4235: 4234: 4232: 4230: 4225:on 31 March 2015 4224: 4218:. Archived from 4213: 4204: 4198: 4197: 4177: 4171: 4170: 4168: 4166: 4147: 4141: 4140: 4135:. Archived from 4124: 4118: 4117: 4114:10.1039/b718822f 4097: 4091: 4090: 4068: 4059: 4058: 4037: 4031: 4030: 3994: 3988: 3985: 3976: 3975: 3973: 3971: 3956: 3950: 3949: 3947: 3945: 3936: 3928: 3922: 3921: 3919: 3917: 3907: 3899: 3893: 3892: 3890: 3866: 3860: 3859: 3857: 3855: 3845: 3837: 3831: 3830: 3828: 3826: 3817: 3809: 3803: 3802: 3800: 3799: 3782: 3776: 3775: 3773: 3771: 3756: 3750: 3744: 3738: 3737: 3735: 3733: 3713: 3707: 3706: 3704: 3702: 3696: 3685: 3677: 3671: 3670: 3668: 3667: 3652: 3646: 3645: 3640: 3627: 3621: 3620: 3618: 3617: 3597: 3591: 3590: 3580: 3570: 3538: 3532: 3531: 3524: 3518: 3517: 3515: 3514: 3505: 3492: 3486: 3485: 3467: 3456: 3455: 3427: 3421: 3420: 3394: 3388: 3387: 3385: 3384: 3369: 3363: 3362: 3352: 3342: 3333:(5): 2258–2263. 3318: 3312: 3311: 3309: 3308: 3292: 3286: 3285: 3283: 3282: 3276: 3269: 3258: 3252: 3251: 3249: 3248: 3242: 3235: 3224: 3218: 3217: 3207: 3167: 3156: 3155: 3153: 3152: 3146: 3139: 3128: 3117: 3116: 3114: 3113: 3099: 3093: 3092: 3090: 3089: 3073: 3064: 3063: 3061: 3060: 3046: 3040: 3039: 3037: 3036: 3022: 3013: 3012: 3010: 3009: 2994: 2988: 2987: 2981: 2973: 2971: 2970: 2950: 2944: 2943: 2941: 2917: 2911: 2910: 2908: 2907: 2898: 2890: 2884: 2883: 2881: 2880: 2865: 2859: 2858: 2851: 2845: 2844: 2828: 2822: 2821: 2819: 2818: 2803: 2797: 2796: 2786: 2776: 2767:(5): 2258–2263. 2752: 2741: 2740: 2738: 2737: 2723: 2717: 2716: 2714: 2712: 2690: 2684: 2683: 2681: 2658:Renewable Energy 2649: 2643: 2642: 2640: 2639: 2619: 2610: 2609: 2607: 2584:Renewable Energy 2575: 2569: 2568: 2536: 2530: 2529: 2527: 2525: 2501: 2495: 2493: 2483: 2451: 2445: 2444: 2432: 2426: 2425: 2423: 2397: 2324:Hydrogen station 2319:Hydrogen storage 2246:hydrogen economy 2201:Hydrogen economy 2147:renewable energy 2070:Koulikoro Region 2050:activated carbon 1972:iron oxide cycle 1916:has developed a 1682: 1681: 1680: 1670: 1669: 1668: 1629:hydrogen economy 1618:natural hydrogen 1612:Natural hydrogen 1596:Natural hydrogen 1401:renewable energy 1350:algae bioreactor 1318:sodium hydroxide 1208:decomposition: H 1113:Desulfotomaculum 1082: 1081: 1080: 1029:hydrogen sulfide 1002:plasma converter 983:activated carbon 950:Plasma pyrolysis 760: 733: 732: 731: 692:PEM electrolysis 647:or concentrated 404:. The resulting 200: 165:renewable energy 67:electricity via 21: 8070: 8069: 8065: 8064: 8063: 8061: 8060: 8059: 8045: 8044: 8038: 8025: 8022: 8020:Further reading 8002: 7999: 7994: 7993: 7983: 7981: 7970:Ritchie, Hannah 7968: 7967: 7963: 7954: 7952: 7944: 7943: 7939: 7893: 7892: 7888: 7879: 7877: 7867: 7866: 7862: 7853: 7851: 7843: 7842: 7838: 7820: 7819: 7812: 7798: 7797: 7793: 7787: 7770:Dvorak, Phred, 7769: 7765: 7754:Research Review 7749: 7745: 7744: 7740: 7732: 7728: 7695: 7694: 7690: 7652: 7651: 7647: 7635: 7631: 7617: 7616: 7612: 7603: 7601: 7593: 7592: 7588: 7579: 7578: 7574: 7538: 7537: 7533: 7494: 7493: 7489: 7450: 7449: 7445: 7407: 7406: 7402: 7395: 7391: 7382: 7380: 7371: 7370: 7366: 7357: 7355: 7351: 7344: 7340: 7339: 7335: 7328: 7324: 7315: 7313: 7309: 7302: 7298: 7297: 7293: 7284: 7282: 7273: 7272: 7268: 7259: 7257: 7241: 7240: 7236: 7200: 7199: 7195: 7188: 7167: 7166: 7159: 7120: 7119: 7112: 7107: 7103: 7050: 7049: 7045: 7036: 7034: 7030: 7019: 7015: 7014: 7010: 7001: 6999: 6986: 6985: 6981: 6972: 6970: 6961: 6960: 6956: 6947: 6945: 6941: 6934: 6930: 6929: 6925: 6895: 6894: 6890: 6867: 6856: 6850: 6849: 6845: 6836: 6834: 6825: 6824: 6820: 6810: 6808: 6795: 6794: 6790: 6738: 6737: 6733: 6724: 6722: 6713: 6712: 6708: 6678: 6677: 6673: 6663: 6661: 6624: 6623: 6619: 6611: 6607: 6597: 6595: 6581: 6580: 6576: 6566: 6564: 6550: 6549: 6545: 6515: 6514: 6510: 6458: 6457: 6453: 6425: 6424: 6420: 6410: 6408: 6394: 6393: 6389: 6379: 6377: 6363: 6362: 6358: 6349: 6348: 6344: 6334: 6332: 6322: 6321: 6317: 6276: 6275: 6271: 6261: 6259: 6250: 6249: 6245: 6235: 6233: 6225: 6224: 6220: 6213: 6198: 6197: 6193: 6172: 6158:10.1002/er.1397 6133: 6132: 6128: 6098: 6097: 6093: 6055: 6054: 6050: 6041: 6039: 6013: 6012: 6008: 5978: 5977: 5973: 5942: 5941: 5934: 5927: 5906: 5905: 5898: 5862: 5861: 5857: 5811: 5810: 5806: 5787:Catalysis Today 5783: 5782: 5778: 5771: 5746: 5745: 5741: 5702: 5701: 5697: 5689: 5674: 5667: 5666: 5662: 5653: 5651: 5647: 5640: 5636: 5635: 5631: 5592:(2–3): 523–40. 5579: 5578: 5574: 5559: 5555: 5548: 5544: 5535: 5533: 5529: 5522: 5518: 5515: 5511: 5502: 5500: 5496: 5489: 5485: 5484: 5480: 5472: 5468: 5467: 5463: 5453:Wayback Machine 5444: 5440: 5431: 5429: 5420: 5419: 5415: 5409:Wayback Machine 5400: 5396: 5389: 5385: 5355: 5354: 5350: 5328: 5327: 5323: 5314: 5312: 5304: 5303: 5299: 5245: 5244: 5240: 5231: 5227: 5218: 5214: 5205: 5203: 5194: 5193: 5189: 5159: 5158: 5154: 5132: 5131: 5127: 5114: 5113: 5109: 5096: 5095: 5091: 5082: 5080: 5071: 5070: 5066: 5060: 5056: 5043: 5042: 5038: 5028: 5026: 5022: 5015: 5011: 5010: 5006: 4996: 4994: 4985: 4984: 4980: 4974:Wayback Machine 4965: 4961: 4933: 4932: 4925: 4887: 4886: 4882: 4844: 4843: 4839: 4785: 4784: 4777: 4754: 4753: 4746: 4724: 4723: 4719: 4697: 4693: 4692: 4688: 4666: 4665: 4661: 4631: 4630: 4626: 4619: 4615: 4605: 4603: 4593: 4592: 4588: 4578: 4576: 4567: 4566: 4562: 4553: 4551: 4542: 4541: 4537: 4529:on 2011-07-02. 