Knowledge (XXG)

Ceramic capacitor

Source 📝

178:, phase transitions and the chemical and mechanical optimization of the ceramic materials. Through the complex mixture of different basic materials, the electrical properties of ceramic capacitors can be precisely adjusted. To distinguish the electrical properties of ceramic capacitors, standardization defined several different application classes (Class 1, Class 2, Class 3). It is remarkable that the separate development during the War and the time afterwards in the US and the European market had led to different definitions of these classes (EIA vs IEC), and only recently (since 2010) has a worldwide harmonization to the IEC standardization taken place. 4502: 4514: 2500: 1767: 1592: 3820: 1728: 143:) was used as the first ceramic dielectric because it had a linear temperature dependence of capacitance for temperature compensation of resonant circuits and can replace mica capacitors. In 1926 these ceramic capacitors were produced in small quantities with increasing quantities in the 1940s. The style of these early ceramics was a disc with metallization on both sides contacted with tinned wires. This style predates the transistor and was used extensively in vacuum-tube equipment (e.g., radio receivers) from about 1930 through the 1950s. 4480: 3890: 1618: 3832: 3878: 1818: 31: 1810:
and solidified by pressure. Besides the relative permittivity, the size and number of layers determines the later capacitance value. The electrodes are stacked in an alternating arrangement slightly offset from the adjoining layers so that they each can later be connected on the offset side, one left, one right. The layered stack is pressed and then cut into individual components. High mechanical precision is required, for example, to produce a 500 or more layer stack of size "0201" (0.5 mm × 0.3 mm).
1048: 167: 3950: 1905: 3796: 3660: 1076: 3808: 1740: 2488: 3747: 3759: 4050: 2542: 1060: 1716: 4715: 4455: 3962: 3595: 3868:
solid-state relay snubbers and spark quenchers) from sending and receiving electromagnetic and radio frequency interference as well as transients in across-the-line (X capacitors) and line-to-ground (Y capacitors) connections. X capacitors effectively absorb symmetrical, balanced, or differential interference. Y capacitors are connected in a line bypass between a line phase and a point of zero potential, to absorb asymmetrical, unbalanced, or common-mode interference.
1630: 3735: 1795: 5235: 6343:, it is important that the capacitor does not recover a residual charge after full discharge, and capacitors with low absorption are specified. The voltage at the terminals generated by dielectric absorption may in some cases possibly cause problems in the function of an electronic circuit or can be a safety risk to personnel. To prevent shocks, most very large capacitors like power capacitors are shipped with shorting wires that are removed before use. 3571: 3583: 3672: 189: 5939: 3974: 1953:(IEC/EN), devised a second, metric code. The EIA code and the metric equivalent of the common sizes of multilayer ceramic chip capacitors, and the dimensions in mm are shown in the following table. Missing from the table is the measure of the height "H". This is generally not listed, because the height of MLCC chips depends on the number of layers and thus on the capacitance. Normally, however, the height H does not exceed the width W. 3648: 1704: 2019: 3683:
additional third set of shield electrodes incorporated in the chip. These shield electrodes surround each existing electrode within the stack of the capacitor plates and are low ohmic contacted with two additional side terminations across to the capacitor terminations. The X2Y construction results in a three-node capacitive circuit that provides simultaneous line-to-line and line-to-ground filtering.
3695:
inductances of the supply lines. A standard solution with conventional ceramic capacitors requires the parallel use of many conventional MLCC chips with different capacitance values. Here X2Y capacitors are able to replace up to five equal-sized ceramic capacitors on the PCB. However, this particular type of ceramic capacitor is patented, so these components are still comparatively expensive.
3985:
historical reasons. The standardization of ceramic capacitors for lower power is oriented toward electrical and mechanical parameters as components for use in electronic equipment. The standardization of power capacitors, contrary to that, is strongly focused on protecting personnel and equipment, given by the local regulating authority.
274:
the temperature range, and losses at high frequencies are much higher. These different electrical characteristics of ceramic capacitors requires to group them into "application classes". The definition of the application classes comes from the standardization. As of 2013, two sets of standards were in use, one from
6374:
In the reverse microphonic effect, the varying electric field between the capacitor plates exerts a physical force, moving them as a speaker. High current impulse loads or high ripple currents can generate audible acoustic sound coming from the capacitor, but discharges the capacitor and stresses the
3934:
As of 2012 most ceramic capacitors used for EMI/RFI suppression were leaded ones for through-hole mounting on a PCB, the surface-mount technique is becoming more and more important. For this reason, in recent years a lot of MLCC chips for EMI/RFI suppression from different manufacturers have received
3842:
With a similar construction called "Floating Electrode Design" (FED) or "Multi-layer Serial Capacitors" (MLSC), also, only capacitance reduction results if parts of the capacitor body break. This construction works with floating electrodes without any conductive connection to the termination. A break
1923:
electronics in recent decades, the components on the periphery of the integrated logic circuits have been scaled down as well. Shrinking an MLCC involves reducing the dielectric thickness and increasing the number of layers. Both options require huge efforts and are connected with a lot of expertise.
1813:
After cutting, the binder is burnt out of the stack. This is followed by sintering at temperatures between 1,200 and 1,450 °C producing the final, mainly crystalline, structure. This burning process creates the desired dielectric properties. Burning is followed by cleaning and then metallization
162:
The higher permittivity resulted in much higher capacitance values, but this was coupled with relatively unstable electrical parameters. Therefore, these ceramic capacitors only could replace the commonly used mica capacitors for applications where stability was less important. Smaller dimensions, as
5950:
class 2 ceramic capacitors capacitance decreases over time. This behavior is called "aging". Aging occurs in ferroelectric dielectrics, where domains of polarization in the dielectric contribute to total polarization. Degradation of the polarized domains in the dielectric decreases permittivity over
5847:
The smaller the capacitance C and the inductance L the higher is the resonance frequency. The self-resonant frequency is the lowest frequency at which impedance passes through a minimum. For any AC application the self-resonant frequency is the highest frequency at which a capacitor can be used as a
4360:
The required capacitance tolerance is determined by the particular application. The narrow tolerances of E24 to E96 will be used for high-quality class 1 capacitors in circuits such as precision oscillators and timers. For applications such as non-critical filtering or coupling circuits, for class 2
1805:
An MLCC can be thought of as consisting of many single-layer capacitors stacked together into a single package. The starting material for all MLCC chips is a mixture of finely ground granules of paraelectric or ferroelectric raw materials, modified by accurately determined additives. The composition
1564:
ceramic capacitors have very high permittivity, up to 50,000 and therefore a better volumetric efficiency than class 2 capacitors. However, these capacitors have worse electrical characteristics, including lower accuracy and stability. The dielectric is characterized by very high nonlinear change of
1083:
Class 2 ceramic capacitors have a dielectric with a high permittivity and therefore a better volumetric efficiency than class 1 capacitors, but lower accuracy and stability. The ceramic dielectric is characterized by a nonlinear change of capacitance over the temperature range. The capacitance value
6383:
Ceramic capacitors may experience changes to their electrical parameters due to soldering stress. The heat of the solder bath, especially for SMD styles, can cause changes of contact resistance between terminals and electrodes. For ferroelectric class 2 ceramic capacitors, the soldering temperature
5855:
Ceramic capacitors, which are available in the range of very small capacitance values (pF and higher) are already out of their smaller capacitance values suitable for higher frequencies up to several 100 MHz (see formula above). Due to the absence of leads and proximity to the electrodes, MLCC
3996:
As modern electronic equipment gained the ability to handle power levels that were previously the exclusive domain of "electrical power" components, the distinction between the "electronic" and "electrical" power ratings has become less distinct. In the past, the boundary between these two families
3984:
Although the materials used for large power ceramic capacitors mostly are very similar to those used for smaller ones, ceramic capacitors with high to very high power or voltage ratings for applications in power systems, transmitters and electrical installations are often classified separately, for
2553:
The picture right shows the maximum capacitance for class 1 and class 2 multilayer ceramic chip capacitors. The following two tables, for ceramics NP0/C0G and X7R each, list for each common case size the maximum available capacitance value and rated voltage of the leading manufacturers Murata, TDK,
1029:
For instance, an "NP0" capacitor with EIA code "C0G" will have 0 drift, with a tolerance of ±30 ppm/K, while an "N1500" with the code "P3K" will have −1500 ppm/K drift, with a maximum tolerance of ±250 ppm/°C. Note that the IEC and EIA capacitor codes are industry capacitor codes and
756:
In addition to the EIA code, the temperature coefficient of the capacitance dependence of class 1 ceramic capacitors is commonly expressed in ceramic names like "NP0", "N220" etc. These names include the temperature coefficient (α). In the IEC/EN 60384-8/21 standard, the temperature coefficient and
5954:
The aging follows a logarithmic law. This law defines the decrease of capacitance as a percentage for a time decade after the soldering recovery time at a defined temperature, for example, in the period from 1 to 10 hours at 20 °C. As the law is logarithmic, the percentage loss of capacitance
5742:
The ohmic losses of ceramic capacitors are frequency, temperature and voltage dependent. Additionally, class 2 capacitor measurements change because of aging. Different ceramic materials have differing losses over the temperature range and the operating frequency. The changes in class 1 capacitors
4462:
Most discrete capacitor types have greater or smaller capacitance changes with increasing frequencies. The dielectric strength of class 2 ceramic and plastic film diminishes with rising frequency. Therefore, their capacitance value decreases with increasing frequency. This phenomenon is related to
1809:
A thin ceramic foil is cast from a suspension of the powder with a suitable binder. Rolls of foil are cut into equal-sized sheets, which are screen printed with a metal paste layer, which will become the electrodes. In an automated process, these sheets are stacked in the required number of layers
273:
Higher capacitance values for ceramic capacitors can be attained by using mixtures of ferroelectric materials like barium titanate together with specific oxides. These dielectric materials have much higher permittivities, but at the same time their capacitance value are more or less nonlinear over
265:
ceramics, influences the electrical characteristics of the capacitors. Using mixtures of paraelectric substances based on titanium dioxide results in very stable and linear behavior of the capacitance value within a specified temperature range and low losses at high frequencies. But these mixtures
5958:
The rate of aging of class 2 capacitors mainly depends on the materials used. A rule of thumb is, the higher the temperature dependence of the ceramic, the higher the aging percentage. The typical aging of X7R ceramic capacitors is about 2.5% per decade The aging rate of Z5U ceramic capacitors is
3694:
The X2Y footprint results in lower mounted inductance. This is particularly of interest for use in high-speed digital circuits with clock rates of several 100 MHz and upwards. There the decoupling of the individual supply voltages on the circuit board is difficult to realize due to parasitic
1547:
the class 2 dielectrics specify temperature characteristic (TC) but not temperature-voltage characteristic (TVC). Similar to X7R, military type BX cannot vary more than 15% over temperature, and in addition, must remain within +15%/-25 % at maximum rated voltage. Type BR has a TVC limit of
594:
Class 1 capacitors have a temperature coefficient that is typically fairly linear with temperature. These capacitors have very low electrical losses with a dissipation factor of approximately 0.15%. They undergo no significant aging processes and the capacitance value is nearly independent of the
6224:
The insulation resistance given in the unit MΩ (10 Ohm) as well as the self-discharge constant in seconds is an important parameter for the quality of the dielectric insulation. These time values are important, for example, when a capacitor is used as timing component for relays or for storing a
5969:
Class 1 capacitors do not experience ferroelectric aging like Class 2's. But environmental influences such as higher temperature, high humidity and mechanical stress can, over a longer period of time, lead to a small irreversible decline in capacitance, sometimes also called aging. The change of
4487:
Capacitance of ceramic capacitors may also change with applied voltage. This effect is more prevalent in class 2 ceramic capacitors. The ferroelectric material depends on the applied voltage. The higher the applied voltage, the lower the permittivity. Capacitance measured or applied with higher
3777:
Bending strengths of MLCC chips differ by the ceramic material, the size of the chip, and the physical construction of the capacitors. Without special mitigation, NP0/C0G class 1 ceramic MLCC chips reach a typical bending strength of 2 mm while larger types of X7R, Y5V class 2 ceramic chips
1663:
The electrodes of the capacitor are deposited on the ceramic layer by metallization. For MLCCs alternating metallized ceramic layers are stacked one above the other. The outstanding metallization of the electrodes at both sides of the body are connected with the contacting terminal. A lacquer or
248:
New developments in ceramic materials have been made with anti-ferroelectric ceramics. This material has a nonlinear antiferroelectric/ferroelectric phase change that allows increased energy storage with higher volumetric efficiency. They are used for energy storage (for example, in detonators).
6504:
If space permits ceramic capacitors, like most other electronic components, have imprinted markings to indicate the manufacturer, the type, their electrical and thermal characteristics and their date of manufacture. In the ideal case, if they are large enough, the capacitor will be marked with:
4000:
Power ceramic capacitors are mostly specified for much higher than 200 volt-amps. The great plasticity of ceramic raw material and the high dielectric strength of ceramics deliver solutions for many applications and are the reasons for the enormous diversity of styles within the family of power
1948:
MLCCs are manufactured in standardized shapes and sizes for comparable handling. Because the early standardization was dominated by American EIA standards the dimensions of the MLCC chips were standardized by EIA in units of inches. A rectangular chip with the dimensions of 0.06-inch length and
1944:
MLCCs don't have leads, and as a result they are usually smaller than their counterparts with leads. They don't require through-hole access in a PCB to mount and are designed to be handled by machines rather than by humans. As a result, surface-mount components like MLCCs are typically cheaper.
401:
Class 1 ceramic capacitors are accurate, temperature-compensating capacitors. They offer the most stable voltage, temperature, and to some extent, frequency. They have the lowest losses and therefore are especially suited for resonant circuit applications where stability is essential or where a
181:
The typical style for ceramic capacitors beneath the disc (at that time called condensers) in radio applications at the time after the War from the 1950s through the 1970s was a ceramic tube covered with tin or silver on both the inside and outside surface. It included relatively long terminals
131:
Mica is a natural material and not available in unlimited quantities. So in the mid-1920s the deficiency of mica in Germany and the experience in porcelain—a special class of ceramic—led in Germany to the first capacitors using ceramic as dielectric, founding a new family of ceramic capacitors.
3867:
decreases with increasing frequency, such that at higher frequencies they appear as short circuits to high-frequency electrical noise and transients between the lines, or to ground. They therefore prevent equipment and machinery (including motors, inverters, and electronic ballasts, as well as
3846:
The same volume with respect to standard MLCCs is achieved by the introduction of a flexible intermediate layer of a conductive polymer between the electrodes and the termination called "Flexible Terminations" (FT-Cap) or "Soft Terminations". In this construction, the rigid metallic soldering
4533:
For most capacitors, a physically conditioned dielectric strength or a breakdown voltage usually could be specified for each dielectric material and thickness. This is not possible with ceramic capacitors. The breakdown voltage of a ceramic dielectric layer may vary depending on the electrode
4057:
All electrical characteristics of ceramic capacitors can be defined and specified by a series equivalent circuit composed out of an idealized capacitance and additional electrical components, which model all losses and inductive parameters of a capacitor. In this series-equivalent circuit the
1037:
are technically of great interest. These capacitors have a capacitance variation dC/C of ±0.54% within the temperature range −55 to +125 °C. This enables accurate frequency response over a wide temperature range (in, for example, resonant circuits). The other materials with their special
3900:
EMI/RFI suppression capacitors are designed so that any remaining interference or electrical noise does not exceed the limits of EMC directive EN 50081. Suppression components are connected directly to mains voltage for 10 to 20 years or more and are therefore exposed to potentially damaging
98: 3781:
With special design features, particularly at the electrodes and terminations, the bending strength can be improved. For example, an internal short circuit arises by the contact of two electrodes with opposite polarity, which will be produced at the break of the ceramic in the region of the
3682:
A standard multi-layer ceramic capacitor has many opposing electrode layers stacked inside connected with two outer terminations. The X2Y ceramic chip capacitor however is a 4 terminal chip device. It is constructed like a standard two-terminal MLCC out of the stacked ceramic layers with an
3621:
Because, especially in digital signal processing, switching frequencies have continued to rise, the demand for high frequency decoupling or filter capacitors increases. With a simple design change the ESL of an MLCC chip can be reduced. Therefore, the stacked electrodes are connected on the
389:
The different class numbers within both standards are the reason for a lot of misunderstandings interpreting the class descriptions in the datasheets of many manufacturers. The EIA ceased operations on February 11, 2011, but the former sectors continue to serve international standardization
6534:
Smaller capacitors use a shorthand notation, to display all the relevant information in the limited space. The most commonly used format is: XYZ J/K/M VOLTS V, where XYZ represents the capacitance (calculated as XY × 10 pF), the letters J, K or M indicate the tolerance (±5%, ±10% and ±20%
6285:
Dielectric absorption is the name given to the effect by which a capacitor, which has been charged for a long time, discharges only incompletely. Although an ideal capacitor remains at zero volts after discharge, real capacitors will develop a small voltage coming from time-delayed dipole
5856:
chips have significantly lower parasitic inductance than f. e. leaded types, which makes them suitable for higher frequency applications. A further reduction of parasitic inductance is achieved by contacting the electrodes on the longitudinal side of the chip instead of the lateral side.
2532:
The disadvantages of BME were deemed acceptable for class 2 capacitors, which are primarily used in accuracy-insensitive, low-cost applications such as power supplies. NME still sees use in class 1 capacitors where conformance to specifications are critical and cost is less of a concern.
4537:
The voltage proof of ceramic capacitors is specified as rated voltage (UR). This is the maximum DC voltage that may be continuously applied to the capacitor up to the upper temperature limit. This guaranteed voltage proof is tested according to the voltages shown in the adjacent table.
3922:
of various national safety standards agencies. For power line applications, special requirements are placed on the non-flammability of the coating and the epoxy resin impregnating or coating the capacitor body. To receive safety approvals, X and Y powerline-rated capacitors are
150:
so that only small capacitance values could be realized. The expanding market of radios in the 1930s and 1940s create a demand for higher capacitance values but below electrolytic capacitors for HF decoupling applications. Discovered in 1921, the ferroelectric ceramic material
5851:
ESL in industrial capacitors is mainly caused by the leads and internal connections used to connect the plates to the outside world. Larger capacitors tend to higher ESL than small ones, because the distances to the plate are longer and every millimeter increases inductance.
6391:
Hence after soldering a recovery time of approximately 24 hours is necessary. After recovery some electrical parameters like capacitance value, ESR, leakage currents are changed irreversibly. The changes are in the lower percentage range depending on the style of capacitor.
1131:
Due to these traits, class 2 capacitors are typically used in applications where only a minimum value of capacitance (as opposed to an accurate value) is required, such as the buffering/filtering of inputs and outputs of power supplies, and the coupling of electric signals.
4488:
voltage can drop to values of −80% of the value measured with the standardized measuring voltage of 0.5 or 1.0 V. This behavior is a small source of nonlinearity in low-distortion filters and other analog applications. In audio applications this can be the reason for
1814:
of both end surfaces. Through the metallization, the ends and the inner electrodes are connected in parallel and the capacitor gets its terminals. Finally, each capacitor is electrically tested to ensure functionality and adequate performance, and packaged in a tape reel.
4124:
is the value for which the capacitor has been designed. The actual capacitance depends on the measuring frequency and the ambient temperature. Standardized conditions for capacitors are a low-voltage AC measuring method at a temperature of 20 °C with frequencies of
5262:. The typical impedance curve shows that with increasing frequency, impedance decreases, down to a minimum. The lower the impedance, the more easily alternating currents can pass through the capacitor. At the minimum point of the curve, the point of resonance, where X 4001:
ceramic capacitors. These power capacitors have been on the market for decades. They are produced according to the requirements as class 1 power ceramic capacitors with high stability and low losses or class 2 power ceramic capacitors with high volumetric efficiency.
1123:. These ceramics have very high permittivity (200 to 14,000), allowing an extreme electric field and therefore capacitance within relatively small packages — class 2 capacitors are significantly smaller than comparable class 1 capacitors. However, the permittivity is 218:, launched in 1961, pioneered the stacking of multiple discs to create a monolithic block. This "multi-layer ceramic capacitor" (MLCC) was compact and offered high-capacitance capacitors. The production of these capacitors using the tape casting and ceramic-electrode 1927:
In 1995 the minimum thickness of the dielectric was 4 μm. By 2005 some manufacturers produced MLCC chips with layer thicknesses of 1 μm. As of 2010, the minimum thickness is about 0.5 μm. The field strength in the dielectric increased to 35 V/μm.
3989: 2549:
Capacitance of MLCC chips depends on the dielectric, the size and the required voltage (rated voltage). Capacitance values start at about 1pF. The maximum capacitance value is determined by the production technique. For X7R that is 47 μF, for Y5V: 100 μF.
4534:
material and the sintering conditions of the ceramic up to a factor of 10. A high degree of precision and control of process parameters is necessary to keep the scattering of electrical properties for today's very thin ceramic layers within specified limits.
5308:
The largest share of these losses in larger capacitors is usually the frequency dependent ohmic dielectric losses. Regarding the IEC 60384-1 standard, the ohmic losses of capacitors are measured at the same frequency used to measure capacitance. These are:
1935:
Between 1995 and 2005, the capacitance of a Y5V MLCC capacitor of size 1206 was increased from 4.7 μF to 100 μF. Meanwhile, (2013) a lot of producers can deliver class 2 MLCC capacitors with a capacitance value of 100 μF in the chip-size 0805.
1766: 402:
precisely defined temperature coefficient is required, for example in compensating temperature effects for a circuit. The basic materials of class 1 ceramic capacitors are composed of a mixture of finely ground granules of paraelectric materials such as
4501: 128:. On the receiver side, the smaller mica capacitors were used for resonant circuits. Mica dielectric capacitors were invented in 1909 by William Dubilier. Prior to World War II, mica was the most common dielectric for capacitors in the United States. 1135:
Class 2 capacitors are labeled according to the change in capacitance over the temperature range. The most widely used classification is based on the EIA RS-198 standard and uses a three-digit code. The first character, a letter, denotes the coldest
4035:
The dimensions of these power ceramic capacitors can be very large. At high power applications the losses of these capacitors can generate a lot of heat. For this reason some special styles of power ceramic capacitors have pipes for water-cooling.
1931:
The size reduction of these capacitors is achieved reducing powder grain size, the assumption to make the ceramic layers thinner. In addition, the manufacturing process became more precisely controlled, so that more and more layers can be stacked.
602:
The EIA RS-198 standard codes ceramic class 1 capacitors with a three character code that indicates temperature coefficient. The first letter gives the significant figure of the change in capacitance over temperature (temperature coefficient α) in
4845: 222:
was a great manufacturing challenge. MLCCs expanded the range of applications to those requiring larger capacitance values in smaller cases. These ceramic chip capacitors were the driving force behind the conversion of electronic devices from
5290:" or "insulating resistance" and are negligible for an AC specification. These AC losses are nonlinear and may depend on frequency, temperature, age, and for some special types, on humidity. The losses result from two physical conditions, 4513: 1646:
Ceramic capacitors are composed of a mixture of finely ground granules of paraelectric or ferroelectric materials, appropriately mixed with other materials to achieve the desired characteristics. From these powder mixtures, the ceramic is
1084:
also depends on the applied voltage. They are suitable for bypass, coupling and decoupling applications or for frequency discriminating circuits where low losses and high stability of capacitance are less important. They typically exhibit
3632:
Another possibility is to form the device as an array of capacitors. Here, several individual capacitors are built in a common housing. Connecting them in parallel, the resulting ESL as well as ESR values of the components are reduced.
7379: 3617:
of the component. The inductive parts of a capacitor are summarized in the equivalent series inductance, or ESL. (Note that L is the electrical symbol for inductance.) The smaller the inductance, the higher the resonance frequency.
1243:
For instance, a Z5U capacitor will operate from +10 °C to +85 °C with a capacitance change of at most +22% to −56%. An X7R capacitor will operate from −55 °C to +125 °C with a capacitance change of at most ±15%.
1651:
at high temperatures. The ceramic forms the dielectric and serves as a carrier for the metallic electrodes. The minimum thickness of the dielectric layer, which today (2013) for low voltage capacitors is in the size range of 0.5
5848:
capacitive component. At frequencies above the resonance, the impedance increases again due to ESL: the capacitor becomes an inductor with inductance equal to capacitor's ESL, and resistance equal to ESR at the given frequency.
2499: 4524:
The voltage dependence of capacitance in the two diagrams above shows curves from ceramic capacitors with NME metallization. For capacitors with BME metallization the voltage dependence of capacitance increased significantly.
3686:
Capable of replacing 2 or more conventional devices, the X2Y ceramic capacitors are ideal for high frequency filtering or noise suppression of supply voltages in digital circuits, and can prove invaluable in meeting stringent
5034: 4718:
Simplified series-equivalent circuit of a capacitor for higher frequencies (above); vector diagram with electrical reactances X_ESL and X_C and resistance ESR and for illustration the impedance Z and dissipation factor tan
1617: 3769:
The capability of MLCC chips to withstand mechanical stress is tested by a so-called substrate bending test, where a PCB with a soldered MLCC is bent by a punch by 1 to 3 mm. Failure occurs if the MLCC becomes a
6070: 1602:
Due to advancements in multilayer ceramic capacitors enabling superior performance in a smaller package, barrier layer capacitors as a technology are now considered obsolete and no longer standardized by the IEC.
1140:; the second character, a numeral, denotes the hottest temperature; and the third character, another letter, denotes the maximum allowed capacitance change over the capacitor's entire specified temperature range: 1038:
temperature behavior are used to compensate a counter temperature run of parallel connected components like coils in oscillator circuits. Class 1 capacitors exhibit very small tolerances of the rated capacitance.
1817: 7837: 5555: 4369:
Capacitance of ceramic capacitors varies with temperature. The different dielectrics of the many capacitor types show great differences in temperature dependence. The temperature coefficient is expressed in
6159: 1127:
with respect to field strength, meaning the capacitance varies significantly as the voltage across the terminals increases. Class 2 capacitors also exhibit poor temperature stability and age over time.
77:
Ceramic capacitors, especially multilayer ceramic capacitors (MLCCs), are the most produced and used capacitors in electronic equipment that incorporate approximately one trillion (10) pieces per year.
1882: 4198:. The actual capacitance value must be within the tolerance limits, or the capacitor is out of specification. For abbreviated marking in tight spaces, a letter code for each tolerance is specified in 5982:, which contributes to self-discharge. For ceramic capacitors this resistance, placed in parallel with the capacitor in the series-equivalent circuit of capacitors, is called "insulation resistance R 5955:
will twice between 1 h and 100 h and 3 times between 1 h and 1000 h and so on. So aging is fastest near the beginning, and the capacitance value effectively stabilizes over time.
2510:
Originally, MLCC electrodes were constructed out of noble metals such as silver and palladium which can withstand high sintering temperatures of 1200 to 1400 °C without readily oxidizing. These
7085: 1584:). As this ceramic technology improved in the mid-1980s, barrier layer capacitors became available in values of up to 100 μF, and at that time it seemed that they could substitute for smaller 3847:
connection can move against the flexible polymer layer, and thus can absorb the bending forces, without resulting in a break in the ceramic. Some automotive capacitors are specified to adhere to
3831: 7390: 3819: 2487: 5812: 5153: 5481: 5930:
Note that X7Rs have better frequency response than C0Gs. It makes sense, however, since class 2 capacitors are much smaller than class 1, so they ought to have lower parasitic inductance.
2517:
However, a surge in prices of noble metals in the late 1990s greatly increased manufacturing costs; these pressures resulted in the development of capacitors that used cheaper metals like
285:
The definitions of the application classes given in the two standards are different. The following table shows the different definitions of the application classes for ceramic capacitors:
8012: 5092: 7621: 6849: 5270:, the capacitor exhibits its lowest impedance value. Here only the ohmic ESR determines the impedance. With frequencies above the resonance, impedance increases again due to the ESL. 7907: 6432:
The tests and requirements to be met by ceramic capacitors for use in electronic equipment for approval as standardized types are set out in the following sectional specifications:
6192: 214:
The early style of the ceramic disc capacitor could be more cheaply produced than the common ceramic tube capacitors in the 1950s and 1970s. An American company in the midst of the
607:. The second character gives the multiplier of the temperature coefficient. The third letter gives the maximum tolerance from that in ppm/K. All ratings are from 25 to 85 °C: 7995: 7761: 7723:
Tsurumi, Takaaki; Shono, Motohiro; Kakemoto, Hirofumi; Wada, Satoshi; Saito, Kenji; Chazono, Hirokazu (2008). "Mechanism of capacitance aging under DC-bias field in X7R-MLCCS".
3843:
doesn't lead to a short, only to capacitance reduction. However, both structures lead to larger designs with respect to a standard MLCC version with the same capacitance value.
3795: 418:), modified by additives of zinc, zirconium, niobium, magnesium, tantalum, cobalt and strontium, which are necessary to achieve the capacitor's desired linear characteristics. 1591: 7854: 185:
The easy-to-mold ceramic material facilitated the development of special and large styles of ceramic capacitors for high-voltage, high-frequency (RF) and power applications.
6914: 3901:
overvoltages and transients. For this reason, suppression capacitors must comply with the safety and non-flammability requirements of international safety standards such as
3721:
Vibration and shock forces on the circuit board are more or less transmitted undampened to the MLCC and its solder joints; excessive force may cause the capacitor to crack (
3622:
longitudinal side with the connecting terminations. This reduces the distance that the charge carriers flow over the electrodes, which reduces inductance of the component.
241:
As of 2012, more than 10 MLCCs are manufactured each year. Along with the style of ceramic chip capacitors, ceramic disc capacitors are often used as safety capacitors in
7640:
M. Fortunato, Maxim Integrated Products, Temperature and Voltage Variation of Ceramic Capacitors, or Why Your 4.7 μF Capacitor Becomes a 0.33 μF Capacitor, Dec 04, 2012,
7542: 6991: 5201: 4763: 3807: 1033:
Class 1 capacitors include capacitors with different temperature coefficients α. Especially, NP0/CG/C0G capacitors with an α ±0•10 /K and an α tolerance of 30 
238:
succeeded in displacing palladium bearing electrodes with much cheaper nickel electrodes, significantly reducing production costs and enabling mass production of MLCCs.
7527: 3778:
achieved only a bending strength of approximately 1 mm. Smaller chips, such as the size of 0402, reached in all types of ceramics larger bending strength values.
7826: 6219: 6100: 5612: 5402: 5375: 5229: 7883: 361:
offer higher volumetric efficiency than EIA class II and typical change of capacitance by −22% to +56% over a lower temperature range of 10 °C to 55 °C.
62:. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes: 6271:
Insulation resistance and thus the self-discharge time rate are temperature dependent and decrease with increasing temperature at about 1 MΩ per 60 °C.
5431: 1565:
capacitance over the temperature range. The capacitance value additionally depends on the voltage applied. As well, they have very high losses and age over time.
5585: 5260: 4934: 4911: 4891: 4871: 4748: 7212: 1904: 1059: 1047: 433:. The additives of the chemical composition are used to adjust precisely the desired temperature characteristic. Class 1 ceramic capacitors have the lowest 6597:
For very small capacitors like MLCC chips no marking is possible. Here only the traceability of the manufacturers can ensure the identification of a type.
7457: 7248: 7089: 4541:
Furthermore, in periodic life time tests (endurance tests) the voltage proof of ceramic capacitors is tested with increased test voltage (120 to 150% of U
245:
suppression applications. Besides these, large ceramic power capacitors for high voltage or high frequency transmitter applications are also to be found.
211:
ferroelectric ceramics. Because this doped material was not suitable to produce multilayers, they were replaced decades later by Y5V class 2 capacitors.
2529:(BME) capacitors possessed poorer electrical characteristics; exhibiting greater shrinkage of capacitance at higher voltages and increased loss factor. 6793: 1687:
ceramic capacitor, used for bypass purposes in high-frequency circuits. Tube shape, inner metallization contacted with a lead, outer metallization for
1656:
is limited downwards by the grain size of the ceramic powder. The thickness of the dielectric for capacitors with higher voltages is determined by the
7654: 7441: 7378:
Sloka, Bill; Skamser, Dan; Phillips, Reggie; Hill, Allen; Laps, Mark; Grace, Roy; Prymak, John; Randall, Michael; Tajuddin, Aziz (March 26–29, 2007).
7350: 6410: 4942: 341:
offer high volumetric efficiency with change of capacitance lower than −15% to +15% and a temperature range greater than −55 °C to +125 °C,
275: 3949: 3758: 6821: 6588:
Year code: "R" = 2003, "S"= 2004, "T" = 2005, "U" = 2006, "V" = 2007, "W" = 2008, "X" = 2009, "A" = 2010, "B" = 2011, "C" = 2012, "D" = 2013 etc.
6466:
as their cost, reliability and size becomes competitive. In many applications, their low ESR allows the use of a lower nominal capacitance value.
4191:, etc. series. The units used to specify capacitor values includes everything from picofarad (pF), nanofarad (nF), microfarad (μF) and farad (F). 3889: 3671: 393:
In the following, the definitions of the IEC standard will be preferred and in important cases compared with the definitions of the EIA standard.
5350:
Class 2 capacitors are mostly specified with the dissipation factor, tan δ. The dissipation factor is determined as the tangent of the reactance
8016: 7590: 3746: 3973: 3877: 5404:
and the ESR, and can be shown as the angle δ between the imaginary and impedance axes in the above vector diagram, see paragraph "Impedance".
3659: 1727: 101:
A selection of ceramic capacitors: fixed leaded disc capacitors on the left and right; multilayer ceramic chip capacitors (MLCC) in the middle
7619: 6961: 5995: 5561: 6856: 4507:
Simplified diagram of the change in capacitance as a function of the applied voltage for 25-V capacitors in different kind of ceramic grades
1739: 159:
in the range of 1,000, about ten times greater than titanium dioxide or mica, began to play a much larger role in electronic applications.
7900: 6768: 3734: 3625:
For example, an 0.1 μF X7R MLCC in a 0805 package resonates at 16 MHz. The same capacitor with leads on its long sides (i.e. an
1794: 1483:
In most cases it is possible to translate the EIA code into the IEC/EN code. Slight translation errors occur, but normally are tolerable.
5970:
capacitance for P 100 and N 470 Class 1's is lower than 1%, for capacitors with N 750 to N 1500 ceramics it is ≤ 2%.
5294:
line losses with internal supply line resistances, the contact resistance of the electrode contact, the line resistance of the electrodes
1715: 386:(EIA) standards. In many parts very similar to the IEC standard, the EIA RS-198 defines four application classes for ceramic capacitors. 7979:
Texas Instruments, Ceramic Capacitors Replace Tantalum Capacitors in LDOs, Application Report SLVA214A–August 2005–Revised October 2006
3647: 1629: 1599:
Because it is not possible to build multilayer capacitors with this material, only leaded single layer types are offered in the market.
7992: 4757:
Impedance is a measure of the ability of the capacitor to pass alternating currents. In this sense impedance can be used like Ohms law
7968: 7758: 7321: 5496: 6492: 3961: 1623:
Construction of a multilayer ceramic chip capacitor (MLCC), 1 = Metallic electrodes, 2 = Dielectric ceramic, 3 = Connecting terminals
7499: 6108: 595:
applied voltage. These characteristics allow applications for high Q filters, in resonant circuits and oscillators (for example, in
7862: 7790: 6927: 6719: 4374:(ppm) per degree Celsius for class 1 ceramic capacitors or in percent (%) over the total temperature range for class 2 capacitors. 6750: 231:
in the 1980s. Polarized electrolytic capacitors could be replaced by non-polarized ceramic capacitors, simplifying the mounting.
6388:. The polarized domains in the dielectric are going back and the aging process of class 2 ceramic capacitors is starting again. 1838: 7539: 6999: 6625: 4754:
to AC circuits, and possesses both magnitude and phase at a particular frequency, unlike resistance, which has only magnitude.
4519:
Simplified diagram of the change in capacitance as a function of applied voltage for X7R ceramics with different rated voltages
1042:
Idealized curves of different class 1 ceramic capacitors and representation of the tolerance range of temperature coefficient α
6697: 163:
compared to the mica capacitors, lower production costs and independence from mica availability accelerated their acceptance.