4526: 4517: 4516: 4512: 4498: 4497: 4493: 4472: 4471: 4467: 4450: 4445: 4440: 4439: 4435: 4425: 4423: 4415: 4411: 4410: 4406: 4396: 4394: 4387: 4383: 4382: 4378: 4368: 4366: 4365:on 19 July 2018 4352: 4351: 4347: 4337: 4335: 4333: 4318: 4317: 4313: 4306:Teknisk Ukeblad 4298: 4294: 4284: 4282: 4243: 4242: 4238: 4228: 4226: 4222: 4211: 4206: 4205: 4201: 4179: 4178: 4174: 4164: 4162: 4149: 4148: 4144: 4131: 4125: 4121: 4108:(20): 2331–40. 4099: 4098: 4094: 4070: 4069: 4062: 4039: 4038: 4034: 4019:10.1002/wene.50 3996: 3995: 3991: 3986: 3979: 3969: 3967: 3958: 3957: 3953: 3943: 3941: 3934: 3930: 3929: 3925: 3915: 3913: 3905: 3901: 3900: 3896: 3868: 3867: 3863: 3853: 3851: 3843: 3839: 3838: 3834: 3824: 3822: 3815: 3811: 3810: 3806: 3797: 3795: 3784: 3783: 3779: 3769: 3767: 3758: 3757: 3753: 3745: 3741: 3731: 3729: 3715: 3714: 3710: 3700: 3698: 3694: 3688:nelhydrogen.com 3683: 3679: 3678: 3674: 3665: 3663: 3654: 3653: 3649: 3641:on 2011-07-02. 3638: 3629: 3628: 3624: 3615: 3613: 3599: 3598: 3594: 3540: 3539: 3535: 3526: 3525: 3521: 3512: 3510: 3503: 3500: 3494: 3493: 3489: 3482: 3469: 3468: 3459: 3429: 3428: 3424: 3417: 3396: 3395: 3391: 3382: 3380: 3371: 3370: 3366: 3320: 3319: 3315: 3306: 3304: 3297:"Gold hydrogen" 3294: 3293: 3289: 3280: 3278: 3274: 3267: 3260: 3259: 3255: 3246: 3244: 3240: 3233: 3226: 3225: 3221: 3169: 3168: 3159: 3150: 3148: 3144: 3137: 3130: 3129: 3120: 3111: 3109: 3107:Energy Observer 3101: 3100: 3096: 3087: 3085: 3076:national grid. 3075: 3074: 3067: 3058: 3056: 3048: 3047: 3043: 3034: 3032: 3024: 3023: 3016: 3007: 3005: 2996: 2995: 2991: 2974: 2968: 2966: 2952: 2951: 2947: 2919: 2918: 2914: 2905: 2903: 2896: 2892: 2891: 2887: 2878: 2876: 2867: 2866: 2862: 2853: 2852: 2848: 2830: 2829: 2825: 2816: 2814: 2805: 2804: 2800: 2754: 2753: 2744: 2735: 2733: 2725: 2724: 2720: 2710: 2708: 2692: 2691: 2687: 2651: 2650: 2646: 2637: 2635: 2621: 2620: 2613: 2577: 2576: 2572: 2538: 2537: 2533: 2523: 2521: 2503: 2502: 2498: 2453: 2452: 2448: 2434: 2433: 2429: 2399: 2398: 2394: 2389: 2384: 2354:Liquid hydrogen 2334:Hydrogen tanker 2314:Hydrogen sensor 2309:Hydrogen safety 2254: 2203: 2197: 2129:methane leakage 2107:, resulting in 2101: 2058: 2039: 2035: 2015:KvĂŠrner process 2011: 2009:KvĂŠrner process 1968:water splitting 1964: 1934: 1922:niobium nitride 1914:Panasonic Corp. 1906: 1881: 1875: 1862: 1830: 1826: 1818: 1806: 1798:reed sweetgrass 1794:Wayback Machine 1783: 1776: 1702: 1696: 1679: 1676: 1675: 1674: 1672: 1671:(g) → C(s) + 2 1667: 1664: 1663: 1662: 1660: 1642: 1637: 1614: 1598: 1582: 1576: 1565: 1559: 1540:reed sweetgrass 1524: 1516:Main articles: 1506: 1498: 1451: 1443:Main articles: 1441: 1434: 1410: 1397: 1391: 1360: 1342: 1334:sodium silicate 1330:pressure vessel 1310: 1302:electrochemical 1248:combine solely 1243: 1237: 1227: 1223: 1219: 1215: 1211: 1202: 1198: 1191: 1187: 1183: 1179: 1175: 1163: 1154: 1138: 1126: 1089: 1079: 1076: 1075: 1074: 1072: 1068: 1061: 1049: 1034: 1010: 992: 980: 976: 956:KvĂŠrner process 952: 945: 941: 937: 933: 927: 923: 919: 915: 907: 903: 899: 895: 884: 872: 864: 858: 828: 823: 791: 785: 769: 740: 730: 727: 726: 725: 723: 715:specific energy 707: 685: 672: 598:steam reforming 572:specific energy 564: 554: 548: 537: 532:water splitting 528: 526:Water splitting 522: 515: 504: 500: 496: 481: 477: 473: 461: 457: 446: 434: 422: 411: 396: 388:steam reforming 384: 382:Steam reforming 378: 373: 192: 130: 122:carbon monoxide 28: 23: 22: 15: 12: 11: 5: 8068: 8066: 8058: 8057: 8047: 8046: 8043: 8042: 8036: 8021: 8018: 8017: 8016: 7998: 7995: 7992: 7991: 7961: 7937: 7886: 7860: 7836: 7810: 7791: 7763: 7738: 7726: 7688: 7645: 7629: 7610: 7586: 7572: 7531: 7487: 7460:(3): 369–383. 7443: 7400: 7389: 7364: 7333: 7322: 7291: 7266: 7234: 7193: 7186: 7157: 7130:(6): 471–485. 7110: 7101: 7043: 7008: 6994:. 2008-09-18. 6979: 6954: 6923: 6888: 6865: 6854: 6843: 6818: 6788: 6731: 6706: 6671: 6617: 6605: 6574: 6543: 6508: 6451: 6438:(5): 150–158. 6418: 6387: 6356: 6342: 6315: 6269: 6243: 6218: 6211: 6191: 6189: 6188: 6186:on 2010-05-17. 6126: 6091: 6048: 6006: 5971: 5932: 5925: 5896: 5855: 5804: 5776: 5769: 5739: 5695: 5660: 5629: 5572: 5553: 5542: 5509: 5478: 5461: 5438: 5413: 5394: 5383: 5348: 5337:(5): 899–906. 5321: 5297: 5238: 5225: 5212: 5187: 5152: 5125: 5107: 5089: 5064: 5054: 5036: 5004: 4978: 4959: 4923: 4890:Applied Energy 4880: 4847:Applied Energy 4837: 4775: 4744: 4717: 4695: 4686: 4659: 4624: 4613: 4594:Deign, Jason. 4586: 4560: 4535: 4510: 4491: 4465: 4433: 4404: 4376: 4353:thyssenkrupp. 4345: 4331: 4311: 4292: 4258:(6): 645–656. 4236: 4199: 4188:(6): 2531–42. 4172: 4142: 4139:on 2010-06-13. 4119: 4092: 4060: 4032: 4005:(5): 473–487. 3989: 3977: 3951: 3923: 3894: 3861: 3832: 3804: 3777: 3751: 3739: 3708: 3672: 3647: 3622: 3592: 3533: 3519: 3498: 3487: 3480: 3457: 3422: 3415: 3389: 3364: 3313: 3287: 3253: 3219: 3157: 3118: 3094: 3065: 3041: 3014: 2989: 2945: 2932:(5): 150–158. 2912: 2885: 2860: 2846: 2823: 2798: 2742: 2718: 2685: 2644: 2628:Greentechmedia 2611: 2570: 2531: 2496: 2446: 2427: 2407:Energy Reports 2391: 2390: 2388: 2385: 2383: 2382: 2377: 2372: 2367: 2362: 2356: 2351: 2349:Industrial gas 2346: 2344:Hydrogen valve 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2261: 2255: 2253: 2250: 2239:of industrial 2196: 2193: 2175:green hydrogen 2171:nuclear energy 2167:renewable fuel 2151:green hydrogen 2100: 2097: 2089:White hydrogen 2057: 2054: 2037: 2033: 2010: 2007: 1963: 1960: 1933: 1930: 1905: 1902: 1877:Main article: 1874: 1871: 1861: 1858: 1828: 1824: 1816: 1805: 1802: 1787:aquatic plants 1782: 1779: 1774: 1771:photosynthesis 1769:, i.e. normal 1698:Main article: 1695: 1692: 1685: 1684: 1677: 1665: 1641: 1638: 1636: 1633: 1610:Main article: 1597: 1594: 1578:Main article: 1575: 1572: 1568:Aluminum alloy 1561:Main article: 1558: 1555: 1505: 1502: 1497: 1494: 1440: 1437: 1432: 1409: 1406: 1393:Main article: 1390: 1387: 1379:photosynthesis 1377:, i.e. normal 1356:Main article: 1341: 1338: 1309: 1306: 1239:Main article: 1236: 1233: 1225: 1221: 1217: 1213: 1209: 1200: 1196: 1189: 1185: 1181: 1177: 1173: 1161: 1153: 1150: 1137: 1134: 1125: 1122: 1118:radiolytically 1088: 1085: 1077: 1067: 1064: 1059: 1052:Petroleum coke 1048: 1047:Petroleum coke 1045: 1032: 1009: 1006: 990: 978: 974: 951: 948: 947: 946: 943: 939: 935: 931: 928: 925: 924:→ 12 CO + 12 H 921: 917: 913: 905: 901: 897: 893: 886: 885: 882: 870: 860: 854: 827: 824: 822: 819: 804:hydrogen pinch 787:Main article: 784: 781: 768: 765: 739: 736: 728: 705: 683: 671: 668: 629:platinum group 550:Main article: 547: 544: 540:green hydrogen 535: 524:Main article: 521: 518: 513: 506: 505: 502: 498: 494: 483: 482: 479: 475: 471: 459: 455: 444: 439:(natural gas, 432: 420: 409: 394: 380:Main article: 377: 374: 372: 369: 366: 365: 363: 360: 357: 355: 349: 348: 346: 343: 340: 338: 334: 333: 331: 321: 320:Nuclear power 318: 316: 312: 311: 309: 306: 300: 298: 297:Brown or black 294: 293: 291: 289: 286: 284: 280: 279: 277: 274: 268: 266: 262: 261: 259: 254: 248: 246: 242: 241: 239: 237: 230:green hydrogen 222: 220: 214: 213: 210: 207: 204: 191: 188: 173:green hydrogen 129: 126: 73:green hydrogen 60:Green hydrogen 26: 24: 18:Brown hydrogen 14: 13: 10: 9: 6: 4: 3: 2: 8067: 8056: 8053: 8052: 8050: 8039: 8033: 8029: 8024: 8023: 8019: 8013: 8008: 8007: 8001: 8000: 7996: 7979: 7975: 7971: 7965: 7962: 7951: 7947: 7941: 7938: 7933: 7929: 7925: 7921: 7917: 7913: 7909: 7905: 7901: 7897: 7890: 7887: 7876: 7875: 7870: 7864: 7861: 7850: 7846: 7840: 7837: 7832: 7828: 7824: 7817: 7815: 7811: 7806: 7802: 7795: 7792: 7785: 7781: 7777: 7773: 7767: 7764: 7759: 7755: 7748: 7742: 7739: 7735: 7730: 7727: 7721: 7716: 7712: 7708: 7704: 7700: 7692: 7689: 7684: 7680: 7676: 7672: 7668: 7664: 7660: 7656: 7649: 7646: 7642: 7638: 7633: 7630: 7625: 7621: 7614: 7611: 7600: 7596: 7590: 7587: 7582: 7576: 7573: 7567: 7562: 7558: 7554: 7550: 7546: 7542: 7535: 7532: 7526: 7521: 7517: 7513: 7509: 7505: 7501: 7497: 7491: 7488: 7483: 7479: 7475: 7471: 7467: 7463: 7459: 7455: 7447: 7444: 7439: 7435: 7431: 7427: 7423: 7419: 7415: 7411: 7404: 7401: 7398: 7393: 7390: 7378: 7374: 7368: 7365: 7350: 7343: 7337: 7334: 7331: 7326: 7323: 7308: 7301: 7295: 7292: 7280: 7276: 7270: 7267: 7255: 7251: 7250: 7249:Asahi Shimbun 7245: 7238: 7235: 7230: 7226: 7221: 7216: 7212: 7208: 7204: 7197: 7194: 7189: 7183: 7179: 7175: 7171: 7164: 7162: 7158: 7153: 7149: 7145: 7141: 7137: 7133: 7129: 7125: 7117: 7115: 7111: 7105: 7102: 7097: 7093: 7088: 7083: 7079: 7075: 7071: 7067: 7063: 7059: 7055: 7047: 7044: 7033:on 2008-05-18 7029: 7025: 7018: 7012: 7009: 6997: 6993: 6992:Science Daily 6989: 6983: 6980: 6968: 6964: 6958: 6955: 6944:on 2009-03-27 6940: 6933: 6927: 6924: 6919: 6915: 6911: 6907: 6903: 6899: 6892: 6889: 6884: 6880: 6876: 6872: 6868: 6862: 6858: 6847: 6844: 6832: 6828: 6822: 6819: 6807:on 2018-05-15 6806: 6802: 6798: 6792: 6789: 6784: 6780: 6775: 6770: 6766: 6762: 6758: 6754: 6750: 6746: 6742: 6735: 6732: 6720: 6716: 6710: 6707: 6702: 6698: 6694: 6690: 6686: 6682: 6675: 6672: 6660: 6656: 6652: 6648: 6644: 6640: 6636: 6632: 6628: 6621: 6618: 6614: 6609: 6606: 6593: 6589: 6585: 6578: 6575: 6562: 6558: 6554: 6547: 6544: 6539: 6535: 6531: 6527: 6523: 6519: 6512: 6509: 6504: 6500: 6496: 6492: 6487: 6482: 6478: 6474: 6470: 6466: 6462: 6455: 6452: 6446: 6441: 6437: 6433: 6429: 6422: 6419: 6406: 6402: 6398: 6391: 6388: 6375: 6371: 6367: 6360: 6357: 6352: 6346: 6343: 6330: 6326: 6319: 6316: 6310: 6305: 6301: 6297: 6293: 6289: 6288: 6283: 6279: 6273: 6270: 6258: 6254: 6247: 6244: 6232: 6228: 6222: 6219: 6214: 6208: 6204: 6203: 6195: 6192: 6185: 6181: 6180: 6175: 6171: 6170: 6167: 6163: 6159: 6155: 6151: 6147: 6143: 6139: 6138: 6130: 6127: 6122: 6118: 6114: 6110: 6106: 6102: 6095: 6092: 6087: 6083: 6079: 6075: 6071: 6067: 6063: 6059: 6052: 6049: 6038:on 2013-07-31 6037: 6033: 6029: 6025: 6023: 6020:coupled with 6019: 6010: 6007: 6002: 5998: 5994: 5990: 5986: 5982: 5975: 5972: 5967: 5963: 5959: 5955: 5951: 5947: 5939: 5937: 5933: 5928: 5922: 5918: 5914: 5910: 5903: 5901: 5897: 5891: 5886: 5882: 5878: 5875:(3): 030903. 5874: 5870: 5869:APL Materials 5866: 5859: 5856: 5851: 5847: 5843: 5839: 5835: 5831: 5827: 5823: 5819: 5815: 5808: 5805: 5800: 5796: 5792: 5788: 5780: 5777: 5772: 5766: 5762: 5758: 5754: 5750: 5743: 5740: 5735: 5731: 5727: 5723: 5719: 5715: 5712:(6): 471–85. 