3997:
was approximately at a reactive power of 200 volt-amps, but modern power electronics can handle increasing amounts of power.
1703: 383: 279: 7573: 3786:
Design" (OMD). Here a break in the region of the terminations only reduce the capacitance value a little bit (AVX, KEMET).
421:
The general capacitance temperature behavior of class 1 capacitors depends on the basic paraelectric material, for example
5565: 4211: 4180: 3782:
terminations. This can be prevented when the overlap surfaces of the electrodes are reduced. This is achieved e.g. by an "
3688: 3582: 124:'s wireless transmitting apparatus, porcelain capacitors were used for high voltage and high frequency application in the 7032: 7876: 7174: 6463: 5336: 4101: 4088: 3610: 2505:
Influence of the NME respectively BME metallization for class 2 X7R MLCC chips on the voltage dependence of capacitance.
242: 82: 7111: 4458:
Frequency dependence of capacitance for ceramic X7R and Y5V class 2 capacitors (curve of NP0 class 1 for comparisation)
7608: 6876: 6336: 4017: 3570: 5779: 5107: 3927:
to the point of failure. Even when exposed to large overvoltage surges, these safety-rated capacitors must fail in a
7216: 5439: 441:(6 to 200) of the paraelectric materials. Therefore, class 1 capacitors have capacitance values in the lower range. 7294: 6952:
Huang, Haitao; Scott, James, eds. (2019). "Chapter 5-Dielectric ceramics and films for electrical energy storage".
3594: 1806:
of the mixture and the size of the powder particles, as small as 10 nm, reflect the manufacturer's expertise.
6977: 5049: 4032:. Power ceramic capacitors can be supplied with high rated voltages in the range of 2 kV up to 100 kV. 7670: 7426: 6324:
In many applications of capacitors dielectric absorption is not a problem but in some applications, such as long-
4489: 1540:
Because class 2 ceramic capacitors have lower capacitance accuracy and stability, they require higher tolerance.
1079:
Class 2 ceramic capacitors with their typical tolerances of the temperature dependent capacitance (colored areas)
3710:
soldered to a circuit board are often vulnerable to cracking from thermal expansion or mechanical stresses like
207:
technology in the 1950s, barrier layer capacitors, or IEC class 3/EIA class IV capacitors, were developed using
7461: 7306: 7252: 5617:
In accordance with IEC 60384-8/-21/-9/-22 ceramic capacitors may not exceed the following dissipation factors:
4853:
As shown in the series-equivalent circuit of a capacitor, the real-world component includes an ideal capacitor
4479: 3725:). Excess solder in the joints are undesirable as they may magnify the forces that the capacitor is subject to. 3707: 1821:
Simplified representation of the manufacturing process for the production of multilayer ceramic chip capacitors
1672: 228: 4108:
The use of a series equivalent circuit instead of a parallel equivalent circuit is defined in IEC/EN 60384-1.
113:
have been used as insulators. These materials some decades later were also well-suited for further use as the
6371:. Sensitive electronic preamplifiers generally use class 1 ceramic and film capacitors to avoid this effect. 3718:
components. The cracks can come from automated machine assembly line, or from high current in the circuit.
7485: 6804: 6167: 5986:". The insulation resistance must not be confused with the outer isolation with respect to the environment. 4075: 3715: 1678: 757:
tolerance are replaced by a two digit letter code (see table) in which the corresponding EIA code is added.
224: 30: 7651: 7438: 7361: 166: 6459: 6414: 1913: 1585: 1326:
Code system regarding to IEC/EN 60384-9/22 for some temperature ranges and inherent change of capacitance
208: 7515: 6832: 6606: 6287: 6280: 6230: 4464: 4195: 3872:
RFI/EMI suppression with X- and Y-capacitors for equipment without and with additional safety insulation
1137: 455: 434: 188: 70: 7956: 7681: 4471:. The graph on the right hand side shows typical frequency behavior for class 2 vs class 1 capacitors. 1834:) of a MLCC capacitor is based on the formula for a plate capacitor enhanced with the number of layers: 1075: 2541: 2493:
Structure of the electrodes and the NME respectively BME metallization of the terminals of MLCC cchips
7698: 6620: 5759: 5751: 5302: 4728: 3864: 193: 7014: 4840:{\displaystyle Z={\frac {\hat {u}}{\hat {\imath }}}={\frac {U_{\mathrm {AC} }}{I_{\mathrm {AC} }}}.} 174:
The fast-growing broadcasting industry after the Second World War drove deeper understanding of the
8051: 6368: 5859:
Sample self-resonant frequencies for one set of NP0/C0G and one set of X7R ceramic capacitors are:
5279: 4467:
in which the time constant of the electrical dipoles is the reason for the frequency dependence of
4049: 4009: 3924: 3606: 1657: 1146:
Code system regarding to EIA RS-198 for some temperature ranges and inherent change of capacitance
7570: 7273:
Decoupling Capacitors, A Designer’s Roadmap to Optimal Decoupling Networks for Integrated Circuits
4194:
The percentage of allowed deviation of the capacitance from the rated value is called capacitance
2482:
Influence of the metallization on the voltage dependence of X7R ceramic multilayer chip capacitors
97: 8013:"KEMET Electronics – How do I choose between a polymer aluminum, ceramic and tantalum capacitor?" 7740: 6685: 6635: 6455: 5486:
Class 1 capacitors with very low losses are specified with a dissipation factor and often with a
5340: 5166: 3919: 1693:
Ceramic power capacitors, larger ceramic bodies in different shapes for high voltage applications
1112: 604: 66:
Class 1 ceramic capacitors offer high stability and low losses for resonant circuit applications.
7641: 6559:
Capacitance, tolerance and date of manufacture can be identified with a short code according to
4750:
and is a complex ratio of voltage to current in an AC circuit. Impedance extends the concept of
4714: 4454: 3863:
Suppression capacitors are effective interference reduction components because their electrical
5234: 7858: 7833: 6957: 6340: 4371: 4025: 1034: 596: 7137:"Taiyo Yuden Introduces World's First 100 μF EIA 0805 Size Multilayer Ceramic Capacitor" 6428:
IEC 60384-1, Fixed capacitors for use in electronic equipment – Part 1: Generic specification
6359:, microphony or in audio applications squealing. Microphony describes the phenomenon wherein 7732: 7706: 7607:
Istvan Novak, Oracle-America Inc., DesignCon 2011, DC and AC Bias Dependence of Capacitors,
6677: 6486: 6352: 5951:
time so that the capacitance of class 2 ceramic capacitors decreases as the component ages.
5947: 5938: 4421: 4176: 1124: 1092: 403: 262: 219: 136: 7332: 6197: 6078: 5962:
The aging process of class 2 capacitors may be reversed by heating the component above the
5590: 5380: 5353: 5206: 3837:"Flex-Termination" - MLCC chips, a flexible contact layer prevents breaking of the ceramic. 7999: 7765: 7693:
K. W. Plessner (1956), "Ageing of the Dielectric Properties of Barium Titanate Ceramics",
7658: 7629: 7625: 7577: 7546: 7503: 7445: 7272: 7178: 6880: 6701: 6475: 6332: 6226: 5287: 4405: 4029: 4013: 1569: 1120: 1096: 258: 175: 152: 7571:
High Voltage Ceramic Capacitors 15 to 100 kV, Strontium based dielectric, series HP/HW/HK
7496: 5942:
Aging of different Class 2 ceramic capacitors compared with NP0-Class 1 ceramic capacitor
5410: 2545:
Maximal available capacitance values of MLCC Chips in case size 2012. (Status April 2017)
85:
suppression, as feed-through capacitors and in larger dimensions as power capacitors for
7797: 7702: 6730: 4104:, which is the effective self-inductance of the capacitor, usually abbreviated as "ESL". 182:
forming, together with resistors and other components, a tangle of open circuit wiring.
105:
Since the beginning of the study of electricity non-conductive materials such as glass,
6992:"Semiconductive (Barrier Layer Type) Capacitor, Class III : Semi- conductive type" 6754: 5979: 5570: 5344: 5283: 5245: 4919: 4896: 4876: 4856: 4733: 3711: 215: 197: 7710: 7236: 6591:
Month code: "1" to "9" = Jan. to Sept., "O" = October, "N" = November, "D" = December
6445:
IEC 60384-22, Fixed surface mount multilayer capacitors of ceramic dielectric, Class 2
6442:
IEC 60384-21, Fixed surface mount multilayer capacitors of ceramic dielectric, Class 1
3988: 2018: 1957:
Table of the dimension codes and the corresponding dimensions of MLCC chip capacitors
1664:
ceramic coating protects the capacitor against moisture and other ambient influences.
170:
Ceramic tube capacitor, the typical style of ceramic capacitors in the 1950s and 1970s
8045: 7744: 7484:
Murata, Ceramic Capacitors Certified by safety standard/Compliant with EA&MS Act
7136: 6794:"Advanced Multilayer Capacitors Using High Energy Density Antiferroelectric Ceramics" 6577:
The date of manufacture is often printed in accordance with international standards.
6325: 5335:
Results of the summarized resistive losses of a capacitor may be specified either as
3801:
Standard MLCC chip, short circuit possible if ceramic breaks due to mechanical stress
3771: 1561: 1557: 204: 6689: 8010:
Kemet, How do I choose between a polymer aluminum, ceramic and tantalum capacitor?
6694: 6630: 6560: 6555:
has a capacitance of 47 × 10 pF = 47 nF (M = ±20%) with a working voltage of 100 V.
6530:
certification marks of safety standards (for safety EMI/RFI suppression capacitors)
6356: 5833: 5614:. A high Q value is a mark of the quality of the resonance for resonant circuits. 5298: 4850:
to calculate either the peak or the effective value of the current or the voltage.
4468: 4199: 4187:. According to the number of values per decade, these were called the E3, E6, E12, 4184: 4091:, which summarizes all ohmic losses of the capacitor, usually abbreviated as "ESR". 4021: 1920: 1890: 1667:
Ceramic capacitors come in various shapes and styles. Some of the most common are:
1641: 1568:
Barrier layer ceramic capacitors are made of doped ferroelectric materials such as
438: 267: 156: 147: 35: 7557:
YAGEO, Surface-Mount Ceramic Multilayer Capacitors, High-voltage SC type: NP0/X7R
7439:
General technical information of (RFI/EMI)Noise suppression capacitors on AC mains
6548:
has a capacitance of 10 × 10 pF = 1 μF (K = ±10%) with a working voltage of 330 V.
4751: 1949:
0.03-inch width is coded as "0603". This code is international and in common use.
7980: 7777: 7061: 6236:
In accordance with the applicable standards, Class 1 ceramic capacitors have an R
5989:
The rate of self-discharge with decreasing capacitor voltage follows the formula
5743:
are in the single-digit range while class 2 capacitors have much higher changes.
5313:
100 kHz, 1 MHz (preferred) or 10 MHz for ceramic capacitors with C
7414: 7086:"Intel Voices Concerns Over Quality of High Capacitance Ceramic Chip Capacitors" 7033:"MULTILAYER CERAMIC CAPACITORS–MATERIALS AND MANUFACTURE, TECHNICAL INFORMATION" 6581:
Version 1: coding with year/week numeral code, "1208" is "2012, week number 8".
6420:
The definition of the characteristics and the procedure of the test methods for
6406: 6385: 6360: 5963: 5490:(Q). The quality factor is defined as the reciprocal of the dissipation factor. 5040: 5029:{\displaystyle Z={\sqrt {{ESR}^{2}+(X_{\mathrm {C} }+(-X_{\mathrm {L} }))^{2}}}} 1684: 125: 86: 6915:
Ultra High-Q NP0 MLCC with Ag inner Electrode for Telecommunication Application
4496:
Voltage dependence of capacitance for some different class 2 ceramic capacitors
763:
Ceramic names, temperature coefficients α, α tolerances and letter codes for α
7736: 7526:
Walsin, MULTILAYER CERAMIC CAPACITORS, TUV Safety Certified X1/Y2 Series (S2)
7043: 6328: 5763: 5098: 4188: 4005: 3918:
RFI capacitors that fulfill all specified requirements are imprinted with the
3614: 1653: 133: 114: 51: 7171: 6681: 5978:
The resistance of the dielectric is never infinite, leading to some level of
7307:"Avoiding Pad Cratering and Capacitor Cracking webinar | DFR Solutions" 7118: 6421: 6364: 5755: 5160: 3928: 3825:"Floating-Electrode-Design"-MLCC, a break only reduces the capacitance value 3783: 1648: 106: 59: 47: 7855:"Are your military ceramic capacitors subject to the piezoelectric effect?" 6873: 3691:
demands in dc motors, in automotive, audio, sensor and other applications.
1698:
Some different styles of ceramic capacitors for use in electronic equipment
81:
Ceramic capacitors of special shapes and styles are used as capacitors for
6491: 6424:
for use in electronic equipment are set out in the generic specification:
3935:
approvals and fulfill all requirements given in the applicable standards.
7967:
Johanson dielectrics, "Advanced Ceramic Solutions", Tantalum Replacement
7154: 5487: 4724: 3852: 3848: 1247:
Some commonly used class 2 ceramic capacitor materials are listed below:
270:
so that the capacitance values of these capacitors are relatively small.
7415:
General Technical Information, Radio Interference Suppression Capacitors
4078:
of the dielectric, not to be confused with the insulation of the housing
3813:„Open-Mode-Design" MLCC chip, a break only reduces the capacitance value 363:
They can be substituted with EIA class 2- Y5U/Y5V or Z5U/Z5V capacitors
7320:
O’Malley, P.; Wang, D.; Duong, H.; Lai, Anh; Zelle, Z. (May 25, 2011).
6065:{\displaystyle u(t)=U_{0}\cdot \mathrm {e} ^{-t/\tau _{\mathrm {s} }},} 5242:
Data sheets of ceramic capacitors only specify the impedance magnitude
4936:
the resistance and then both reactances have to be added geometrically
121: 55: 7458:"Electromagnetic Compatibility (EMC) Legislation: Directive 89/336/EC" 6611:
The identification of modern capacitors has no detailed color coding.
6474:
For features and disadvantages of ceramic capacitors see main article
313:
offer high stability and low losses for resonant circuit applications.
7349:
Staubli, P.; Prymak, J.; Blais, P.; Long, B. (25–28 September 2006).
7200: 2522: 2518: 1772:
Detailed construction of a multilayer ceramic chip capacitor (MLCC).
1688: 321:
offer high stability and low losses for resonant circuit application
140: 7558: 7514:
Syfer's MLCC Safety Capacitors meet Class Y2/X1 and X2 requirements
7015:"CERAMIC DISC CAPACITORS-(Semi Conductive) CLASS 3 TYPE S, Y5P… Y5V" 6665: 6563:. Examples of short-marking of the rated capacitance (microfarads): 6351:
All class 2 ceramic capacitors using ferroelectric ceramics exhibit
3729:
MLCC chips – correct mounted – cracked chip – substrate bending test
3698:
An alternative to X2Y capacitors may be a three-terminal capacitor.
613:
letter codes for temperature coefficients α referring to EIA-RS-198
289:
Different definitions of application classes for ceramic capacitors
7991:
Rutronik, Guideline for replacing a tantalum capacitor with a MLCC
7934: 7516:
Syfer's MLCC Safety Capacitors meet Class Y2/X1 and X2 requirements
7112:"High-Capacitance Capacitors by Murata Make Smaller Power Supplies" 6409:
components and related technologies follows the rules given by the
437:
among ceramic capacitors. This is the result of the relatively low
17: 6490: 5937: 5841: 5825: 5774:
is called the self-resonant frequency and can be calculated with:
5233: 4713: 4478: 4453: 4048: 2540: 1950: 1912:
A thinner dielectric or a larger electrode area each increase the
1074: 1065:
representation of the tolerance range of temperature coefficient α
187: 165: 96: 29: 7591:"Understanding DC Bias Characteristics in High-Capacitance MLCCs" 7283: 6928:"A Comparison between Tantalum and Multilayer Ceramic Capacitors" 5320:
1 kHz or 10 kHz for ceramic capacitors with 1 nF < C
3992:
Power ceramic capacitors in a radio-frequency transmitter station
1671:
Multilayer ceramic chip capacitor (MLCC), rectangular block, for
7155:"Wielding Base Metal Yields Cheaper, Stable Class X2 Capacitors" 5550:{\displaystyle Q={\frac {1}{\tan \delta }}={\frac {f_{0}}{B}}\ } 4175:
Capacitors are available in different, geometrically increasing
4169:> 10 μF at 100/120 Hz, measuring voltage 0.5 V 1116: 376:
are barrier layer capacitors which are not standardized anymore
110: 7957:
Power Electronics Technology – Multilayer Ceramics or Tantalums
7538:
Johanson AC Safety Capacitors, Type SC ceramic chip capacitors
7351:"Improving Flex Capabilities with Modified MLC Chip Capacitors" 6720:"Design solutions for DC bias in multilayer ceramic capacitors" 6454:
Multilayer ceramic capacitors are increasingly used to replace
6294:
Values of dielectric absorption for some often used capacitors
4361:
capacitors the tolerance series E12 down to E3 are sufficient.
353:
are barrier layer capacitors which are not standardized anymore
6154:{\displaystyle \tau _{\mathrm {s} }=R_{\mathrm {ins} }\cdot C} 5327:
50/60 Hz or 100/120 Hz for ceramic capacitors with C
3613:. The resonance frequency of a capacitor is determined by the 3609:, a capacitor has the best decoupling properties for noise or 1677:
Ceramic disc capacitor, single layer disc, resin coated, with
235: 7652:
Voltage Coefficient of Capacitors, Comparison & Solutions
6769:"MLCC Shortages and Why They Might Last Longer than Expected" 4155:≤ 100 pF at 1 MHz, measuring voltage 1 V 4136:≤ 100 pF at 1 MHz, measuring voltage 5 V 1322:
The IEC/EN 60384 -9/22 standard uses another two-digit-code.