5711: 5707: 5699: 5696: 5688: 5684: 5680: 5673: 5672: 5664: 5661: 5650:on 2017-06-17 5646: 5639: 5633: 5630: 5625: 5621: 5616: 5611: 5607: 5603: 5599: 5595: 5591: 5587: 5583: 5576: 5573: 5570: 5569:1-86094-228-8 5566: 5562: 5557: 5554: 5551: 5546: 5543: 5532:on 2012-02-20 5528: 5521: 5513: 5510: 5499:on 2017-08-10 5495: 5488: 5482: 5479: 5471: 5465: 5462: 5458: 5454: 5450: 5447: 5442: 5439: 5428:on 2014-02-03 5427: 5423: 5417: 5414: 5410: 5406: 5403: 5398: 5395: 5392: 5387: 5384: 5379: 5375: 5371: 5367: 5364:: 1802–1812. 5363: 5359: 5352: 5349: 5344: 5340: 5336: 5332: 5325: 5322: 5311: 5307: 5301: 5298: 5293: 5289: 5285: 5281: 5277: 5273: 5269: 5265: 5261: 5257: 5253: 5249: 5242: 5239: 5236: 5235: 5229: 5226: 5223: 5222: 5216: 5213: 5202: 5198: 5191: 5188: 5183: 5179: 5175: 5171: 5167: 5163: 5156: 5153: 5148: 5144: 5141:(3): 618–23. 5140: 5136: 5129: 5126: 5121: 5117: 5111: 5108: 5103: 5099: 5093: 5090: 5079:on 2014-03-13 5078: 5074: 5068: 5065: 5062: 5058: 5055: 5050: 5046: 5040: 5037: 5021: 5014: 5008: 5005: 4992: 4988: 4982: 4979: 4975: 4971: 4968: 4963: 4960: 4954: 4949: 4945: 4941: 4937: 4930: 4928: 4924: 4919: 4915: 4911: 4907: 4903: 4899: 4895: 4891: 4884: 4881: 4876: 4872: 4868: 4864: 4860: 4856: 4852: 4848: 4841: 4838: 4833: 4829: 4824: 4819: 4814: 4809: 4805: 4801: 4797: 4793: 4789: 4782: 4780: 4776: 4771: 4767: 4763: 4759: 4751: 4749: 4745: 4740: 4736: 4732: 4728: 4721: 4718: 4713: 4709: 4705: 4701: 4690: 4687: 4682: 4678: 4674: 4670: 4663: 4660: 4655: 4651: 4647: 4643: 4639: 4635: 4628: 4625: 4622: 4617: 4614: 4601: 4597: 4590: 4587: 4574: 4570: 4564: 4561: 4550:on 2012-03-22 4549: 4545: 4539: 4536: 4532: 4525: 4521: 4514: 4511: 4506: 4502: 4495: 4492: 4488: 4484: 4480: 4479:Bloomberg.com 4476: 4469: 4466: 4461: 4455: 4444: 4437: 4434: 4421: 4420:fch.europa.eu 4414: 4408: 4405: 4393: 4386: 4380: 4377: 4364: 4360: 4356: 4349: 4346: 4334: 4332:9783527674299 4328: 4324: 4323: 4315: 4312: 4308: 4307: 4302: 4296: 4293: 4281: 4277: 4273: 4269: 4265: 4261: 4257: 4253: 4252: 4247: 4240: 4237: 4221: 4217: 4210: 4203: 4200: 4195: 4191: 4187: 4183: 4176: 4173: 4160: 4156: 4152: 4146: 4143: 4138: 4134: 4129: 4123: 4120: 4115: 4111: 4107: 4103: 4096: 4093: 4088: 4084: 4080: 4076: 4075: 4067: 4065: 4061: 4056: 4052: 4048: 4044: 4036: 4033: 4028: 4024: 4020: 4016: 4012: 4008: 4004: 4000: 3993: 3990: 3984: 3982: 3978: 3965: 3961: 3955: 3952: 3940: 3939:itm-power.com 3933: 3927: 3924: 3911: 3910:fch.europa.eu 3904: 3898: 3895: 3889: 3884: 3880: 3876: 3872: 3865: 3862: 3849: 3848:fch.europa.eu 3842: 3836: 3833: 3821: 3814: 3808: 3805: 3794: 3793: 3788: 3781: 3778: 3765: 3761: 3755: 3752: 3748: 3743: 3740: 3727: 3723: 3719: 3712: 3709: 3693: 3689: 3682: 3676: 3673: 3662:on 2012-03-22 3661: 3657: 3651: 3648: 3644: 3637: 3633: 3626: 3623: 3611: 3607: 3603: 3596: 3593: 3588: 3584: 3579: 3574: 3569: 3564: 3560: 3556: 3552: 3548: 3544: 3537: 3534: 3529: 3523: 3520: 3509: 3502: 3491: 3488: 3483: 3477: 3473: 3466: 3464: 3462: 3458: 3453: 3449: 3445: 3441: 3437: 3433: 3426: 3423: 3418: 3412: 3408: 3404: 3400: 3393: 3390: 3379:on 2015-02-02 3378: 3374: 3368: 3365: 3360: 3356: 3351: 3346: 3341: 3336: 3332: 3328: 3324: 3317: 3314: 3302: 3298: 3291: 3288: 3273: 3266: 3265: 3257: 3254: 3239: 3232: 3231: 3223: 3220: 3215: 3211: 3206: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3166: 3164: 3162: 3158: 3143: 3136: 3135: 3127: 3125: 3123: 3119: 3108: 3104: 3098: 3095: 3083: 3079: 3072: 3070: 3066: 3055: 3051: 3045: 3042: 3031: 3030:The Economist 3027: 3021: 3019: 3015: 3003: 2999: 2993: 2990: 2985: 2979: 2964: 2960: 2956: 2949: 2946: 2940: 2935: 2931: 2927: 2923: 2916: 2913: 2902: 2895: 2889: 2886: 2874: 2870: 2864: 2861: 2856: 2850: 2847: 2842: 2838: 2834: 2827: 2824: 2812: 2808: 2802: 2799: 2794: 2790: 2785: 2780: 2775: 2770: 2766: 2762: 2758: 2751: 2749: 2747: 2743: 2732: 2728: 2722: 2719: 2706: 2702: 2701: 2696: 2689: 2686: 2680: 2675: 2671: 2667: 2663: 2659: 2655: 2648: 2645: 2633: 2629: 2625: 2618: 2616: 2612: 2606: 2601: 2597: 2593: 2589: 2585: 2581: 2574: 2571: 2566: 2562: 2558: 2554: 2550: 2546: 2542: 2535: 2532: 2519: 2515: 2511: 2507: 2500: 2497: 2491: 2487: 2482: 2477: 2473: 2469: 2465: 2461: 2457: 2450: 2447: 2442: 2438: 2431: 2428: 2422: 2417: 2414:: 8421–8446. 2413: 2409: 2408: 2403: 2396: 2393: 2386: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2329:Hydrogen tank 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2256: 2251: 2249: 2247: 2242: 2238: 2233: 2231: 2226: 2224: 2223:Haber process 2220: 2216: 2212: 2211:aromatization 2208: 2207:hydrocracking 2202: 2195:Hydrogen uses 2194: 2192: 2189: 2186: 2184: 2180: 2179:pink hydrogen 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2143: 2141: 2136: 2134: 2130: 2126: 2122: 2118: 2117:blue hydrogen 2114: 2113:grey hydrogen 2110: 2106: 2098: 2096: 2094: 2090: 2082: 2078: 2076: 2071: 2067: 2063: 2055: 2053: 2051: 2047: 2043: 2031: 2027: 2024: 2020: 2016: 2008: 2006: 2003: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1961: 1959: 1957: 1952: 1948: 1944: 1940: 1931: 1929: 1927: 1926:decomposition 1923: 1919: 1918:photocatalyst 1915: 1910: 1903: 1901: 1898: 1892: 1890: 1886: 1880: 1872: 1870: 1868: 1859: 1857: 1854: 1850: 1846: 1842: 1838: 1834: 1822: 1814: 1810: 1803: 1801: 1799: 1795: 1791: 1788: 1780: 1778: 1772: 1768: 1764: 1760: 1757: 1752: 1750: 1746: 1742: 1738: 1735:differs