343:
for smoothing, by-pass, coupling and decoupling applications
257:
The different ceramic materials used for ceramic capacitors,
7697:(in German), vol. 69, no. 12, pp. 1261–1268, 6909:
W. S. Lee, J. Yang, T. Yang, C. Y. Su, Y. L. Hu, Yageo: In:
6462:
capacitors in applications such as bypass or high frequency
6439:
IEC 60384-9, Fixed capacitors of ceramic dielectric, Class 2
6436:
IEC 60384-8, Fixed capacitors of ceramic dielectric, Class 1
4162:≤ 10 μF at 1 kHz, measuring voltage 1 V 1903: 1897:
for electrode surface area; n for the number of layers; and
1816: 1595:
Design and functional principle of a barrier layer capacitor
1590: 333:
for smoothing, by-pass, coupling and decoupling applications
6822:"CLASS III –General Purpose High-K Ceramic Disk Capacitors" 6367:
into an electrical signal which in many cases is undesired
3944:
Different styles of ceramic capacitors for power electronic
2022:
Dimensions L×W×H of the multi-layer ceramic chip capacitors
7945: 6535:
respectively) and VOLTS V represents the working voltage.
5163:, in which both reactive resistances have the same value ( 4483:
DC Bias characteristic of ferroelectrics ceramic materials
4143:> 100 pF at 1 kHz, measuring voltage 5 V 3790:
Different MLCC constructions to minimize mechanical stress
3677:
Circuit diagram of a X2Y capacitor in a decoupling circuit
2514:(NME) capacitors offered very good electrical properties. 1877:{\displaystyle C=\varepsilon \cdot {{n\cdot A} \over {d}}} 5433:
is small, the dissipation factor can be approximated as:
5238:
Typical curves of the impedance of X7R and NP0-MLCC-Chips
4058:
electrical characteristics of a capacitors is defined by
2558:
Maximum capacitance values of class 1 NP0/C0G MLCC chips
1908:
Miniaturizing of MLCC chip capacitors during 1995 to 2005
54:. It is constructed of two or more alternating layers of 7827:"Capacitors for Reduced Microphonics and Sound Emission" 1916:, as will a dielectric material of higher permittivity. 1053:
Idealized curves of different class 1 ceramic capacitors
7669:
Murata, Datasheet X7R, 10μF, 25 V, GRM31CR71E106KA12#,
7618:
Basics of Ceramic Chip Capacitors, Johanson Electrics,
4378:
Temperature coefficients of some often used capacitors
7189: 6897:
Widerstände, Kondensatoren, Spulen und ihre Werkstoffe
6252:> 10 nF. Class 2 ceramic capacitors have an R 5278:
The summarized losses in ceramic capacitors are ohmic
4053:
Series-equivalent circuit model of a ceramic capacitor
7923: 7877:"FAQ about Singing Capacitors (Piezoelectric Effect)" 6200: 6170: 6111: 6081: 5998: 5959:
significantly higher and can be up to 7% per decade.
5782: 5593: 5573: 5499: 5442: 5413: 5383: 5356: 5248: 5209: 5169: 5110: 5052: 4945: 4922: 4899: 4879: 4859: 4766: 4736: 3931:
manner that does not endanger personnel or property.
3764:
Simplified figure of a bending test for soldered MLCC
3027:
Maximum capacitance values of class 2 X7R MLCC chips
1841: 6413:(IEC), a non-profit, non-governmental international 5747:
HF use, inductance (ESL) and self-resonant frequency
146:
But this paraelectric dielectric had relatively low
7791:"Murata Addresses Squealing in Mobile, A/V Devices" 7329:
Proceedings of the 55th Annual NDIA Fuze Conference
6890: 6888: 3653:
X2Y decoupling capacitors with different case sizes
6978:"High Temperature – X8R/X8L Dielectric | AVX" 6213: 6186: 6153: 6094: 6064: 5806: 5606: 5579: 5549: 5475: 5425: 5396: 5369: 5254: 5223: 5195: 5147: 5086: 5028: 4928: 4905: 4885: 4865: 4839: 4742: 1876: 6666:"Historical introduction to capacitor technology" 6544:A capacitor with the following text on its body: 5974:Insulation resistance and self-discharge constant 5203:), then the impedance will only be determined by 445:Ceramic materials for class 1 ceramic capacitors 7322:"Ceramic Capacitor Failures and Lessons Learned" 6659: 6657: 6655: 6653: 6651: 6470:Features and disadvantages of ceramic capacitors 5347:(Q), depending on the application requirements. 4206:Tolerances of capacitors and their letter codes 4012:. Class 2 power ceramic capacitors are used for 7821: 7819: 7817: 6954:Ferroelectric Materials for Energy Applications 6850:"Kemet: Ceramic leaded Capacitors F-3101F06/05" 6751:"Murata, Technical Report, Evolving Capacitors" 5807:{\displaystyle \omega ={\frac {1}{\sqrt {LC}}}} 5148:{\displaystyle X_{L}=\omega L_{\mathrm {ESL} }} 3740:Correct mounted and soldered MLCC chip on a PCB 382:Manufacturers, especially in the US, preferred 73:for buffer, by-pass, and coupling applications. 7695:Proceedings of the Physical Society. Section B 7630:notes/training/jdi_mlcc-basics_2007-12.pdf PDF 6286:discharging, a phenomenon that is also called 5754:occurs in a ceramic capacitor at a particular 5476:{\displaystyle \tan \delta =ESR\cdot \omega C} 4004:Class 1 power ceramic capacitors are used for 765:referring to IEC/EN 60384-8/21 and EIA-RS-198 7901:"Piezoelectric Noise: MLCC Ringing ‐ Singing" 7495:Vishay, Capacitors – Ceramic – RFI Class X/Y 6521:rated voltage and nature of supply (AC or DC) 5587:relative to its center or resonant frequency 3955:Doorknob style high voltage ceramic capacitor 1800:Samples of multilayer ceramic chip capacitors 8: 7778:Modeling Dielectric Absorption in Capacitors 7497:Vishay, Capacitors – Ceramic – RFI Class X/Y 6584:Version 2: coding with year code/month code, 6240:≥ 10,000 MΩ for capacitors with C 5087:{\displaystyle X_{C}=-{\frac {1}{\omega C}}} 4549:Test voltages related to IEC 60384-8/21/9/22 3979:Tubular or pot style power ceramic capacitor 3859:RFI/EMI suppression with X- and Y capacitors 3629:) has a resonance frequency of 22 MHz. 7757:Christopher England, Johanson dielectrics, 7480: 7478: 6899:(in German) (2. ed.), Berlin: Springer 6256:≥ 4,000 MΩ for capacitors with C 5758:where the imaginary parts of the capacitor 5274:ESR, dissipation factor, and quality factor 3752:Micrograph of broken ceramic in a MLCC chip 7295:Three-terminal Capacitor Structure, Murata 6292: 5696: 5619: 4547: 4376: 4204: 4112:Capacitance standard values and tolerances 1955: 1324: 1142: 1030:not the same as military capacitor codes. 759: 609: 443: 287: 7589:Skelly, A.; Waugh, M. D. (October 2009). 6411:International Electrotechnical Commission 6355:, and have a piezoelectric effect called 6205: 6199: 6183: 6176: 6175: 6169: 6132: 6131: 6117: 6116: 6110: 6086: 6080: 6050: 6049: 6040: 6033: 6028: 6018: 5997: 5789: 5781: 5766:cancel each other. This frequency where X 5598: 5592: 5572: 5533: 5527: 5506: 5498: 5441: 5412: 5388: 5382: 5361: 5355: 5247: 5210: 5208: 5187: 5174: 5168: 5132: 5131: 5115: 5109: 5069: 5057: 5051: 5018: 5004: 5003: 4983: 4982: 4966: 4955: 4952: 4944: 4921: 4898: 4878: 4858: 4822: 4821: 4807: 4806: 4800: 4785: 4775: 4773: 4765: 4735: 3774:or significantly changes in capacitance. 1901:for the distance between the electrodes. 1867: 1856: 1854: 1840: 278:(IEC) and the other from the now-defunct 276:International Electrotechnical Commission 6792:Hackenberger, W.; Kwon, S.; Alberta, E. 6745: 6743: 6527:year and month (or week) of manufacture; 6405:The standardization for all electrical, 6264:≥ 100 s for capacitors with C 6248:≥ 100 s for capacitors with C 5861: 3987: 3911:Canada: CSA C22.2, No.1, CSA C22.2, No.8 3025: 2556: 2017: 1919:With the progressive miniaturization of 1709:Multilayer ceramic chip capacitor (MLCC) 1635:Construction of a ceramic disc capacitor 374:(or written class 4) ceramic capacitors 359:(or written class 3) ceramic capacitors 339:(or written class 2) ceramic capacitors 319:(or written class 1) ceramic capacitors 6713: 6711: 6709: 6647: 6524:climatic category or rated temperature; 5712: 5635: 4554: 4494: 4381: 4241: 4219: 4209: 3942: 3895:Appliance Class II capacitor connection 3870: 3788: 3727: 3640: 3563: 3103: 3030: 2634: 2561: 2480: 1960: 1759: 1696: 1610: 1329: 1149: 1040: 768: 448: 50:where the ceramic material acts as the 6664:Ho, J.; Jow, T. R.; Boggs, S. (2010). 6187:{\displaystyle \tau _{\mathrm {s} }\,} 5734:For capacitance values < 50 pF 5689:For capacitance values < 50 pF 5560:The Q factor represents the effect of 3883:Appliance Class I capacitor connection 69:Class 2 ceramic capacitors offer high 7460:. European Commission. Archived from 6551:A capacitor with the following text: 6221:dropped to 37% of the initial value. 5736:the dissipation factor may be larger 5691:the dissipation factor may be larger 4365:Temperature dependence of capacitance 3706:Ceramics are brittle, and MLCC chips 3665:Inner construction of a X2Y capacitor 1751:Multi-layer ceramic capacitors (MLCC) 1721:Ceramic disc capacitor (single layer) 1612:Basic structure of ceramic capacitors 1198:L = ±15%, +15/-40% above 125 °C 7: 7237:Multilayer Ceramic EMI-Filter, Syfer 4727:resistance of a capacitor is called 3565:Comparison of different MLCC designs 1745:High voltage ceramic power capacitor 7913:from the original on April 2, 2019. 7889:from the original on April 2, 2019. 7843:from the original on April 2, 2019. 7759:Ceramic Capacitor Aging Made Simple 6670:IEEE Electrical Insulation Magazine 6476:Capacitor types#Comparison of types 4450:Frequency dependence of capacitance 4065:, the capacitance of the capacitor, 1761:Multi-layer ceramic chip capacitors 27:Fixed-value capacitor using ceramic 7946:IEC/EN/DIN Standards, Beuth-Verlag 7249:"X2Y Technology overview Johanson" 6177: 6139: 6136: 6133: 6118: 6051: 6029: 5564:, and characterizes a resonator's 5139: 5136: 5133: 5039:wherein the capacitive reactance ( 5005: 4984: 4826: 4823: 4811: 4808: 3967:Disc style power ceramic capacitor 25: 6895:Otto Zinke; Hans Seither (2002), 6509:manufacturer's name or trademark; 6495:Ceramic disc capacitance markings 6290:, "soakage" or "battery action". 4475:Voltage dependence of capacitance 1111:) and suitable additives such as 331:offer high volumetric efficiency 7358:Proceedings of CARTS Europe 2006 6512:manufacturer's type designation; 6487:Preferred number § E series 6363:components transform mechanical 6102:and the self-discharge constant 4512: 4500: 3972: 3960: 3948: 3888: 3876: 3830: 3818: 3806: 3794: 3757: 3745: 3733: 3670: 3658: 3646: 3593: 3581: 3569: 2554:KEMET, AVX. (Status April 2017) 2498: 2486: 1793: 1765: 1738: 1726: 1714: 1702: 1628: 1616: 1058: 1046: 253:Application classes, definitions 58:and a metal layer acting as the 7861:. July 27, 2004. Archived from 7387:Proceedings from CARTS USA 2007 7153:Nagoshi, Yuki (November 2009). 6626:List of capacitor manufacturers 6315:Class-2 ceramic capacitors, X7R 6307:Class-1 ceramic capacitors, NP0 6275:Dielectric absorption (soakage) 4545:) to ensure safe construction. 1225:9 = +200 °C (+392 °F) 1215:8 = +150 °C (+302 °F) 1205:7 = +125 °C (+257 °F) 1195:6 = +105 °C (+221 °F) 1091:Class 2 capacitors are made of 1085: 7427:EMI/RFI Suppression Capacitors 7172:AVX, Low Inductance Capacitors 6518:tolerance on rated capacitance 6458:and low capacitance aluminium 6450:Tantalum capacitor replacement 6008: 6002: 5824:is the resonance frequency in 5700:for class 2 ceramic capacitors 5015: 5011: 4993: 4975: 4790: 4780: 3588:Low-ESL design of an MLCC chip 1516:= +30/−80% instead of +30/−82% 1184:5 = +85 °C (+185 °F) 1173:4 = +65 °C (+149 °F) 634:of the temperature coefficient 627:of the temperature coefficient 384:Electronic Industries Alliance 280:Electronic Industries Alliance 1: 6926:Chin, Trento (Dec 27, 2023). 6335:circuits, switched-capacitor 5623:for class 1ceramic capacitors 1733:Feedthrough ceramic capacitor 1192:Z = +10 °C (+50 °F) 1181:Y = −30 °C (−22 °F) 1170:X = −55 °C (−67 °F) 7906:. NIC Components. May 2015. 6464:switched-mode power supplies 6337:analog-to-digital converters 6260:≤ 25 nF or τ 6244:≤ 10 nF or τ 5337:equivalent series resistance 5097:and an inductive reactance ( 4102:equivalent series inductance 4089:equivalent series resistance 3914:China: CQC (GB/T 14472-1998) 3611:electromagnetic interference 1779:Ceramic or lacquered coating 243:electromagnetic interference 7711:10.1088/0370-1301/69/12/309 7380:"Flexure Robust Capacitors" 6932:Stanford Advanced Materials 6911:Passive Components Industry 6075:With the stored DC voltage 5196:{\displaystyle X_{C}=X_{L}} 4916:To calculate the impedance 4435:Ceramic capacitors class 2, 4419:Ceramic capacitors class 2, 4148:Class 2 ceramic capacitors 4129:Class 1 ceramic capacitors 4024:in laser-applications, for 1331:Code for capacitance change 1165:over the temperature range 761:Class 1-ceramic capacitors 611:Class 1-ceramic capacitors 120:Even in the early years of 8068: 7725:Journal of Electroceramics 7657:February 15, 2015, at the 6829:Chroma Technology Co., Ltd 6604: 6484: 6278: 4551:to test safe construction 4403:Ceramic capacitors class 1 4120:or "nominal capacitance" C 4040:Electrical characteristics 2016: 1660:of the desired capacitor. 