from 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1701: 1693: 1691: 1688: 1659: 1658: 1657: 1654: 1646: 1639: 1634: 1632: 1630: 1626: 1621: 1619: 1613: 1606: 1602: 1595: 1593: 1591: 1587: 1581: 1573: 1571: 1569: 1564: 1556: 1552: 1547: 1543: 1541: 1537: 1533: 1529: 1523: 1519: 1510: 1503: 1501: 1495: 1493: 1491: 1487: 1483: 1482:H. salinarium 1477: 1475: 1471: 1467: 1464:differs from 1463: 1459: 1455: 1450: 1446: 1438: 1436: 1428: 1424: 1422: 1419:with biomass 1418: 1414: 1407: 1405: 1402: 1396: 1388: 1386: 1384: 1380: 1376: 1372: 1368: 1365: 1359: 1351: 1346: 1339: 1337: 1335: 1331: 1327: 1323: 1319: 1315: 1307: 1305: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1274: 1272: 1267: 1263: 1259: 1255: 1251: 1247: 1242: 1234: 1232: 1229: 1207: 1206:Sulfuric acid 1203: 1193: 1170: 1167: 1159: 1151: 1149: 1147: 1142: 1135: 1133: 1131: 1123: 1121: 1119: 1115: 1114: 1109: 1105: 1101: 1098: 1094: 1086: 1084: 1065: 1063: 1057: 1053: 1046: 1044: 1042: 1038: 1030: 1026: 1022: 1020: 1015: 1007: 1005: 1003: 999: 994: 988: 984: 972: 968: 965: 961: 957: 949: 942:→ 24 CO + 6 H 929: 911: 910: 909: 891: 880: 876: 868: 863: 857: 852: 851: 850: 848: 844: 840: 835: 833: 825: 820: 818: 816: 812: 807: 805: 800: 796: 790: 782: 780: 778: 774: 766: 764: 756: 754: 750: 746: 737: 735: 719: 716: 713:(which has a 702: 698: 695: 693: 687: 681: 677: 669: 667: 665: 661: 657: 652: 650: 646: 642: 636: 634: 630: 626: 622: 618: 614: 609: 605: 603: 599: 595: 586: 582: 579: 575: 573: 569: 563: 559: 553: 545: 543: 541: 533: 527: 519: 517: 511: 492: 491: 490: 488: 469: 468: 467: 465: 452: 450: 442: 438: 430: 426: 418: 413: 407: 403: 400: 391: 389: 383: 375: 370: 364: 361: 358: 354: 353:Gold or white 351: 350: 347: 345:Photovoltaic 344: 341: 336: 335: 332: 329: 325: 322: 319: 314: 313: 310: 307: 305: 301: 296: 295: 292: 290: 287: 282: 281: 278: 275: 273: 269: 264: 263: 260: 258: 255: 253: 249: 244: 243: 240: 238: 235: 231: 227: 223: 219: 215: 211: 201: 195: 189: 187: 185: 184:grey hydrogen 181: 176: 174: 170: 166: 162: 161:nuclear power 158: 150: 146: 144: 139: 135: 127: 125: 123: 119: 115: 114:Haber process 111: 107: 102: 99: 97: 93: 89: 86: 82: 78: 74: 70: 66: 62: 61: 56: 54: 53: 52:blue hydrogen 48: 44: 40: 37:made through 36: 35:gray hydrogen 32: 19: 8027: 8005: 7984:16 September 7982:. Retrieved 7977: 7964: 7953:. Retrieved 7949: 7940: 7899: 7895: 7889: 7878:. Retrieved 7872: 7863: 7852:. Retrieved 7848: 7839: 7826: 7804: 7794: 7783: 7776:Air Products 7766: 7753: 7741: 7729: 7702: 7698: 7691: 7658: 7648: 7641:Air Products 7632: 7623: 7613: 7602:. Retrieved 7598: 7589: 7575: 7548: 7544: 7534: 7507: 7503: 7490: 7457: 7453: 7446: 7413: 7409: 7403: 7392: 7381:. Retrieved 7367: 7356:. Retrieved 7336: 7325: 7314:. Retrieved 7294: 7283:. Retrieved 7269: 7258:. Retrieved 7254:the original 7247: 7237: 7210: 7206: 7196: 7169: 7127: 7123: 7104: 7064:(1): 13549. 7061: 7057: 7046: 7035:. Retrieved 7028:the original 7011: 7000:. Retrieved 6982: 6971:. Retrieved 6957: 6946:. Retrieved 6939:the original 6926: 6901: 6897: 6891: 6852: 6846: 6835:. Retrieved 6829:(in Dutch). 6821: 6809:. Retrieved 6805:the original 6800: 6791: 6748: 6744: 6734: 6723:. Retrieved 6709: 6684: 6680: 6674: 6662:. Retrieved 6634: 6630: 6620: 6608: 6596:. Retrieved 6587: 6577: 6565:. Retrieved 6557:NewScientist 6556: 6546: 6524:(1): 83–89. 6521: 6517: 6511: 6468: 6464: 6454: 6435: 6431: 6421: 6409:. Retrieved 6400: 6390: 6378:. Retrieved 6369: 6359: 6345: 6333:. Retrieved 6328: 6323:Hand, Eric. 6318: 6291: 6285: 6272: 6260:. Retrieved 6256: 6246: 6234:. Retrieved 6230: 6221: 6201: 6194: 6184:the original 6177: 6144:(9): 870–6. 6141: 6135: 6129: 6107:(5): 663–9. 6104: 6100: 6094: 6061: 6057: 6051: 6040:. Retrieved 6036:the original 6031: 6027: 6021: 6017: 6009: 5987:(2): 200–6. 5984: 5980: 5974: 5949: 5945: 5908: 5872: 5868: 5858: 5817: 5813: 5807: 5790: 5786: 5779: 5752: 5742: 5709: 5705: 5698: 5687:the original 5670: 5663: 5652:. Retrieved 5645:the original 5632: 5589: 5585: 5575: 5556: 5545: 5534:. Retrieved 5527:the original 5512: 5501:. Retrieved 5494:the original 5481: 5464: 5456: 5441: 5430:. Retrieved 5426:the original 5416: 5411:, April 2007 5397: 5386: 5361: 5357: 5351: 5334: 5330: 5324: 5313:. Retrieved 5309: 5300: 5259: 5255: 5241: 5233: 5228: 5220: 5215: 5204:. Retrieved 5200: 5190: 5165: 5161: 5155: 5138: 5134: 5128: 5119: 5110: 5101: 5092: 5081:. Retrieved 5077:the original 5067: 5057: 5048: 5039: 5027:. Retrieved 5007: 4995:. Retrieved 4981: 4962: 4943: 4939: 4893: 4889: 4883: 4850: 4846: 4840: 4795: 4791: 4761: 4757: 4730: 4726: 4720: 4703: 4699: 4689: 4672: 4668: 4662: 4637: 4633: 4627: 4616: 4604:. Retrieved 4599: 4589: 4577:. Retrieved 4572: 4563: 4552:. Retrieved 4548:the original 4538: 4530: 4524:the original 4513: 4504: 4494: 4486: 4478: 4468: 4436: 4424:. Retrieved 4419: 4407: 4395:. Retrieved 4391: 4379: 4367:. Retrieved 4363:the original 4358: 4348: 4336:. Retrieved 4321: 4314: 4304: 4295: 4283:. Retrieved 4255: 4249: 4239: 4227:. Retrieved 4220:the original 4215: 4202: 4185: 4181: 4175: 4163:. Retrieved 4159:the original 4145: 4137:the original 4122: 4105: 4101: 4095: 4078: 4072: 4046: 4042: 4035: 4002: 3998: 3992: 3968:. Retrieved 3963: 3954: 3942:. Retrieved 3938: 3926: 3914:. Retrieved 3909: 3897: 3878: 3874: 3864: 3852:. Retrieved 3847: 3835: 3823:. Retrieved 3819: 3807: 3796:. Retrieved 3790: 3780: 3768:. Retrieved 3754: 3749:, p. 37 3742: 3730:. Retrieved 3721: 3711: 3699:. Retrieved 3687: 3675: 3664:. Retrieved 3660:the original 3650: 3642: 3636:the original 3625: 3614:. Retrieved 3605: 3595: 3550: 3546: 3536: 3522: 3511:. Retrieved 3507: 3490: 3471: 3435: 3431: 3425: 3398: 3392: 3381:. Retrieved 3377:the original 3367: 3330: 3326: 3316: 3305:. Retrieved 3300: 3290: 3279:. Retrieved 3263: 3256: 3245:. Retrieved 3229: 3222: 3179: 3175: 3149:. Retrieved 3133: 3110:. Retrieved 3106: 3097: 3086:. Retrieved 3081: 3057:. Retrieved 3053: 3044: 3033:. Retrieved 3029: 3006:. Retrieved 2992: 2967:. Retrieved 2958: 2948: 2929: 2925: 2915: 2904:. Retrieved 2888: 2877:. Retrieved 2863: 2849: 2836: 2826: 2815:. Retrieved 2810: 2801: 2764: 2760: 2734:. Retrieved 2730: 2721: 2709:. Retrieved 2700:Carbon Brief 2698: 2688: 2661: 2657: 2647: 2636:. Retrieved 2627: 2587: 2583: 2573: 2548: 2544: 2534: 2522:. Retrieved 2510:CEP Magazine 2509: 2499: 2463: 2459: 2449: 2440: 2430: 2411: 2405: 2395: 2234: 2227: 2204: 2190: 2187: 2178: 2163:landfill gas 2155:power to gas 2150: 2144: 2137: 2116: 2112: 2105:fossil fuels 2102: 2087: 2059: 2030:hydrocarbons 2019:carbon black 2017:or Kvaerner 2012: 2004: 1965: 1935: 1911: 1907: 1893: 1882: 1863: 1833:electrolyzer 1807: 1784: 1753: 1719:using multi 1709:fermentative 1703: 1689: 1686: 1651: 1622: 1615: 1583: 1566: 1525: 1499: 1489: 1485: 1481: 1478: 1452: 1429: 1425: 1421:gasification 1411: 1398: 1361: 1322:ferrosilicon 1311: 1275: 1265: 1257: 1253: 1250:heat sources 1244: 1230: 1204: 1194: 1171: 1155: 1139: 1127: 1111: 1104:South Africa 1090: 1069: 1050: 1023: 1011: 995: 960:carbon black 958:or Kvaerner 953: 887: 878: 874: 866: 861: 855: 846: 842: 836: 829: 808: 799:caustic soda 792: 770: 757: 741: 720: 711: 696: 688: 675: 673: 653: 637: 610: 606: 591: 580: 576: 565: 529: 507: 484: 453: 414: 392: 385: 328:electrolysis 229: 226:electrolysis 193: 177: 155: 131: 112:through the 106:oil refining 103: 100: 88:gasification 80: 72: 69:electrolysis 58: 57: 50: 34: 29: 7124:ChemSusChem 6615:hcei.tsc.ru 6613:Proceedings 6329:science.org 6064:: 335–344. 5793:: 150–156. 5706:ChemSusChem 5168:: 1288–97. 4896:: 502–533. 4853:: 502–533. 4640:(1): 70–4. 4081:: 227–279. 4049:: 140–145. 3747:IEA H2 2019 3690:. Nel ASA. 2269:Biohydrogen 2138:The use of 2040:), such as 1843:(1740–2900 1747:is used in 1713:biohydrogen 1417:biohydrogen 1326:World War I 1130:thermolysis 1124:Thermolysis 985:and 10% in 890:heating oil 753:formic acid 212:References 169:solar power 157:Decomposing 138:lithosphere 7955:2022-12-23 7946:"Hydrogen" 7880:2022-12-23 7854:2022-12-23 7683:Q108067259 7604:2024-05-13 7510:(1): 8–9. 7383:2010-07-05 7358:2010-07-05 7316:2010-07-05 7285:2009-09-19 7260:2015-08-02 7037:2008-05-09 7002:2008-09-19 6973:2016-08-22 6948:2010-07-05 6857:production 6837:2010-07-05 6725:2010-07-05 6687:: 113323. 6598:30 October 6567:30 October 6411:19 October 6380:19 October 6335:9 December 6294:(1): 8–9. 6262:January 6, 6236:January 6, 6042:2013-03-09 5654:2009-03-06 5536:2013-12-04 5503:2013-12-04 5432:2014-01-23 5315:2021-08-22 5206:2022-10-06 5083:2009-10-13 4946:(2): 1–8. 4764:: 112–20. 4733:: 744–57. 4675:: 218–22. 4573:energy.gov 4554:2011-12-13 3964:energy.gov 3798:2021-06-20 3666:2011-12-13 3616:2010-10-01 3513:2015-11-28 3383:2008-05-09 3307:2022-09-29 3281:2020-11-28 3247:2020-03-22 3182:: 101667. 3151:2020-11-27 3112:2023-07-03 3088:2022-09-29 3059:2023-11-22 3035:2023-09-26 3008:2019-06-03 2969:2019-06-03 2906:2014-09-06 2879:2020-09-29 2817:2023-09-21 2807:"Hydrogen" 2736:2024-03-23 2711:1 December 2664:: 119041. 2638:2022-02-11 2590:: 119041. 2551:: 102208. 2387:References 2237:by-product 2230:fuel cells 2199:See also: 1943:Hydrosol-2 1759:bioreactor 1367:bioreactor 1093:radiolysis 1087:Radiolysis 1039:process. 811:coke ovens 806:analysis. 623:(PEM) and 556:See also: 520:From water 487:exothermic 425:iron oxide 7932:253525130 7675:2050-0505 7551:: 03006. 7482:128762620 7438:105839304 6875:496234379 6659:244814932 6538:210862772 6503:206663568 6331:. Science 6257:U.S. Army 5201:New Atlas 4918:117669840 4875:117669840 4706:: 39–47. 4272:1826/6464 4027:135539661 2731:Yale E360 2490:252584593 2213:process, 2077:efforts. 2023:Norwegian 1956:heliostat 1920:based on 1653:Pyrolysis 1590:aluminium 1141:Pyrolysis 1108:phylotype 1100:gold mine 1095:. In the 1025:Coke oven 971:Norwegian 967:pyrolysis 847:catalytic 832:combusted 619:(SOECs), 437:feedstock 427:or other 245:Turquoise 65:renewable 8049:Category 7924:36385542 7831:Archived 7679:Wikidata 7504:Elements 7377:Archived 7349:Archived 7307:Archived 7279:Archived 7229:20140925 7152:19536754 7096:27941752 6996:Archived 6967:Archived 6883:20274275 6831:Archived 6783:19291418 6719:Archived 6664:16 March 6592:Archived 6588:Phys.Org 6561:Archived 6495:29146810 6405:Archived 6403:. BASF. 6374:Archived 6370:Phys-Org 6166:96849691 6121:20566280 6086:28042989 5850:21261127 5842:28220969 5734:19536754 5679:Taichung 5624:19291418 5449:Archived 5405:Archived 5292:22420345 5284:17053150 5120:U.S. EIA 5020:Archived 4991:Archived 4976:Nedstack 4970:Archived 4832:25309898 4606:22 April 4579:22 April 4483:Archived 4454:cite web 4426:17 April 4397:17 April 4338:22 April 4285:June 12, 4280:53760672 4165:March 9, 3970:17 April 3944:17 April 3916:17 April 3854:17 April 3825:17 April 3764:Archived 3732:22 April 3726:Archived 3701:22 April 3692:Archived 3610:Archived 3587:25309898 3501:Capture" 3359:38323342 3272:Archived 3238:Archived 3214:32835007 3142:Archived 3054:Sensonic 3002:Archived 2978:cite web 2963:Archived 2959:gasworld 2873:Archived 2841:Archived 2793:38323342 2705:Archived 2632:Archived 2518:Archived 2252:See also 2221:via the 2066:methanol 1847:, 12–20 1819:O) into 1790:Archived 1717:bacteria 1458:bacteria 1314:balloons 1258:chemical 795:chlorine 779:(WGSR). 