1639: 1552:Class 3 ceramic capacitors 1355:Code for temperature range 1144:Class 2 ceramic capacitors 1071:Class 2 ceramic capacitors 397:Class 1 ceramic capacitors 298:and IEC/EN 60384-8/9/21/22 117:for the first capacitors. 7737:10.1007/s10832-007-9071-0 7595:Ceramic Industry Magazine 6594:"X5" is then "2009, May" 5733: 5698:Dissipation factor tan δ 5688: 5621:Dissipation factor tan δ 5286:losses are specified as " 4661: 4566: 4327: 4215: 4210: 4116:The "rated capacitance" C 4045:Series-equivalent circuit 4030:voltage-doubling circuits 3702:Mechanical susceptibility 3576:Standard MLCC chip design 3104: 3070: 3036: 3031: 2635: 2601: 2567: 2562: 2477:NME and BME metallization 1830:The capacitance formula ( 618:Temperature coefficient α 7545:August 31, 2013, at the 7502:August 15, 2012, at the 7425:Illinois capacitor inc. 7284:X2Y Capacitor Technology 6682:10.1109/MEI.2010.5383924 6339:and very low-distortion 4723:The frequency dependent 4018:power distribution lines 3939:Ceramic power capacitors 3642:X2Y decoupling capacitor 3637:X2Y decoupling capacitor 1536:no IEC/EN code available 1343:Max. capacitance change 301:Definition regarding to 294:Definition regarding to 229:surface-mount technology 203:With the development of 7213:"Syfer, X2Y Technology" 5637:Temperature coefficient 5303:dielectric polarization 5266:has the same value as X 5159:In the special case of 4388:Temperature coefficient 4183:standards specified in 2537:MLCC capacitance ranges 1607:Construction and styles 1586:electrolytic capacitors 1334:Max. capacitance change 1274:(−55/+105 °C, ΔC/C 1264:(−55/+125 °C, ΔC/C 7882:. TDK. December 2006. 7576:July 25, 2012, at the 7201:X2Y Technology Summary 6496: 6415:standards organization 6396:Additional information 6302:Dielectric Absorption 6231:operational amplifiers 6225:voltage value as in a 6215: 6188: 6155: 6096: 6066: 5943: 5840:is the capacitance in 5808: 5608: 5581: 5551: 5477: 5427: 5398: 5371: 5256: 5239: 5225: 5197: 5149: 5088: 5030: 4930: 4907: 4887: 4867: 4841: 4744: 4720: 4484: 4459: 4411:±30 ppm/K (±0.5%) 4054: 3993: 3714:, more so than leaded 2546: 2023: 1909: 1889:stands for dielectric 1878: 1822: 1596: 1530:= ±20% instead of ±22% 1314:(−30/+85 °C, ΔC/C 1304:(+10/+85 °C, ΔC/C 1284:(−55/+85 °C, ΔC/C 1163:change of capacitance 1080: 266:have a relatively low 200: 171: 102: 39: 7177:May 16, 2013, at the 6607:Electronic color code 6494: 6288:dielectric relaxation 6281:Dielectric absorption 6216: 6214:{\displaystyle U_{0}} 6189: 6156: 6097: 6095:{\displaystyle U_{0}} 6067: 5941: 5832:is the inductance in 5809: 5609: 5607:{\displaystyle f_{0}} 5582: 5562:electrical resistance 5552: 5478: 5428: 5399: 5397:{\displaystyle X_{L}} 5372: 5370:{\displaystyle X_{C}} 5257: 5237: 5226: 5224:{\displaystyle {ESR}} 5198: 5150: 5089: 5031: 4931: 4908: 4888: 4868: 4842: 4745: 4717: 4482: 4465:dielectric relaxation 4457: 4076:insulation resistance 4052: 3991: 3908:USA: UL 1414, UL 1283 3605:In the region of its 2544: 2512:noble metal electrode 2021: 1907: 1879: 1820: 1640:Further information: 1594: 1138:operating temperature 1078: 456:Relative permittivity 435:volumetric efficiency 194:decoupling capacitors 191: 169: 100: 71:volumetric efficiency 33: 7124:on November 5, 2012. 7062:"Ceramic Capacitors" 6801:TRS Technologies Inc 6621:Decoupling capacitor 6198: 6168: 6109: 6079: 5996: 5980:DC "leakage current" 5780: 5752:Electrical resonance 5673:−3300 ≥ α > −5600 5665:−1500 ≥ α > −3300 5591: 5571: 5497: 5440: 5411: 5381: 5354: 5246: 5207: 5167: 5108: 5050: 4943: 4920: 4897: 4877: 4857: 4764: 4734: 4490:harmonic distortions 4179:as specified in the 4010:transmitter stations 3925:destructively tested 3905:Europe: EN 60384-14, 3037:Case size, EIA Code 2568:Case size, EIA Code 2527:base metal electrode 1839: 1785:Connecting terminals 1782:Metallized electrode 1443:(−10 … +70) °C 7703:1956PPSB...69.1261P 7190:X2Y Attenuators LLC 7002:on August 30, 2012. 6295: 5756:resonance frequency 5721:dissipation factor 5710: 5657:−750 ≥ α > −1500 5644:dissipation factor 5633: 5426:{\displaystyle ESL} 5343:(DF, tan δ), or as 4552: 4385:dielectric material 4379: 4207: 4020:, for high voltage 3607:resonance frequency 3028: 2559: 1958: 1658:dielectric strength 1375:−55 … +125 °C 1327: 1147: 766: 614: 446: 351:ceramic capacitors 329:ceramic capacitors 311:ceramic capacitors 290: 7998:2015-07-10 at the 7789:Satoshi Ishitobi. 7764:2012-12-26 at the 7682:Syfer Technologies 7624:2015-01-28 at the 7444:2014-01-04 at the 6913:, 2004, page 26ff 6879:2008-03-31 at the 6700:2016-12-05 at the 6636:Types of capacitor 6515:rated capacitance; 6500:Imprinted markings 6497: 6299:Type of capacitor 6293: 6211: 6194:capacitor voltage 6184: 6164:That means, after 6151: 6092: 6062: 5944: 5804: 5697: 5620: 5604: 5577: 5547: 5473: 5423: 5407:If the inductance 5394: 5367: 5341:dissipation factor 5252: 5240: 5221: 5193: 5145: 5084: 5026: 4926: 4903: 4883: 4863: 4837: 4740: 4721: 4673:≤ 500 V 4664:ceramic capacitors 4627:≤ 500 V 4605:≤ 200 V 4584:≤ 100 V 4548: 4485: 4460: 4398:temperature range 4383:Type of capacitor, 4377: 4205: 4055: 4026:induction furnaces 3994: 3920:certification mark 3026: 2557: 2547: 2024: 1956: 1910: 1874: 1823: 1776:Ceramic dielectric 1597: 1526:, aberration: ΔC/C 1512:, aberration: ΔC/C 1460:+10 … +85 °C 1426:−25 … +85 °C 1409:−40 … +85 °C 1392:−55 … +85 °C 1358:Temperature range 1325: 1143: 1117:magnesium silicate 1113:aluminium silicate 1095:materials such as 1081: 760: 610: 444: 288: 220:cofiring processes 201: 172: 103: 40: 34:A typical ceramic 7865:on June 19, 2012. 7836:. February 2007. 7126:AEI December 2005 7049:on July 25, 2012. 6996:Yellow Stone corp 6963:978-3-527-34271-6 6838:on July 20, 2013. 6757:on June 17, 2012. 6322: 6321: 6268:> 25 nF. 5928: 5927: 5802: 5801: 5740: 5739: 5729:tan δ ≤ 350 • 10 5716:of the capacitor 5695: 5694: 5649:100 ≥ α > −750 5580:{\displaystyle B} 5546: 5542: 5522: 5299:dielectric losses 5255:{\displaystyle Z} 5082: 5024: 4929:{\displaystyle Z} 4906:{\displaystyle R} 4886:{\displaystyle L} 4866:{\displaystyle C} 4832: 4795: 4793: 4783: 4743:{\displaystyle Z} 4707: 4706: 4447: 4446: 4437:ferroelectric Y5V 4430:−55…+125 °C 4414:−55…+125 °C 4372:parts per million 4358: 4357: 3557: 3556: 3105:Max. capacitance 3071:Dimensions in mm 3024: 3023: 2636:Max. capacitance 2602:Dimensions in mm 2474: 2473: 1914:capacitance value 1872: 1481: 1480: 1241: 1240: 1158:upper temperature 1027: 1026: 754: 753: 597:phase-locked loop 592: 591: 380: 379: 46:is a fixed-value 44:ceramic capacitor 16:(Redirected from 8059: 8028: 8027: 8025: 8024: 8015:. Archived from 8008: 8002: 7989: 7983: 7977: 7971: 7965: 7959: 7954: 7948: 7943: 7937: 7932: 7926: 7921: 7915: 7914: 7912: 7905: 7897: 7891: 7890: 7888: 7881: 7873: 7867: 7866: 7851: 7845: 7844: 7842: 7831: 7823: 7812: 7811: 7809: 7808: 7802: 7796:. Archived from 7795: 7786: 7780: 7774: 7768: 7755: 7749: 7748: 7720: 7714: 7713: 7690: 7684: 7679: 7673: 7667: 7661: 7649: 7643: 7638: 7632: 7616: 7610: 7605: 7599: 7598: 7586: 7580: 7567: 7561: 7555: 7549: 7536: 7530: 7524: 7518: 7512: 7506: 7493: 7487: 7482: 7473: 7472: 7470: 7469: 7454: 7448: 7435: 7429: 7423: 7417: 7411: 7405: 7404: 7402: 7401: 7395: 7389:. Archived from 7384: 7375: 7369: 7368: 7366: 7360:. Archived from 7355: 7346: 7340: 7339: 7337: 7331:. Archived from 7326: 7317: 7311: 7310: 7303: 7297: 7292: 7286: 7281: 7275: 7270: 7264: 7263: 7261: 7260: 7251:. Archived from 7245: 7239: 7234: 7228: 7227: 7225: 7224: 7215:. Archived from 7209: 7203: 7198: 7192: 7187: 7181: 7169: 7163: 7162: 7150: 7144: 7143: 7141: 7133: 7127: 7125: 7123: 7117:. Archived from 7116: 7110:Tsubota, Shoji. 7107: 7101: 7100: 7098: 7097: 7088:. Archived from 7082: 7076: 7075: 7073: 7072: 7066:info.apitech.com 7057: 7051: 7050: 7048: 7042:. Archived from 7037: 7028: 7022: 7021: 7019: 7010: 7004: 7003: 6998:. Archived from 6988: 6982: 6981: 6974: 6968: 6967: 6949: 6943: 6942: 6940: 6938: 6923: 6917: 6907: 6901: 6900: 6892: 6883: 6870: 6864: 6863: 6861: 6855:. Archived from 6854: 6846: 6840: 6839: 6837: 6831:. Archived from 6826: 6818: 6812: 6811: 6809: 6803:. Archived from 6798: 6789: 6783: 6782: 6780: 6779: 6765: 6759: 6758: 6753:. Archived from 6747: 6738: 6737: 6736:on May 13, 2012. 6735: 6729:. Archived from 6724: 6715: 6704: 6693: 6661: 6353:piezoelectricity 6296: 6220: 6218: 6217: 6212: 6210: 6209: 6193: 6191: 6190: 6185: 6182: 6181: 6180: 6160: 6158: 6157: 6152: 6144: 6143: 6142: 6123: 6122: 6121: 6101: 6099: 6098: 6093: 6091: 6090: 6071: 6069: 6068: 6063: 6058: 6057: 6056: 6055: 6054: 6044: 6032: 6023: 6022: 5862: 5813: 5811: 5810: 5805: 5803: 5794: 5790: 5711: 5684:tan δ ≤ 50 • 10 5676:tan δ ≤ 40 • 10 5668:tan δ ≤ 30 • 10 5660:tan δ ≤ 20 • 10 5652:tan δ ≤ 15 • 10 5634: 5613: 5611: 5610: 5605: 5603: 5602: 5586: 5584: 5583: 5578: 5556: 5554: 5553: 5548: 5544: 5543: 5538: 5537: 5528: 5523: 5521: 5507: 5482: 5480: 5479: 5474: 5432: 5430: 5429: 5424: 5403: 5401: 5400: 5395: 5393: 5392: 5376: 5374: 5373: 5368: 5366: 5365: 5261: 5259: 5258: 5253: 5230: 5228: 5227: 5222: 5220: 5202: 5200: 5199: 5194: 5192: 5191: 5179: 5178: 5154: 5152: 5151: 5146: 5144: 5143: 5142: 5120: 5119: 5093: 5091: 5090: 5085: 5083: 5081: 5070: 5062: 5061: 5035: 5033: 5032: 5027: 5025: 5023: 5022: 5010: 5009: 5008: 4989: 4988: 4987: 4971: 4970: 4965: 4953: 4935: 4933: 4932: 4927: 4912: 4910: 4909: 4904: 4892: 4890: 4889: 4884: 4873:, an inductance 4872: 4870: 4869: 4864: 4846: 4844: 4843: 4838: 4833: 4831: 4830: 4829: 4816: 4815: 4814: 4801: 4796: 4794: 4786: 4784: 4776: 4774: 4749: 4747: 4746: 4741: 4642:500 V < 4620:200 V < 4598:100 V < 4553: 4516: 4504: 4443:−30…+85 °C 4380: 4235:< 10 pF 4225:> 10 pF 4208: 4177:preferred values 4014:circuit breakers 4006:resonant circuit 3976: 3964: 3952: 3892: 3880: 3834: 3822: 3810: 3798: 3761: 3749: 3737: 3674: 3662: 3650: 3597: 3585: 3573: 3029: 2560: 2502: 2490: 1959: 1883: 1881: 1880: 1875: 1873: 1871: 1866: 1855: 1797: 1769: 1742: 1730: 1718: 1706: 1673:surface mounting 1632: 1620: 1583: 1582: 1581: 1499:correlates with 1490:correlates with 1328: 1148: 1110: 1109: 1108: 1062: 1050: 767: 615: 447: 432: 431: 430: 417: 416: 415: 404:titanium dioxide 291: 137:titanium dioxide 21: 8067: 8066: 8062: 8061: 8060: 8058: 8057: 8056: 8042: 8041: 8040: 8034: 8032: 8031: 8022: 8020: 8011: 8009: 8005: 8000:Wayback Machine 7990: 7986: 7978: 7974: 7966: 7962: 7955: 7951: 7944: 7940: 7933: 7929: 7922: 7918: 7910: 7903: 7899: 7898: 7894: 7886: 7879: 7875: 7874: 7870: 7853: 7852: 7848: 7840: 7829: 7825: 7824: 7815: 7806: 7804: 7800: 7793: 7788: 7787: 7783: 7775: 7771: 7766:Wayback Machine 7756: 7752: 7722: 7721: 7717: 7692: 7691: 7687: 7680: 7676: 7668: 7664: 7659:Wayback Machine 7650: 7646: 7639: 7635: 7626:Wayback Machine 7617: 7613: 7606: 7602: 7588: 7587: 7583: 7578:Wayback Machine 7568: 7564: 7556: 7552: 7547:Wayback Machine 7537: 7533: 7525: 7521: 7513: 7509: 7504:Wayback Machine 7494: 7490: 7483: 7476: 7467: 7465: 7456: 7455: 7451: 7446:Wayback Machine 7436: 7432: 7424: 7420: 7412: 7408: 7399: 7397: 7393: 7382: 7377: 7376: 7372: 7364: 7353: 7348: 7347: 7343: 7335: 7324: 7319: 7318: 7314: 7305: 7304: 7300: 7293: 7289: 7282: 7278: 7271: 7267: 7258: 7256: 7247: 7246: 7242: 7235: 7231: 7222: 7220: 7211: 7210: 7206: 7199: 7195: 7188: 7184: 7179:Wayback Machine 7170: 7166: 7152: 7151: 7147: 7139: 7135: 7134: 7130: 7121: 7114: 7109: 7108: 7104: 7095: 7093: 7084: 7083: 7079: 7070: 7068: 7059: 7058: 7054: 7046: 7040:AVX Corporation 7035: 7030: 7029: 7025: 7017: 7012: 7011: 7007: 6990: 6989: 6985: 6976: 6975: 6971: 6964: 6956:. p. 124. 6951: 6950: 6946: 6936: 6934: 6925: 6924: 6920: 6908: 6904: 6894: 6893: 6886: 6881:Wayback Machine 6871: 6867: 6859: 6852: 6848: 6847: 6843: 6835: 6824: 6820: 6819: 6815: 6807: 6796: 6791: 6790: 6786: 6777: 6775: 6767: 6766: 6762: 6749: 6748: 6741: 6733: 6722: 6718:Waugh, Mark D. 6717: 6716: 6707: 6702:Wayback Machine 6663: 6662: 6649: 6644: 6617: 6609: 6603: 6541: 6502: 6489: 6483: 6472: 6452: 6403: 6401:Standardization 6398: 6381: 6349: 6333:sample-and-hold 6283: 6277: 6267: 6263: 6259: 6255: 6251: 6247: 6243: 6239: 6227:sample and hold 6201: 6196: 6195: 6171: 6166: 6165: 6127: 6112: 6107: 6106: 6082: 6077: 6076: 6045: 6027: 6014: 5994: 5993: 5985: 5976: 5936: 5778: 5777: 5773: 5770:is as high as X 5769: 5749: 5735: 5720: 5715: 5708: 5701: 5699: 5690: 5643: 5639:of the ceramic 5638: 5631: 5624: 5622: 5594: 5589: 5588: 5569: 5568: 5529: 5511: 5495: 5494: 5438: 5437: 5409: 5408: 5384: 5379: 5378: 5357: 5352: 5351: 5330: 5323: 5316: 5288:leakage current 5276: 5269: 5265: 5244: 5243: 5205: 5204: 5183: 5170: 5165: 5164: 5127: 5111: 5106: 5105: 5074: 5053: 5048: 5047: 5014: 4999: 4978: 4954: 4941: 4940: 4918: 4917: 4895: 4894: 4893:and a resistor 4875: 4874: 4855: 4854: 4817: 4802: 4762: 4761: 4732: 4731: 4712: 4702: 4693:> 500 V 4692: 4682: 4672: 4663: 4657: 4648: 4636: 4626: 4614: 4604: 4593: 4583: 4574: 4572: 4570: 4568: 4550: 4544: 4531: 4520: 4517: 4508: 4505: 4477: 4452: 4436: 4420: 4404: 4397: 4393: 4389: 4384: 4367: 4234: 4224: 4168: 4161: 4154: 4142: 4135: 4123: 4119: 4114: 4099: 4086: 4073: 4047: 4042: 4008:application in 3980: 3977: 3968: 3965: 3956: 3953: 3941: 3896: 3893: 3884: 3881: 3861: 3838: 3835: 3826: 3823: 3814: 3811: 3802: 3799: 3765: 3762: 3753: 3750: 3741: 3738: 3704: 3678: 3675: 3666: 3663: 3654: 3651: 3639: 3601: 3600:MLCC chip array 3598: 3589: 3586: 3577: 3574: 3562: 3033: 2564: 2539: 2506: 2503: 2494: 2491: 2479: 2011: 2009: 2004: 1999: 1997: 1992: 1985: 1983: 1978: 1973: 1971: 1966: 1942: 1940:MLCC case sizes 1884: 1837: 1836: 1835: 1828: 1801: 1798: 1789: 1788: 1770: 1758: 1753: 1746: 1743: 1734: 1731: 1722: 1719: 1710: 1707: 1644: 1636: 1633: 1624: 1621: 1609: 1580: 1577: 1576: 1575: 1573: 1570:barium titanate 1554: 1529: 1515: 1352: 1348: 1344: 1339: 1335: 1317: 1307: 1297: 1294:(−55/+125, ΔC/C 1287: 1277: 1267: 1257: 1254:(−55/+150, ΔC/C 1164: 1162: 1157: 1153:low temperature 1152: 1145: 1121:aluminium oxide 1107: 1104: 1103: 1102: 1100: 1097:barium titanate 1073: 1066: 1063: 1054: 1051: 802: 800: 795: 793: 788: 783: 778: 776: 771: 764: 762: 635: 633: 632:Tolerance ppm/K 628: 626: 621: 619: 612: 582: 578: 574: 560: 546: 532: 528: 514: 510: 496: 492: 478: 474: 465: 463: 458: 451: 429: 426: 425: 424: 422: 414: 411: 410: 409: 407: 399: 390:organizations. 375: 362: 360: 352: 342: 340: 332: 330: 320: 312: 302: 297: 296:IEC/EN 60384-1 295: 255: 236:TDK Corporation 176:crystallography 153:barium titanate 95: 28: 23: 22: 15: 12: 11: 5: 8065: 8063: 8055: 8054: 8044: 8043: 8039: 8038:External links 8036: 8030: 8029: 8003: 7984: 7972: 7960: 7949: 7938: 7927: 7916: 7892: 7868: 7846: 7813: 7781: 7769: 7750: 7731:(1–4): 17–21. 7715: 7685: 7674: 7662: 7644: 7633: 7611: 7600: 7581: 7562: 7550: 7531: 7519: 7507: 7488: 7474: 7449: 7430: 7418: 7406: 7370: 7367:on 2013-09-29. 7341: 7338:on 2012-01-13. 7312: 7298: 7287: 7276: 7265: 7240: 7229: 7204: 7193: 7182: 7164: 7145: 7128: 7102: 7077: 7052: 7023: 7005: 6983: 6969: 6962: 6944: 6918: 6902: 6884: 6865: 6862:on 2008-10-10. 6841: 6813: 6810:on 2013-09-29. 6784: 6760: 6739: 6705: 6646: 6645: 6643: 6640: 6639: 6638: 6633: 6628: 6623: 6616: 6613: 6605:Main article: 6602: 6599: 6586: 6585: 6582: 6575: 6574: 6571: 6568: 6557: 6556: 6549: 6540: 6537: 6532: 6531: 6528: 6525: 6522: 6519: 6516: 6513: 6510: 6501: 6498: 6482: 6479: 6471: 6468: 6451: 6448: 6447: 6446: 6443: 6440: 6437: 6430: 6429: 6402: 6399: 6397: 6394: 6380: 6377: 6348: 6345: 6320: 6319: 6316: 6312: 6311: 6308: 6304: 6303: 6300: 6279:Main article: 6276: 6273: 6265: 6261: 6257: 6253: 6249: 6245: 6241: 6237: 6208: 6204: 6179: 6174: 6162: 6161: 6150: 6147: 6141: 6138: 6135: 6130: 6126: 6120: 6115: 6089: 6085: 6073: 6072: 6061: 6053: 6048: 6043: 6039: 6036: 6031: 6026: 6021: 6017: 6013: 6010: 6007: 6004: 6001: 5983: 5975: 5972: 5935: 5932: 5926: 5925: 5922: 5919: 5916: 5913: 5911: 5909: 5908:X7R (Class 2) 5905: 5904: 5902: 5900: 5897: 5894: 5891: 5890:1550 MHz 5888: 5887:C0G (Class 1) 5884: 5883: 5880: 5877: 5874: 5871: 5868: 5865: 5800: 5797: 5793: 5788: 5785: 5771: 5767: 5748: 5745: 5738: 5737: 5731: 5730: 5727: 5723: 5722: 5717: 5706: 5693: 5692: 5686: 5685: 5682: 5678: 5677: 5674: 5670: 5669: 5666: 5662: 5661: 5658: 5654: 5653: 5650: 5646: 5645: 5640: 5629: 5601: 5597: 5576: 5558: 5557: 5541: 5536: 5532: 5526: 5520: 5517: 5514: 5510: 5505: 5502: 5488:quality factor 5484: 5483: 5472: 5469: 5466: 5463: 5460: 5457: 5454: 5451: 5448: 5445: 5422: 5419: 5416: 5391: 5387: 5364: 5360: 5345:quality factor 5333: 5332: 5328: 5325: 5321: 5318: 5314: 5306: 5305: 5295: 5275: 5272: 5267: 5263: 5251: 5219: 5216: 5213: 5190: 5186: 5182: 5177: 5173: 5157: 5156: 5141: 5138: 5135: 5130: 5126: 5123: 5118: 5114: 5095: 5094: 5080: 5077: 5073: 5068: 5065: 5060: 5056: 5037: 5036: 5021: 5017: 5013: 5007: 5002: 4998: 4995: 4992: 4986: 4981: 4977: 4974: 4969: 4964: 4961: 4958: 4951: 4948: 4925: 4902: 4882: 4862: 4848: 4847: 4836: 4828: 4825: 4820: 4813: 4810: 4805: 4799: 4792: 4789: 4782: 4779: 4772: 4769: 4739: 4711: 4708: 4705: 4704: 4700: 4694: 4690: 4684: 4683: 4680: 4674: 4670: 4665: 4659: 4658: 4655: 4649: 4646: 4639: 4638: 4634: 4628: 4624: 4617: 4616: 4612: 4606: 4602: 4595: 4594: 4591: 4585: 4581: 4576: 4564: 4563: 4560: 4559:Rated voltage 4557: 4542: 4530: 4527: 4522: 4521: 4518: 4511: 4509: 4506: 4499: 4497: 4476: 4473: 4451: 4448: 4445: 4444: 4441: 4438: 4432: 4431: 4428: 4425: 4416: 4415: 4412: 4409: 4400: 4399: 4394: 4391: 4386: 4366: 4363: 4356: 4355: 4352: 4349: 4346: 4342: 4341: 4338: 4335: 4332: 4329: 4325: 4324: 4321: 4318: 4315: 4312: 4308: 4307: 4304: 4301: 4298: 4295: 4291: 4290: 4287: 4284: 4281: 4278: 4274: 4273: 4270: 4267: 4264: 4261: 4257: 4256: 4253: 4250: 4247: 4244: 4240: 4239: 4236: 4232: 4229: 4226: 4222: 4218: 4217: 4214: 4173: 4172: 4171: 4170: 4166: 4163: 4159: 4156: 4152: 4146: 4145: 4144: 4140: 4137: 4133: 4121: 4117: 4113: 4110: 4106: 4105: 4097: 4092: 4084: 4079: 4071: 4066: 4046: 4043: 4041: 4038: 4022:power supplies 3982: 3981: 3978: 3971: 3969: 3966: 3959: 3957: 3954: 3947: 3945: 3940: 3937: 3916: 3915: 3912: 3909: 3906: 3898: 3897: 3894: 3887: 3885: 3882: 3875: 3873: 3860: 3857: 3840: 3839: 3836: 3829: 3827: 3824: 3817: 3815: 3812: 3805: 3803: 3800: 3793: 3791: 3767: 3766: 3763: 3756: 3754: 3751: 3744: 3742: 3739: 3732: 3730: 3712:depanelization 3703: 3700: 3680: 3679: 3676: 3669: 3667: 3664: 3657: 3655: 3652: 3645: 3643: 3638: 3635: 3603: 3602: 3599: 3592: 3590: 3587: 3580: 3578: 3575: 3568: 3566: 3561: 3560:Low-ESL styles 3558: 3555: 3554: 3551: 3548: 3545: 3542: 3539: 3536: 3533: 3530: 3527: 3523: 3522: 3519: 3516: 3513: 3510: 3507: 3504: 3501: 3498: 3495: 3491: 3490: 3487: 3484: 3481: 3478: 3475: 3472: 3469: 3466: 3463: 3459: 3458: 3455: 3452: 3449: 3446: 3443: 3440: 3437: 3434: 3431: 3427: 3426: 3423: 3420: 3417: 3414: 3411: 3408: 3405: 3402: 3399: 3395: 3394: 3391: 3388: 3385: 3382: 3379: 3376: 3373: 3370: 3367: 3363: 3362: 3359: 3356: 3353: 3350: 3347: 3344: 3341: 3338: 3335: 3331: 3330: 3327: 3324: 3321: 3318: 3315: 3312: 3309: 3306: 3303: 3299: 3298: 3295: 3292: 3289: 3286: 3283: 3280: 3277: 3274: 3271: 3267: 3266: 3263: 3260: 3257: 3254: 3251: 3248: 3245: 3242: 3239: 3235: 3234: 3231: 3228: 3225: 3222: 3219: 3216: 3213: 3210: 3207: 3203: 3202: 3199: 3196: 3193: 3190: 3187: 3184: 3181: 3178: 3175: 3171: 3170: 3167: 3164: 3161: 3158: 3155: 3152: 3149: 3146: 3143: 3139: 3138: 3135: 3132: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3107: 3106: 3102: 3101: 3098: 3095: 3092: 3089: 3086: 3083: 3080: 3077: 3073: 3072: 3068: 3067: 3064: 3061: 3058: 3055: 3052: 3049: 3046: 3043: 3039: 3038: 3035: 3022: 3021: 3018: 3015: 3012: 3009: 3006: 3003: 3000: 2997: 2994: 2990: 2989: 2986: 2983: 2980: 2977: 2974: 2971: 2968: 2965: 2962: 2958: 2957: 2954: 2951: 2948: 2945: 2942: 2939: 2936: 2933: 2930: 2926: 2925: 2922: 2919: 2916: 2913: 2910: 2907: 2904: 2901: 2898: 2894: 2893: 2890: 2887: 2884: 2881: 2878: 2875: 2872: 2869: 2866: 2862: 2861: 2858: 2855: 2852: 2849: 2846: 2843: 2840: 2837: 2834: 2830: 2829: 2826: 2823: 2820: 2817: 2814: 2811: 2808: 2805: 2802: 2798: 2797: 2794: 2791: 2788: 2785: 2782: 2779: 2776: 2773: 2770: 2766: 2765: 2762: 2759: 2756: 2753: 2750: 2747: 2744: 2741: 2738: 2734: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2712: 2709: 2706: 2702: 2701: 2698: 2695: 2692: 2689: 2686: 2683: 2680: 2677: 2674: 2670: 2669: 2666: 2663: 2660: 2657: 2654: 2651: 2648: 2645: 2642: 2638: 2637: 2633: 2632: 2629: 2626: 2623: 2620: 2617: 2614: 2611: 2608: 2604: 2603: 2599: 2598: 2595: 2592: 2589: 2586: 2583: 2580: 2577: 2574: 2570: 2569: 2566: 2538: 2535: 2508: 2507: 2504: 2497: 2495: 2492: 2485: 2483: 2478: 2475: 2472: 2471: 2468: 2465: 2462: 2459: 2457: 2454: 2451: 2448: 2444: 2443: 2440: 2437: 2434: 2431: 2429: 2426: 2423: 2420: 2416: 2415: 2412: 2409: 2406: 2403: 2401: 2398: 2395: 2392: 2388: 2387: 2384: 2381: 2378: 2375: 2373: 2370: 2367: 2364: 2360: 2359: 2356: 2353: 2350: 2347: 2345: 2342: 2339: 2336: 2332: 2331: 2328: 2325: 2322: 2319: 2317: 2314: 2311: 2308: 2304: 2303: 2300: 2297: 2294: 2291: 2289: 2286: 2283: 2280: 2276: 2275: 2272: 2269: 2266: 2263: 2261: 2258: 2255: 2252: 2248: 2247: 2244: 2241: 2238: 2235: 2233: 2230: 2227: 2224: 2220: 2219: 2216: 2213: 2210: 2207: 2205: 2202: 2199: 2196: 2192: 2191: 2188: 2185: 2182: 2179: 2177: 2174: 2171: 2168: 2164: 2163: 2160: 2157: 2154: 2151: 2149: 2146: 2143: 2140: 2136: 2135: 2132: 2129: 2126: 2123: 2121: 2118: 2115: 2112: 2108: 2107: 2104: 2101: 2098: 2095: 2093: 2090: 2087: 2084: 2080: 2079: 2076: 2073: 2070: 2067: 2065: 2062: 2059: 2056: 2052: 2051: 2048: 2045: 2042: 2039: 2037: 2034: 2031: 2030:0.016 × 0.0079 2028: 2025: 2014: 2013: 2006: 2001: 1994: 1989: 1987: 1980: 1975: 1968: 1963: 1941: 1938: 1870: 1865: 1862: 1859: 1853: 1850: 1847: 1844: 1827: 1824: 1803: 1802: 1799: 1792: 1790: 1787: 1786: 1783: 1780: 1777: 1773: 1771: 1764: 1762: 1757: 1754: 1752: 1749: 1748: 1747: 1744: 1737: 1735: 1732: 1725: 1723: 1720: 1713: 1711: 1708: 1701: 1699: 1695: 1694: 1691: 1682: 1675: 1638: 1637: 1634: 1627: 1625: 1622: 1615: 1613: 1608: 1605: 1578: 1562:semiconductive 1553: 1550: 1545:military types 1538: 1537: 1531: 1527: 1517: 1513: 1503: 1494: 1479: 1478: 1475: 1472: 1469: 1466: 1462: 1461: 1458: 1455: 1452: 1449: 1445: 1444: 1441: 1438: 1435: 1432: 1428: 1427: 1424: 1421: 1418: 1415: 1411: 1410: 1407: 1404: 1401: 1398: 1394: 1393: 1390: 1387: 1384: 1381: 1377: 1376: 1373: 1370: 1367: 1364: 1360: 1359: 1356: 1353: 1350: 1346: 1341: 1337: 1332: 1320: 1319: 1315: 1309: 1305: 1299: 1295: 1289: 1285: 1279: 1275: 1269: 1265: 1259: 1255: 1239: 1238: 1235: 1233: 1230: 1229: 1226: 1223: 1220: 1219: 1216: 1213: 1210: 1209: 1206: 1203: 1200: 1199: 1196: 1193: 1189: 1188: 1185: 1182: 1178: 1177: 1174: 1171: 1167: 1166: 1159: 1154: 1105: 1072: 1069: 1068: 1067: 1064: 1057: 1055: 1052: 1045: 1043: 1025: 1024: 1021: 1018: 1015: 1012: 1009: 1005: 1004: 1001: 998: 995: 992: 989: 985: 984: 981: 978: 975: 972: 969: 965: 964: 961: 958: 955: 952: 949: 945: 944: 941: 938: 935: 932: 929: 925: 924: 921: 918: 915: 912: 909: 905: 904: 901: 898: 895: 892: 889: 885: 884: 881: 878: 875: 872: 869: 865: 864: 861: 858: 855: 852: 849: 845: 844: 841: 838: 835: 832: 829: 825: 824: 821: 818: 815: 812: 809: 805: 804: 797: 790: 785: 780: 773: 752: 751: 749: 747: 743: 742: 740: 738: 734: 733: 731: 729: 725: 724: 722: 719: 715: 714: 711: 708: 704: 703: 700: 697: 693: 692: 689: 686: 682: 681: 678: 675: 671: 670: 667: 664: 660: 659: 656: 653: 649: 648: 645: 642: 638: 637: 630: 623: 590: 589: 586: 583: 580: 576: 572: 568: 567: 564: 561: 558: 554: 553: 550: 547: 544: 540: 539: 536: 533: 530: 526: 522: 521: 518: 515: 512: 508: 504: 503: 500: 497: 494: 490: 486: 485: 482: 479: 476: 472: 468: 467: 460: 453: 427: 412: 398: 395: 378: 377: 369: 365: 364: 354: 345: 344: 334: 323: 322: 314: 305: 304: 299: 254: 251: 216:Apollo program 198:microprocessor 94: 91: 75: 74: 67: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 8064: 8053: 8050: 8049: 8047: 8037: 8035: 8019:on 2013-12-24 8018: 8014: 8007: 8004: 8001: 7997: 7994: 7988: 7985: 7982: 7976: 7973: 7970: 7964: 7961: 7958: 7953: 7950: 7947: 7942: 7939: 7936: 7931: 7928: 7925: 7920: 7917: 7909: 7902: 7896: 7893: 7885: 7878: 7872: 7869: 7864: 7860: 7856: 7850: 7847: 7839: 7835: 7828: 7822: 7820: 7818: 7814: 7803:on 2013-06-27 7799: 7792: 7785: 7782: 7779: 7773: 7770: 7767: 7763: 7760: 7754: 7751: 7746: 7742: 7738: 7734: 7730: 7726: 7719: 7716: 7712: 7708: 