745:methanol 682:of the H 449:captured 402:catalyst 128:Overview 118:methanol 83:include 31:Hydrogen 8014:. 2019. 7997:Sources 7904:Bibcode 7782:..."], 7553:Bibcode 7512:Bibcode 7462:Bibcode 7418:Bibcode 7132:Bibcode 7087:5159813 7066:Bibcode 6906:Bibcode 6774:2777220 6753:Bibcode 6689:Bibcode 6639:Bibcode 6473:Bibcode 6465:Science 6296:Bibcode 6146:Bibcode 6066:Bibcode 5989:Bibcode 5954:Bibcode 5877:Bibcode 5822:Bibcode 5714:Bibcode 5615:2777220 5594:Bibcode 5366:Bibcode 5264:Bibcode 5256:Science 5170:Bibcode 4898:Bibcode 4855:Bibcode 4823:4174133 4800:Bibcode 4642:Bibcode 4369:28 July 4007:Bibcode 3881:: 1–9. 3770:17 June 3722:iea.org 3578:4174133 3555:Bibcode 3440:Bibcode 3205:7326412 3184:Bibcode 2666:Bibcode 2592:Bibcode 2553:Bibcode 2468:Bibcode 2365:Hy4Heat 2219:ammonia 2062:ammonia 2042:methane 1835:is the 1707:is the 1486:E. coli 1413:Biomass 1256:) with 1097:Mponeng 843:thermal 749:ethanol 656:voltage 441:naphtha 415:In the 252:methane 234:biomass 110:ammonia 85:biomass 77:biomass 43:methane 8034:  7930:  7922:  7896:Nature 7681:  7673:  7624:dw.com 7480:  7436:  7227:  7184:  7150:  7094:  7084:  6881:  6873:  6863:  6811:14 May 6781:  6771:  6657:  6536:  6501:  6493:  6395:BASF. 6209:  6164:  6119:  6084:  6022:E coli 5923:  5848:  5840:  5820:(20). 5767:  5732:  5622:  5612:  5567:  5290:  5282:  5029:8 July 4997:5 July 4916:  4873:  4830:  4820:  4798:: 79. 4329:  4278:  4025:  3585:  3575:  3553:: 79. 3478:  3413:  3357:  3212:  3202:  2791:  2524:6 July 2488:  2181:. The 2046:biogas 1821:oxygen 1767:oxygen 1763:sulfur 1721:enzyme 1586:carbon 1580:CC-HOD 1574:CC-HOD 1375:oxygen 1371:sulfur 1271:hybrid 1262:oxygen 1254:thermo 1056:syngas 964:plasma 938:+ 12 O 815:Syngas 773:syngas 510:oxygen 497:O → CO 493:CO + H 464:syngas 429:oxides 399:nickel 337:Yellow 209:Notes 203:Color 7928:S2CID 7756:(2). 7750:(PDF) 7478:S2CID 7434:S2CID 7352:(PDF) 7345:(PDF) 7310:(PDF) 7303:(PDF) 7031:(PDF) 7020:(PDF) 6942:(PDF) 6935:(PDF) 6655:S2CID 6534:S2CID 6499:S2CID 6162:S2CID 5846:S2CID 5690:(PDF) 5675:(PDF) 5648:(PDF) 5641:(PDF) 5530:(PDF) 5523:(PDF) 5497:(PDF) 5490:(PDF) 5473:(PDF) 5288:S2CID 5023:(PDF) 5016:(PDF) 4914:S2CID 4871:S2CID 4527:(PDF) 4446:(PDF) 4416:(PDF) 4388:(PDF) 4276:S2CID 4229:2 May 4223:(PDF) 4212:(PDF) 4023:S2CID 3935:(PDF) 3906:(PDF) 3844:(PDF) 3816:(PDF) 3695:(PDF) 3684:(PDF) 3639:(PDF) 3504:(PDF) 3275:(PDF) 3268:(PDF) 3241:(PDF) 3234:(PDF) 3145:(PDF) 3138:(PDF) 2897:(PDF) 2486:S2CID 2460:Joule 1951:Spain 1813:water 1756:algae 1741:light 1470:light 1364:algae 1273:one. 1266:cycle 1220:+1/2O 1192:+2HI 920:+ 6 O 900:and C 877:CO + 789:Mekog 218:Green 163:or a 8032:ISBN 7986:2021 7920:PMID 7778:and 7671:ISSN 7225:PMID 7182:ISBN 7148:PMID 7092:PMID 6879:OSTI 6871:OCLC 6861:ISBN 6813:2018 6779:PMID 6666:2022 6600:2020 6569:2020 6491:PMID 6413:2020 6382:2020 6337:2023 6264:2020 6238:2020 6207:ISBN 6117:PMID 6082:PMID 5921:ISBN 5838:PMID 5765:ISBN 5730:PMID 5620:PMID 5565:ISBN 5280:PMID 5162:Fuel 5031:2020 4999:2020 4828:PMID 4608:2018 4581:2018 4460:link 4428:2018 4399:2018 4371:2018 4340:2018 4327:ISBN 4287:2011 4231:2018 4167:2013 3972:2018 3946:2018 3918:2018 3879:2013 3856:2018 3827:2018 3792:CNBC 3772:2020 3734:2018 3703:2018 3583:PMID 3476:ISBN 3411:ISBN 3355:PMID 3210:PMID 2984:link 2789:PMID 2713:2020 2526:2021 2064:and 2013:The 1990:and 1588:and 1520:and 1447:and 1276:The 1156:The 1008:Coal 989:. CO 954:The 797:and 560:and 304:coal 283:Gray 265:Blue 7912:doi 7900:611 7874:IEA 7780:AES 7715:hdl 7707:doi 7663:doi 7599:IEA 7561:doi 7520:doi 7470:doi 7426:doi 7215:doi 7174:doi 7140:doi 7082:PMC 7074:doi 6914:doi 6769:PMC 6761:doi 6749:102 6697:doi 6685:181 6647:doi 6526:doi 6481:doi 6469:358 6440:doi 6304:doi 6154:doi 6109:doi 6074:doi 6062:227 5997:doi 5962:doi 5913:doi 5885:doi 5830:doi 5795:doi 5791:252 5757:doi 5722:doi 5610:PMC 5602:doi 5590:102 5374:doi 5339:doi 5272:doi 5260:314 5178:doi 5166:117 5143:doi 4948:doi 4906:doi 4894:231 4863:doi 4851:231 4818:PMC 4808:doi 4766:doi 4735:doi 4731:212 4708:doi 4704:229 4677:doi 4673:198 4650:doi 4309:, . 4268:hdl 4260:doi 4190:doi 4110:doi 4083:doi 4051:doi 4015:doi 3883:doi 3573:PMC 3563:doi 3448:doi 3403:doi 3345:hdl 3335:doi 3200:PMC 3192:doi 2934:doi 2811:IEA 2779:hdl 2769:doi 2674:doi 2662:216 2600:doi 2588:216 2561:doi 2476:doi 2416:doi 2000:LHV 1949:in 1849:MPa 1845:psi 1841:bar 1777:. 1348:An 1216:→SO 1184:O→H 1180:+2H 1176:+SO 1110:of 873:→ 2 853:2 C 501:+ H 474:+ H 412:). 8051:: 8010:. 7976:. 7972:. 7948:. 7926:. 7918:. 7910:. 7898:. 7871:. 7847:. 7829:. 7825:. 7813:^ 7803:. 7752:. 