7704: 7700: 7696: 7689: 7686: 7683: 7678: 7675: 7672: 7666: 7663: 7660: 7656: 7653: 7648: 7645: 7642: 7637: 7634: 7631: 7627: 7623: 7620: 7615: 7612: 7609: 7604: 7601: 7596: 7592: 7585: 7582: 7579: 7575: 7572: 7566: 7563: 7560: 7554: 7551: 7548: 7544: 7541: 7535: 7532: 7529: 7523: 7520: 7517: 7511: 7508: 7505: 7501: 7498: 7492: 7489: 7486: 7481: 7479: 7475: 7464:on 2012-07-05 7463: 7459: 7453: 7450: 7447: 7443: 7440: 7434: 7431: 7428: 7422: 7419: 7416: 7410: 7407: 7396:on 2008-07-25 7392: 7388: 7381: 7374: 7371: 7363: 7359: 7352: 7345: 7342: 7334: 7330: 7323: 7316: 7313: 7308: 7302: 7299: 7296: 7291: 7288: 7285: 7280: 7277: 7274: 7269: 7266: 7255:on 2013-08-31 7254: 7250: 7244: 7241: 7238: 7233: 7230: 7219:on 2012-02-27 7218: 7214: 7208: 7205: 7202: 7197: 7194: 7191: 7186: 7183: 7180: 7176: 7173: 7168: 7165: 7160: 7156: 7149: 7146: 7138: 7132: 7129: 7120: 7113: 7106: 7103: 7092:on 2013-10-12 7091: 7087: 7081: 7078: 7067: 7063: 7056: 7053: 7045: 7041: 7034: 7027: 7024: 7016: 7009: 7006: 7001: 6997: 6993: 6987: 6984: 6979: 6973: 6970: 6965: 6959: 6955: 6948: 6945: 6933: 6929: 6922: 6919: 6916: 6912: 6906: 6903: 6898: 6891: 6889: 6885: 6882: 6878: 6875: 6869: 6866: 6858: 6851: 6845: 6842: 6834: 6830: 6823: 6817: 6814: 6806: 6802: 6795: 6788: 6785: 6774: 6770: 6764: 6761: 6756: 6752: 6746: 6744: 6740: 6732: 6728: 6721: 6714: 6712: 6710: 6706: 6703: 6699: 6696: 6691: 6687: 6683: 6679: 6675: 6671: 6667: 6660: 6658: 6656: 6654: 6652: 6648: 6641: 6637: 6634: 6632: 6629: 6627: 6624: 6622: 6619: 6618: 6614: 6612: 6608: 6601:Colour coding 6600: 6598: 6595: 6592: 6589: 6583: 6580: 6579: 6578: 6572: 6569: 6567:μ47 = 0.47 μF 6566: 6565: 6564: 6562: 6554: 6550: 6547: 6543: 6542: 6538: 6536: 6529: 6526: 6523: 6520: 6517: 6514: 6511: 6508: 6507: 6506: 6499: 6493: 6488: 6480: 6478: 6477: 6469: 6467: 6465: 6461: 6457: 6449: 6444: 6441: 6438: 6435: 6434: 6433: 6427: 6426: 6425: 6423: 6418: 6416: 6412: 6408: 6400: 6395: 6393: 6389: 6387: 6384:is above the 6378: 6376: 6372: 6370: 6366: 6362: 6358: 6354: 6346: 6344: 6342: 6338: 6334: 6330: 6327: 6326:time-constant 6317: 6314: 6313: 6309: 6306: 6305: 6301: 6298: 6297: 6291: 6289: 6282: 6274: 6272: 6269: 6234: 6232: 6228: 6222: 6206: 6202: 6172: 6148: 6145: 6128: 6124: 6113: 6105: 6104: 6103: 6087: 6083: 6059: 6046: 6041: 6037: 6034: 6024: 6019: 6015: 6011: 6005: 5999: 5992: 5991: 5990: 5987: 5981: 5973: 5971: 5967: 5965: 5960: 5956: 5952: 5949: 5948:ferroelectric 5940: 5933: 5931: 5923: 5920: 5917: 5915:190 MHz 5914: 5912: 5910: 5907: 5906: 5903: 5901: 5898: 5896:160 MHz 5895: 5893:460 MHz 5892: 5889: 5886: 5885: 5881: 5878: 5875: 5872: 5869: 5866: 5864: 5863: 5860: 5857: 5853: 5849: 5845: 5843: 5839: 5835: 5831: 5827: 5823: 5819: 5814: 5798: 5795: 5791: 5786: 5783: 5775: 5765: 5761: 5757: 5753: 5746: 5744: 5732: 5728: 5725: 5724: 5718: 5714:Rated voltage 5713: 5709:≥ 50 pF 5705: 5687: 5683: 5680: 5679: 5675: 5672: 5671: 5667: 5664: 5663: 5659: 5656: 5655: 5651: 5648: 5647: 5641: 5636: 5632:≥ 50 pF 5628: 5618: 5615: 5599: 5595: 5574: 5567: 5563: 5539: 5534: 5530: 5524: 5518: 5515: 5512: 5508: 5503: 5500: 5493: 5492: 5491: 5489: 5470: 5467: 5464: 5461: 5458: 5455: 5452: 5449: 5446: 5443: 5436: 5435: 5434: 5420: 5417: 5414: 5405: 5389: 5385: 5362: 5358: 5348: 5346: 5342: 5338: 5326: 5319: 5312: 5311: 5310: 5304: 5300: 5296: 5293: 5292: 5291: 5289: 5285: 5281: 5273: 5271: 5249: 5236: 5232: 5217: 5214: 5211: 5188: 5184: 5180: 5175: 5171: 5162: 5128: 5124: 5121: 5116: 5112: 5104: 5103: 5102: 5100: 5078: 5075: 5071: 5066: 5063: 5058: 5054: 5046: 5045: 5044: 5042: 5019: 5000: 4996: 4990: 4979: 4972: 4967: 4962: 4959: 4956: 4949: 4946: 4939: 4938: 4937: 4923: 4914: 4900: 4880: 4860: 4851: 4834: 4818: 4803: 4797: 4787: 4777: 4770: 4767: 4760: 4759: 4758: 4755: 4753: 4737: 4730: 4726: 4716: 4709: 4703:+ 500 V 4699: 4695: 4689: 4686: 4685: 4679: 4675: 4669: 4666: 4662:Single layer- 4660: 4654: 4650: 4645: 4641: 4640: 4637:+ 100 V 4633: 4629: 4623: 4619: 4618: 4615:+ 100 V 4611: 4607: 4601: 4597: 4596: 4590: 4586: 4580: 4577: 4565: 4562:Test voltage 4561: 4558: 4555: 4546: 4539: 4535: 4529:Voltage proof 4528: 4526: 4515: 4510: 4503: 4498: 4495: 4493: 4491: 4481: 4474: 4472: 4470: 4466: 4456: 4449: 4442: 4439: 4434: 4433: 4429: 4426: 4423: 4422:ferroelectric 4418: 4417: 4413: 4410: 4407: 4402: 4401: 4395: 4387: 4382: 4375: 4373: 4364: 4362: 4353: 4350: 4347: 4344: 4343: 4339: 4336: 4333: 4330: 4326: 4322: 4319: 4316: 4313: 4310: 4309: 4305: 4302: 4299: 4296: 4293: 4292: 4288: 4285: 4282: 4279: 4276: 4275: 4271: 4268: 4265: 4262: 4259: 4258: 4254: 4251: 4248: 4245: 4242: 4237: 4230: 4227: 4220: 4213: 4203: 4201: 4197: 4192: 4190: 4186: 4182: 4178: 4164: 4158:100 pF < C 4157: 4150: 4149: 4147: 4138: 4131: 4130: 4128: 4127: 4126: 4111: 4109: 4103: 4096: 4093: 4090: 4083: 4080: 4077: 4070: 4067: 4064: 4061: 4060: 4059: 4051: 4044: 4039: 4037: 4033: 4031: 4027: 4023: 4019: 4015: 4011: 4007: 4002: 3998: 3990: 3986: 3975: 3970: 3963: 3958: 3951: 3946: 3943: 3938: 3936: 3932: 3930: 3926: 3921: 3913: 3910: 3907: 3904: 3903: 3902: 3891: 3886: 3879: 3874: 3871: 3869: 3866: 3858: 3856: 3854: 3850: 3844: 3833: 3828: 3821: 3816: 3809: 3804: 3797: 3792: 3789: 3787: 3785: 3779: 3775: 3773: 3772:short-circuit 3760: 3755: 3748: 3743: 3736: 3731: 3728: 3726: 3724: 3719: 3717: 3713: 3709: 3708:surface-mount 3701: 3699: 3696: 3692: 3690: 3684: 3673: 3668: 3661: 3656: 3649: 3644: 3641: 3636: 3634: 3630: 3628: 3623: 3619: 3616: 3612: 3608: 3596: 3591: 3584: 3579: 3572: 3567: 3564: 3559: 3552: 3549: 3546: 3543: 3540: 3537: 3534: 3531: 3528: 3525: 3524: 3520: 3517: 3514: 3511: 3508: 3505: 3502: 3499: 3496: 3493: 3492: 3489:0.12 μF 3488: 3485: 3482: 3479: 3476: 3473: 3470: 3467: 3464: 3461: 3460: 3457:0.33 μF 3456: 3453: 3450: 3447: 3444: 3441: 3438: 3435: 3432: 3429: 3428: 3425:0.47 μF 3424: 3421: 3418: 3415: 3412: 3409: 3406: 3403: 3400: 3397: 3396: 3392: 3389: 3386: 3383: 3380: 3377: 3374: 3371: 3368: 3365: 3364: 3360: 3357: 3354: 3351: 3348: 3345: 3342: 3339: 3336: 3333: 3332: 3328: 3325: 3322: 3319: 3316: 3313: 3310: 3307: 3304: 3301: 3300: 3296: 3293: 3290: 3287: 3284: 3281: 3278: 3275: 3272: 3269: 3268: 3264: 3261: 3258: 3255: 3252: 3249: 3246: 3243: 3240: 3237: 3236: 3232: 3229: 3226: 3223: 3220: 3217: 3214: 3211: 3208: 3205: 3204: 3200: 3197: 3194: 3191: 3188: 3185: 3182: 3179: 3176: 3173: 3172: 3168: 3165: 3162: 3159: 3156: 3153: 3150: 3147: 3144: 3141: 3140: 3136: 3133: 3130: 3127: 3124: 3121: 3118: 3115: 3112: 3109: 3108: 3099: 3096: 3093: 3090: 3087: 3084: 3081: 3078: 3075: 3074: 3069: 3065: 3062: 3059: 3056: 3053: 3050: 3047: 3044: 3041: 3040: 3019: 3016: 3013: 3010: 3007: 3004: 3001: 2998: 2995: 2992: 2991: 2987: 2984: 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2959: 2955: 2952: 2949: 2946: 2943: 2940: 2937: 2934: 2931: 2928: 2927: 2923: 2920: 2917: 2914: 2911: 2908: 2905: 2902: 2899: 2896: 2895: 2891: 2888: 2885: 2882: 2879: 2876: 2873: 2870: 2867: 2864: 2863: 2859: 2856: 2853: 2850: 2847: 2844: 2841: 2838: 2835: 2832: 2831: 2827: 2824: 2821: 2818: 2815: 2812: 2809: 2806: 2803: 2800: 2799: 2795: 2792: 2789: 2786: 2783: 2780: 2777: 2774: 2771: 2768: 2767: 2763: 2760: 2757: 2754: 2751: 2748: 2745: 2742: 2739: 2736: 2735: 2731: 2728: 2725: 2722: 2719: 2716: 2713: 2710: 2707: 2704: 2703: 2699: 2696: 2693: 2690: 2687: 2684: 2681: 2678: 2675: 2672: 2671: 2667: 2664: 2661: 2658: 2655: 2652: 2649: 2646: 2643: 2640: 2639: 2630: 2627: 2624: 2621: 2618: 2615: 2612: 2609: 2606: 2605: 2600: 2596: 2593: 2590: 2587: 2584: 2581: 2578: 2575: 2572: 2571: 2555: 2551: 2543: 2536: 2534: 2530: 2528: 2524: 2520: 2515: 2513: 2501: 2496: 2489: 2484: 2481: 2476: 2469: 2466: 2463: 2460: 2458: 2455: 2452: 2449: 2446: 2445: 2441: 2438: 2435: 2432: 2430: 2427: 2424: 2421: 2418: 2417: 2413: 2410: 2407: 2404: 2402: 2399: 2396: 2393: 2390: 2389: 2385: 2382: 2379: 2376: 2374: 2371: 2368: 2366:0.126 × 0.063 2365: 2362: 2361: 2357: 2354: 2351: 2348: 2346: 2343: 2340: 2337: 2334: 2333: 2329: 2326: 2323: 2320: 2318: 2315: 2312: 2310:0.098 × 0.079 2309: 2306: 2305: 2301: 2298: 2295: 2292: 2290: 2287: 2284: 2282:0.079 × 0.049 2281: 2278: 2277: 2273: 2270: 2267: 2264: 2262: 2259: 2256: 2254:0.063 × 0.031 2253: 2250: 2249: 2245: 2242: 2239: 2236: 2234: 2231: 2228: 2226:0.039 × 0.020 2225: 2222: 2221: 2217: 2214: 2212:0.225 × 0.197 2211: 2208: 2206: 2203: 2200: 2197: 2194: 2193: 2189: 2186: 2183: 2180: 2178: 2175: 2172: 2169: 2166: 2165: 2161: 2158: 2155: 2152: 2150: 2147: 2144: 2141: 2138: 2137: 2133: 2130: 2127: 2124: 2122: 2119: 2116: 2113: 2110: 2109: 2105: 2102: 2099: 2096: 2094: 2091: 2088: 2086:0.024 × 0.012 2085: 2082: 2081: 2077: 2074: 2071: 2068: 2066: 2063: 2060: 2058:0.016 × 0.016 2057: 2054: 2053: 2049: 2046: 2043: 2040: 2038: 2035: 2032: 2029: 2026: 2020: 2015: 2007: 2002: 1995: 1990: 1988: 1981: 1976: 1969: 1964: 1961: 1954: 1952: 1946: 1939: 1937: 1933: 1929: 1925: 1922: 1917: 1915: 1906: 1902: 1900: 1896: 1892: 1888: 1868: 1863: 1860: 1857: 1851: 1848: 1845: 1842: 1833: 1826:Miniaturizing 1825: 1819: 1815: 1811: 1807: 1796: 1791: 1784: 1781: 1778: 1775: 1774: 1768: 1763: 1760: 1756:Manufacturing 1755: 1750: 1741: 1736: 1729: 1724: 1717: 1712: 1705: 1700: 1697: 1692: 1690: 1686: 1683: 1680: 1676: 1674: 1670: 1669: 1668: 1665: 1661: 1659: 1655: 1650: 1643: 1631: 1626: 1619: 1614: 1611: 1606: 1604: 1600: 1593: 1589: 1587: 1571: 1566: 1563: 1559: 1558:barrier layer 1551: 1549: 1546: 1541: 1535: 1532: 1525: 1521: 1518: 1511: 1507: 1504: 1502: 1498: 1495: 1493: 1489: 1486: 1485: 1484: 1476: 1473: 1470: 1467: 1464: 1463: 1459: 1456: 1453: 1450: 1447: 1446: 1442: 1439: 1436: 1433: 1430: 1429: 1425: 1422: 1419: 1416: 1413: 1412: 1408: 1405: 1402: 1399: 1396: 1395: 1391: 1388: 1385: 1382: 1379: 1378: 1374: 1371: 1368: 1365: 1362: 1361: 1357: 1354: 1342: 1333: 1330: 1323: 1313: 1310: 1303: 1300: 1293: 1290: 1283: 1280: 1273: 1270: 1263: 1260: 1253: 1250: 1249: 1248: 1245: 1237:V = +22/−82% 1236: 1234: 1232: 1231: 1228:U = +22/−56% 1227: 1224: 1222: 1221: 1218:T = +22/−33% 1217: 1214: 1212: 1211: 1207: 1204: 1202: 1201: 1197: 1194: 1191: 1190: 1186: 1183: 1180: 1179: 1175: 1172: 1169: 1168: 1160: 1155: 1150: 1141: 1139: 1133: 1129: 1126: 1122: 1118: 1114: 1098: 1094: 1093:ferroelectric 1089: 1087: 1077: 1070: 1061: 1056: 1049: 1044: 1041: 1039: 1036: 1031: 1022: 1019: 1016: 1013: 1010: 1007: 1006: 1002: 999: 996: 993: 990: 987: 986: 982: 979: 976: 973: 970: 967: 966: 962: 959: 956: 953: 950: 947: 946: 942: 939: 936: 933: 930: 927: 926: 922: 919: 916: 913: 910: 907: 906: 902: 899: 896: 893: 890: 887: 886: 882: 879: 876: 873: 870: 867: 866: 862: 859: 856: 853: 850: 847: 846: 842: 839: 836: 833: 830: 827: 826: 822: 819: 816: 813: 810: 807: 806: 798: 791: 786: 781: 777:coefficient α 774: 769: 758: 750: 748: 745: 744: 741: 739: 736: 735: 732: 730: 727: 726: 723: 720: 717: 716: 712: 709: 706: 705: 701: 698: 695: 694: 690: 687: 684: 683: 679: 676: 673: 672: 668: 665: 662: 661: 657: 654: 651: 650: 646: 643: 640: 639: 631: 624: 617: 616: 608: 606: 600: 598: 587: 584: 570: 569: 565: 562: 556: 555: 551: 548: 542: 541: 537: 534: 524: 523: 519: 516: 506: 505: 501: 498: 488: 487: 483: 480: 470: 469: 464:coefficient α 462:Temperature- 461: 457: 454: 449: 442: 440: 436: 419: 405: 396: 394: 391: 387: 385: 373: 370: 367: 366: 358: 355: 350: 347: 346: 338: 335: 328: 325: 324: 318: 315: 310: 307: 306: 300: 293: 292: 286: 283: 281: 277: 271: 269: 264: 263:ferroelectric 260: 252: 250: 246: 244: 239: 237: 232: 230: 226: 221: 217: 212: 210: 206: 205:semiconductor 199: 195: 190: 186: 183: 179: 177: 168: 164: 160: 158: 154: 149: 144: 142: 138: 135: 129: 127: 123: 118: 116: 112: 108: 99: 92: 90: 88: 84: 79: 72: 68: 65: 64: 63: 61: 57: 53: 49: 45: 37: 32: 19: 8033: 8021:. Retrieved 8017:the original 8006: 7987: 7975: 7963: 7952: 7941: 7935:IEC Webstore 7930: 7924:IEC Homepage 7919: 7895: 7871: 7863:the original 7849: 7805:. Retrieved 7798:the original 7784: 7776:Ken Kundert 7772: 7753: 7728: 7724: 7718: 7694: 7688: 7677: 7665: 7647: 7636: 7614: 7603: 7594: 7584: 7565: 7553: 7534: 7522: 7510: 7491: 7466:. Retrieved 7462:the original 7452: 7433: 7421: 7409: 7398:. Retrieved 7391:the original 7386: 7373: 7362:the original 7357: 7344: 7333:the original 7328: 7315: 7301: 7290: 7279: 7268: 7257:. Retrieved 7253:the original 7243: 7232: 7221:. Retrieved 7217:the original 7207: 7196: 7185: 7167: 7158: 7148: 7131: 7119:the original 7105: 7094:. Retrieved 7090:the original 7080: 7069:. Retrieved 7065: 7055: 7044:the original 7039: 7026: 7008: 7000:the original 6995: 6986: 6972: 6953: 6947: 6935:. Retrieved 6931: 6921: 6910: 6905: 6896: 6868: 6857:the original 6844: 6833:the original 6828: 6816: 6805:the original 6800: 6787: 6776:. Retrieved 6772: 6763: 6755:the original 6731:the original 6726: 6673: 6669: 6631:Tape casting 6610: 6596: 6593: 6590: 6587: 6576: 6570:4μ7 = 4.7 μF 6561:IEC/EN 60062 6558: 6552: 6545: 6533: 6503: 6473: 6460:electrolytic 6453: 6431: 6419: 6404: 6390: 6382: 6375:dielectric. 