7713:. 7701:. 7677:. 7669:. 7661:. 7639:, 7622:. 7597:. 7559:. 7549:98 7547:. 7543:. 7518:. 7508:16 7506:. 7502:. 7476:. 7468:. 7458:24 7456:. 7432:. 7424:. 7414:43 7412:. 7347:. 7305:. 7246:. 7223:. 7211:49 7209:. 7205:. 7180:. 7160:^ 7146:. 7138:. 7126:. 7113:^ 7090:. 7080:. 7072:. 7060:. 7056:. 7022:. 6912:. 6902:38 6900:. 6877:. 6869:. 6799:. 6777:. 6767:. 6759:. 6747:. 6743:. 6695:. 6683:. 6653:. 6645:. 6635:47 6633:. 6629:. 6590:. 6586:. 6555:. 6532:. 6520:. 6497:. 6489:. 6479:. 6467:. 6463:. 6434:. 6430:. 6399:. 6368:. 6327:. 6302:. 6292:16 6290:. 6284:. 6255:. 6229:. 6176:. 6160:. 6152:. 6142:32 6140:. 6115:. 6105:21 6103:. 6080:. 6072:. 6060:. 6030:. 6026:. 5995:. 5985:32 5983:. 5960:. 5950:42 5948:. 5935:^ 5919:. 5911:. 5899:^ 5883:. 5871:. 5867:. 5844:. 5836:. 5828:. 5818:29 5816:. 5789:. 5763:. 5751:. 5728:. 5720:. 5708:. 5681:: 5618:. 5608:. 5600:. 5588:. 5584:. 5455:. 5372:. 5362:81 5360:. 5335:33 5333:. 5308:. 5286:. 5278:. 5270:. 5258:. 5254:. 5199:. 5176:. 5164:. 5139:15 5137:. 5118:. 5100:. 5047:. 5018:. 4989:. 4942:. 4938:. 4926:^ 4912:. 4904:. 4892:. 4869:. 4861:. 4849:. 4826:. 4816:. 4806:. 4794:. 4790:. 4778:^ 4762:60 4760:. 4747:^ 4729:. 4702:. 4671:. 4648:. 4638:40 4636:. 4598:. 4571:. 4503:. 4481:. 4477:. 4456:}} 4452:{{ 4418:. 4390:. 4357:. 4303:. 4274:. 4266:. 4256:41 4254:. 4248:. 4214:. 4186:34 4184:. 4106:18 4104:. 4079:24 4077:. 4063:^ 4047:66 4045:. 4021:. 4013:. 4001:. 3980:^ 3962:. 3937:. 3908:. 3877:. 3873:. 3846:. 3818:. 3789:. 3762:. 3720:. 3686:. 3604:. 3581:. 3571:. 3561:. 3549:. 3545:. 3506:. 3460:^ 3446:. 3436:40 3434:. 3409:. 3353:. 3343:. 3331:53 3329:. 3325:. 3299:. 3208:. 3198:. 3190:. 3180:70 3178:. 3174:. 3160:^ 3121:^ 3105:. 3080:. 3068:^ 3052:. 3028:. 3017:^ 3000:. 2980:}} 2976:{{ 2961:. 2957:. 2928:. 2924:. 2899:. 2871:. 2839:. 2835:. 2809:. 2787:. 2777:. 2765:53 2763:. 2759:. 2745:^ 2729:. 2703:. 2697:. 2672:. 2660:. 2656:. 2630:. 2626:. 2614:^ 2598:. 2586:. 2582:. 2559:. 2549:80 2547:. 2543:. 2516:. 2512:. 2508:. 2484:. 2474:. 2462:. 2458:. 2439:. 2410:. 2404:. 2248:. 2032:(C 1994:, 1986:, 1982:, 1978:, 1974:, 1941:. 1867:MJ 1823:(O 1815:(H 1743:. 1727:. 1661:CH 1320:, 1228:O 1224:+H 1212:SO 1199:+I 1188:SO 1102:, 1073:CO 1031:(H 1021:. 1004:. 936:12 932:24 918:24 914:12 906:12 902:24 898:24 894:12 865:+ 759:CO 751:, 747:, 615:, 470:CH 466:. 451:. 326:, 236:. 98:. 90:, 55:. 8040:. 7988:. 7958:. 7934:. 7914:: 7906:: 7883:. 7857:. 7807:. 7723:. 7717:: 7709:: 7703:4 7685:. 7665:: 7607:. 7583:. 7569:. 7563:: 7555:: 7528:. 7522:: 7514:: 7484:. 7472:: 7464:: 7440:. 7428:: 7420:: 7386:. 7361:. 7319:. 7288:. 7263:. 7231:. 7217:: 7190:. 7176:: 7154:. 7142:: 7134:: 7128:2 7098:. 7076:: 7068:: 7062:7 7040:. 7005:. 6976:. 6951:. 6920:. 6916:: 6908:: 6885:. 6855:2 6840:. 6815:. 6785:. 6763:: 6755:: 6728:. 6703:. 6699:: 6691:: 6668:. 6649:: 6641:: 6602:. 6571:. 6540:. 6528:: 6522:3 6505:. 6483:: 6475:: 6448:. 6442:: 6436:7 6415:. 6384:. 6353:. 6339:. 6312:. 6306:: 6298:: 6266:. 6240:. 6215:. 6168:. 6156:: 6148:: 6123:. 6111:: 6088:. 6076:: 6068:: 6045:. 6032:3 6003:. 5999:: 5991:: 5968:. 5964:: 5956:: 5929:. 5915:: 5893:. 5887:: 5879:: 5873:8 5852:. 5832:: 5824:: 5801:. 5797:: 5773:. 5759:: 5736:. 5724:: 5716:: 5710:2 5657:. 5626:. 5604:: 5596:: 5539:. 5506:. 5475:. 5435:. 5380:. 5376:: 5368:: 5345:. 5341:: 5318:. 5294:. 5274:: 5266:: 5209:. 5184:. 5180:: 5172:: 5149:. 5145:: 5086:. 5051:. 5033:. 5001:. 4956:. 4950:: 4944:3 4920:. 4908:: 4900:: 4877:. 4865:: 4857:: 4834:. 4810:: 4802:: 4796:2 4772:. 4768:: 4741:. 4737:: 4714:. 4710:: 4696:2 4683:. 4679:: 4656:. 4652:: 4644:: 4610:. 4583:. 4557:. 4462:) 4430:. 4401:. 4373:. 4342:. 4289:. 4270:: 4262:: 4233:. 4196:. 4192:: 4169:. 4130:: 4116:. 4112:: 4089:. 4085:: 4057:. 4053:: 4029:. 4017:: 4009:: 4003:2 3974:. 3948:. 3920:. 3891:. 3885:: 3858:. 3829:. 3801:. 3774:. 3736:. 3705:. 3669:. 3619:. 3589:. 3565:: 3557:: 3551:2 3516:. 3499:2 3484:. 3454:. 3450:: 3442:: 3419:. 3405:: 3386:. 3361:. 3347:: 3337:: 3310:. 3284:. 3250:. 3216:. 3194:: 3186:: 3154:. 3115:. 3091:. 3062:. 3038:. 3011:. 2986:) 2972:. 2942:. 2936:: 2930:7 2909:. 2882:. 2857:. 2820:. 2795:. 2781:: 2771:: 2739:. 2715:. 2682:. 2676:: 2668:: 2641:. 2608:. 2602:: 2594:: 2567:. 2563:: 2555:: 2528:. 2492:. 2478:: 2470:: 2464:6 2443:. 2424:. 2418:: 2412:7 2038:m 2036:H 2034:n 1829:2 1825:2 1817:2 1775:2 1678:2 1673:H 1666:4 1433:2 1431:H 1252:( 1226:2 1222:2 1218:2 1214:4 1210:2 1201:2 1197:2 1190:4 1186:2 1182:2 1178:2 1174:2 1162:2 1078:2 1060:2 1033:2 991:2 979:m 977:H 975:n 944:2 940:2 934:H 930:C 926:2 922:2 916:H 912:C 904:H 896:H 883:2 881:H 879:m 875:n 871:2 869:O 867:n 862:m 859:H 856:n 761:2 729:2 724:H 706:2 704:H 684:2 536:2 514:2 503:2 499:2 495:2 480:2 476:2 472:4 460:4 456:2 445:2 433:2 421:2 410:2 395:4 20:)

Index

Brown hydrogen
Hydrogen
steam methane reforming
methane
carbon capture and storage
blue hydrogen
Green hydrogen
renewable
electrolysis
biomass
biomass
gasification
methane pyrolysis
underground hydrogen
oil refining
ammonia
Haber process
methanol
carbon monoxide
Kola Superdeep Borehole
lithosphere
methane pyrolysis

Decomposing
nuclear power
renewable energy
solar power
green hydrogen
greenhouse gas emissions
grey hydrogen

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