6373: 6357:microphonics 6350: 6323: 6318:2.0 to 2.5% 6310:0.3 to 0.6% 6284: 6270: 6235: 6229:circuits or 6223: 6163: 6074: 5988: 5977: 5968: 5961: 5957: 5953: 5945: 5929: 5924:10 MHz 5921:22 MHz 5918:56 MHz 5899:55 MHz 5858: 5854: 5850: 5846: 5837: 5829: 5821: 5817: 5816:where ω = 2π 5815: 5776: 5750: 5741: 5703: 5626: 5616: 5559: 5485: 5406: 5349: 5334: 5307: 5277: 5241: 5158: 5096: 5038: 4915: 4852: 4849: 4756: 4722: 4697: 4687: 4677: 4667: 4652: 4643: 4631: 4621: 4609: 4599: 4588: 4578: 4540: 4536: 4532: 4523: 4486: 4469:permittivity 4461: 4406:paraelectric 4396:Application 4368: 4359: 4269:0.25 pF 4238:Letter code 4228:Letter code 4200:IEC/EN 60062 4193: 4185:IEC/EN 60063 4174: 4115: 4107: 4094: 4081: 4068: 4062: 4056: 4034: 4003: 3999: 3995: 3983: 3933: 3917: 3899: 3862: 3845: 3841: 3780: 3776: 3768: 3722: 3720: 3716:through-hole 3705: 3697: 3693: 3685: 3681: 3631: 3626: 3624: 3620: 3604: 3454:0.15 μF 3422:0.22 μF 3393:1.0 μF 3390:0.47 μF 3387:0.22 μF 3361:1.0 μF 3355:0.22 μF 3352:0.15 μF 3282:0.47 μF 3183:2.2 .μF 3020:1.0 nF 2988:3.9 nF 2828:330 nF 2796:470 nF 2552: 2548: 2531: 2526: 2516: 2511: 2509: 2470:20.3 × 15.3 2442:14.0 × 12.7 2414:10.2 × 10.2 2394:0.126 × 0.10 2386:9.2 × 10.16 2358:8.38 × 8.38 2324:0.29 × 0.197 2296:0.25 × 0.197 2240:0.225 × 0.25 2190:5.08 × 5.08 2156:0.20 × 0.098 2072:0.18 × 0.079 2044:0.18 × 0.063 1947: 1943: 1934: 1930: 1926: 1918: 1911: 1898: 1894: 1891:permittivity 1886: 1831: 1829: 1812: 1808: 1804: 1679:through-hole 1666: 1662: 1645: 1642:Tape casting 1601: 1598: 1567: 1555: 1544: 1542: 1539: 1533: 1523: 1519: 1509: 1505: 1500: 1496: 1491: 1487: 1482: 1321: 1318:= +22/−82%), 1311: 1308:= +22/−56%), 1301: 1291: 1281: 1271: 1261: 1251: 1246: 1242: 1161:Letter code 1156:Number code 1151:Letter code 1134: 1130: 1090: 1082: 1032: 1028: 755: 636:Letter code 601: 593: 439:permittivity 420: 400: 392: 388: 381: 371: 356: 348: 336: 326: 316: 308: 284: 272: 268:permittivity 259:paraelectric 256: 247: 240: 233: 227:mounting to 225:through-hole 213: 202: 184: 180: 173: 161: 157:permittivity 148:permittivity 145: 134:Paraelectric 130: 126:transmitters 119: 109:, paper and 104: 87:transmitters 80: 76: 43: 41: 36:through-hole 6573:47μ = 47 μF 6386:Curie point 6329:integrators 5964:Curie point 5820:, in which 5764:admittances 5726:≥ 10 V 5301:out of the 5041:Capacitance 4440:+22% / −82% 4286:0.5 pF 4252:0.1 pF 3553:15 nF 3550:1.2 nF 3526:3000 V 3521:22 nF 3515:6.8 nF 3512:2.2 nF 3494:2000 V 3486:0.1 μF 3477:4.7 nF 3474:1.0 nF 3462:1000 V 3451:0.1 μF 3442:1.5 nF 3419:0.1 μF 3410:3.9 nF 3384:0.1 μF 3378:2.2 nF 3358:1.0 μF 3329:10 μF 3326:3.3 μF 3320:4.7 μF 3317:0.1 μF 3314:0.1 μF 3311:4.7 nF 3297:10 μF 3288:4.7 μF 3285:4.7 μF 3279:0.1 μF 3276:1.5 nF 3265:22 μF 3250:2.2 μF 3247:0.1 μF 3218:4.7 μF 3215:2.2 μF 3212:0.1 μF 3209:1.0 nF 3180:0.1 μF 3177:1.0 nF 3163:100 μF 3151:2.2 μF 3148:0.1 μF 3131:100 μF 3128:100 μF 3119:2.2 μF 3017:390 pF 2993:3000 V 2985:1.5 nF 2982:680 pF 2979:270 pf 2961:2000 V 2956:12 nF 2953:5.6 nF 2950:2.7 nF 2947:1.0 nF 2944:270 pF 2929:1000 V 2924:47 nF 2915:4.7 nF 2912:1.2 nF 2892:47 nF 2883:4.7 nF 2880:820 pF 2857:100 nF 2848:8.2 nF 2845:2.2 nF 2842:330 pF 2825:150 nF 2822:100 nF 2819:100 nF 2813:4.7 nF 2810:1.0 nF 2807:100 pF 2793:220 nF 2790:150 nF 2787:100 nF 2778:1.5 nF 2775:220 pF 2772:100 pF 2758:220 nF 2755:120 nF 2746:2.2 nF 2743:1.0 nF 2740:220 pF 2726:220 nF 2723:120 nF 2714:2.2 nF 2708:220 pF 2694:220 nF 2691:100 nF 2688:100 nF 2682:4.7 nF 2676:220 pF 2644:220 pF 2456:3.81 × 3.81 2450:0.15 × 0.15 2422:0.14 × 0.10 2380:0.36 × 0.40 2352:0.33 × 0.33 2338:0.11 × 0.11 2268:0.25 × 0.13 2198:0.05 × 0.04 2184:0.20 × 0.20 2170:0.03 × 0.03 2142:0.03 × 0.02 2128:0.18 × 0.25 2114:0.02 × 0.02 2100:0.18 × 0.13 2005:metric code 2000:inch × inch 1979:metric code 1974:inch × inch 1685:Feedthrough 1654:micrometers 1548:+15%/-40%. 1522:similar to 1508:similar to 784:10 /K 782:α-Tolerance 779:10 /K 775:Temperature 629:Number code 622:Letter code 599:circuits). 303:EIA RS-198 8052:Capacitors 8023:2012-12-28 7807:2013-08-05 7468:2012-08-02 7400:2012-12-27 7259:2013-08-11 7223:2012-12-14 7096:2012-12-14 7071:2021-09-13 6778:2019-10-20 6773:ttiinc.com 6642:References 6485:See also: 6422:capacitors 6407:electronic 6365:vibrations 6361:electronic 6347:Microphony 5339:(ESR), as 5331:> 10 μF 5099:Inductance 4573:capacitors 4569:multilayer 4216:Tolerance 3723:flex crack 3615:inductance 3518:10 nF 3483:68 nF 3480:22 nF 3448:33 nF 3445:12 nF 3430:630 V 3416:68 nF 3413:22 nF 3398:500 V 3381:22 nF 3366:250 V 3349:56 nF 3346:10 nF 3334:200 V 3323:10 μF 3302:100 V 3291:10 μF 3259:22 μF 3256:10 μF 3253:10 μF 3244:10 nF 3227:22 μF 3224:22 μF 3221:10 μF 3195:47 μF 3192:22 μF 3189:22 μF 3186:10 μF 3160:47 μF 3157:22 μF 3154:10 μF 3142:6.3 V 3125:22 μF 3122:22 μF 2921:22 nF 2918:15 nF 2897:630 V 2889:22 nF 2886:10 nF 2865:500 V 2854:47 nF 2851:22 nF 2833:250 V 2816:22 nF 2801:100 V 2784:47 nF 2781:10 nF 2752:47 nF 2749:47 nF 2720:47 nF 2717:15 nF 2685:33 nF 2653:33 nF 2641:6.3 V 2436:0.55 × 0.5 2330:7.4 × 5.0 2302:6.4 × 5.0 2288:2.0 × 1.25 2274:6.4 × 3.2 2246:5.7 × 6.4 2218:5.7 × 5.0 2162:5.0 × 2.5 2134:4.5 × 6.4 2106:4.5 × 3.2 2078:4.5 × 2.0 2050:4.5 × 1.6 2008:Dimensions 1996:Dimensions 1982:Dimensions 1970:Dimensions 1086:microphony 625:Multiplier 115:dielectric 60:electrodes 52:dielectric 7745:110489189 7437:Capacor, 7060:APITech. 7031:Kahn, M. 6676:: 20–25. 6553:473M 100V 6546:105K 330V 6379:Soldering 6173:τ 6146:⋅ 6114:τ 6047:τ 6035:− 6025:⋅ 5784:ω 5760:impedance 5566:bandwidth 5519:δ 5516:⁡ 5468:ω 5465:⋅ 5450:δ 5447:⁡ 5161:resonance 5125:ω 5076:ω 5067:− 4997:− 4791:^ 4788:ı 4781:^ 4752:Ohm's law 4729:impedance 4710:Impedance 4320:2 pF 4303:1 pF 4196:tolerance 3929:fail-safe 3865:impedance 3784:Open Mode 3270:50 V 3238:25 V 3206:16 V 3174:10 V 2769:50 V 2737:25 V 2705:16 V 2673:10 V 2464:0.8 × 0.6 2428:3.6 × 2.5 2408:0.4 × 0.4 2400:3.2 × 2.5 2372:3.2 × 1.6 2344:2.8 × 2.8 2316:2.5 × 2.0 2260:1.6 × 0.8 2243:5664/5764 2232:1.0 × 0.5 2204:1.3 × 1.0 2176:0.8 × 0.8 2148:0.8 × 0.5 2120:0.5 × 0.5 2092:0.6 × 0.3 2064:0.4 × 0.4 2036:0.4 × 0.2 1993:inch code 1967:inch code 1861:⋅ 1852:⋅ 1849:ε 1689:soldering 1208:S = ±22% 1187:R = ±15% 1176:P = ±10% 1125:nonlinear 713:N: ±2500 702:M: ±1000 557:(ZrSn)TiO 543:(ZnMg)TiO 450:Chemical- 357:Class III 234:In 1993, 196:around a 192:MLCCs as 107:porcelain 48:capacitor 38:capacitor 8046:Category 7996:Archived 7908:Archived 7884:Archived 7838:Archived 7762:Archived 7655:Archived 7622:Archived 7574:Archived 7543:Archived 7500:Archived 7442:Archived 7413:Vishay, 7175:Archived 7013:Hitano. 6877:Archived 6872:Ceramic 6698:Archived 6695:Download 6690:23077215 6615:See also 6539:Examples 6456:tantalum 5642:Maximum 5282:losses. 4567:Ceramic- 4345:−20/+80% 4331:−20/+50% 4212:E series 4181:E series 3853:VW 80808 3849:AEC-Q200 3110:4 V 3100:5.7×5.0 3088:2.0×1.25 3034:voltage 2631:5.7×5.0 2619:2.0×1.25 2565:voltage 2525:. These 2012:mm × mm 1649:sintered 1556:Class 3 1471:+15/−25% 1437:+30/−90% 1434:+30/−80% 1420:+22/−70% 1417:+22/−56% 1403:+20/−40% 1400:+20/−30% 1386:+20/−30% 1369:+10/−15% 1349:at U = U 1340:at U = 0 1298:= ±22%), 1288:= ±15%), 1278:= ±15%), 1268:= ±15%), 1258:= ±15%), 792:IEC/ EN- 770:Ceramic 721:8: +1000 691:L: ±500 680:K: ±250 677:3: −1000 669:J: ±120 372:Class IV 337:Class II 7699:Bibcode 6874:Ceramic 6481:Marking 6341:filters 5879:100 nF 5870:100 pF 5834:henries 5719:maximum 5681:≤ −5600 5324:≤ 10 μF 5317:≤ 1 nF: 4028:and in 3851:and/or 3097:4.5×3.2 3094:3.2×2.5 3091:3.2×1.6 3085:1.6×0.8 3082:1.0×0.5 3079:0.6×0.3 3076:0.4×0.2 2628:4.5×3.2 2625:3.2×2.5 2622:3.2×1.6 2616:1.6×0.8 2613:1.0×0.5 2610:0.6×0.3 2607:0.4×0.2 1986:mm × mm 1962:Drawing 1921:digital 710:7: +100 666:2: −100 658:H: ±60 647:G: ±30 452:formula 349:Class 3 327:Class 2 317:Class I 309:Class 1 282:(EIA). 155:with a 122:Marconi 93:History 83:RFI/EMI 56:ceramic 7743:  6960:  6937:Sep 7, 6727:Murata 6688:  5876:10 nF 5867:10 pF 5842:farads 5836:, and 5545:  4575:(MLCC) 4556:Style 4100:, the 4087:, the 4074:, the 4016:, for 3032:Rated- 2563:Rated- 2523:nickel 2519:copper 2467:203153 2439:140127 2411:100100 2055:015015 2003:IEC/EN 1977:IEC/EN 1885:where 801:letter 794:letter 789:class 772:names 746:U: 7.5 737:V: 5.6 728:T: 4.7 718:S: 3.3 707:R: 2.2 699:6: +10 696:P: 1.5 685:M: 1.0 674:A: 0.9 663:L: 0.8 655:1: −10 652:B: 0.3 641:C: 0.0 141:rutile 7911:(PDF) 7904:(PDF) 7887:(PDF) 7880:(PDF) 7859:KEMET 7841:(PDF) 7834:KEMET 7830:(PDF) 7801:(PDF) 7794:(PDF) 7741:S2CID 7569:AVX, 7394:(PDF) 7383:(PDF) 7365:(PDF) 7354:(PDF) 7336:(PDF) 7325:(PDF) 7140:(PDF) 7122:(PDF) 7115:(PDF) 7047:(PDF) 7036:(PDF) 7018:(PDF) 6860:(PDF) 6853:(PDF) 6836:(PDF) 6825:(PDF) 6808:(PDF) 6797:(PDF) 6734:(PDF) 6723:(PDF) 6686:S2CID 6369:noise 5934:Aging 5882:1 μF 5873:1 nF 5826:Hertz 5702:with 5625:with 5101:) is 5043:) is 4072:insul 3066:2220 3042:01005 2597:2220 2573:01005 2027:01005 2010:L × W 1984:L × W 1972:L × W 1951:JEDEC 1681:leads 1574:BaTiO 1101:BaTiO 1011:−1500 1008:N1500 991:−1000 988:N1000 803:code 796:code 688:5: +1 644:0: −1 605:ppm/K 466:10/K 209:doped 6958:ISBN 6939:2024 5762:and 5297:the 4696:1.5 4676:2.5 4651:1.3 4630:1.3 4608:1.5 4587:2.5 4571:chip 4463:the 4427:±15% 3627:0508 3063:1812 3060:1210 3057:1206 3054:0805 3051:0603 3048:0402 3045:0201 2594:1812 2591:1210 2588:1206 2585:0805 2582:0603 2579:0402 2576:0201 2521:and 2461:8060 2453:3838 2447:1515 2433:5550 2425:3625 2419:1410 2405:4040 2397:3225 2391:1210 2383:9210 2377:3640 2369:3216 2363:1206 2355:8484 2349:3333 2341:2828 2335:1111 2327:7450 2321:2920 2313:2520 2307:1008 2299:6450 2293:2520 2285:2012 2279:0805 2271:6432 2265:2512 2257:1608 2251:0603 2237:2225 2229:1005 2223:0402 2215:5750 2209:2220 2201:1310 2195:0504 2187:5050 2181:2020 2173:0808 2167:0303 2159:5025 2153:2010 2145:0805 2139:0302 2131:4564 2125:1825 2117:0505 2111:0202 2103:4532 2097:1812 2089:0603 2083:0201 2075:4520 2069:1808 2061:0404 2047:4516 2041:1806 2033:0402 1991:EIA 1965:EIA 1543:For 1468:±15% 1451:±15% 1383:±20% 1366:±10% 1345:ΔC/C 1336:ΔC/C 1119:and 1023:P3K 1014:±250 1003:Q3K 994:±250 983:U2J 974:±120 971:−750 968:N750 963:T2H 951:−470 948:N470 943:S2H 931:−330 928:N330 923:R2H 911:−220 908:N220 903:P2H 891:−150 888:N150 883:L2G 863:H2G 843:C0G 823:M7G 808:P100 799:EIA 787:Sub- 620:10/K 525:ZnTa 507:MgTa 502:−56 489:ZnNb 484:−70 471:MgNb 111:mica 7993:PDF 7981:PDF 7969:PDF 7733:doi 7707:doi 7671:PDF 7559:PDF 7540:PDF 7528:PDF 7159:AEI 6678:doi 6254:ins 6238:ins 5984:ins 5946:In 5513:tan 5444:tan 4424:X7R 4408:NP0 4390:C/C 4314:20% 4297:10% 4294:E12 4277:E24 4260:E48 4243:E96 4189:E24 4098:ESL 4085:ESR 3689:EMC 1998:LxW 1893:; 1560:or 1534:X8R 1524:2C1 1520:X7S 1510:2F4 1506:Y5V 1501:2E6 1497:Z5U 1492:2X1 1488:X7R 1312:Y5V 1302:Z5U 1292:X7S 1282:X5R 1272:X6R 1262:X7R 1252:X8R 1035:ppm 954:±60 934:±60 914:±60 894:±60 874:±30 871:−75 868:N75 854:±30 851:−33 848:N33 834:±30 828:NP0 814:±30 811:100 585:40 563:37 549:32 535:38 520:18 517:28 499:25 481:21 423:TiO 408:TiO 261:or 18:C0G 8048:: 7857:. 7832:. 7816:^ 7739:. 7729:21 7727:. 7705:, 7628:, 7593:. 7477:^ 7385:. 7356:. 7327:. 7157:. 7064:. 7038:. 6994:. 6930:. 6887:^ 6827:. 6799:. 6771:. 6742:^ 6725:. 6708:^ 6684:. 6674:26 6672:. 6668:. 6650:^ 6417:. 6331:, 6233:. 5966:. 5844:. 5828:, 5377:– 5284:DC 5280:AC 5231:. 4913:. 4725:AC 4492:. 4354:- 4340:- 4328:E3 4323:G 4311:E6 4306:F 4289:D 4280:5% 4272:C 4263:2% 4255:B 4246:1% 4202:. 3855:. 3233:– 3201:– 3169:– 3137:– 2860:– 2764:– 2732:– 2700:– 2668:– 1588:. 1477:– 1465:2X 1448:2R 1431:2F 1414:2E 1397:2D 1380:2C 1363:2B 1115:, 1088:. 1020:VK 1017:1F 1000:QK 997:1F 980:UJ 977:1B 960:TH 957:1B 940:SH 937:1B 920:RH 917:1B 900:PH 897:1B 880:LG 877:1B 860:HG 857:1B 840:CG 837:1B 820:AG 817:1B 588:2 581:20 575:Ti 571:Ba 566:0 552:5 538:9 89:. 42:A 8026:. 7810:. 7747:. 7735:: 7709:: 7701:: 7597:. 7471:. 7403:. 7309:. 7262:. 7226:. 7161:. 7142:. 7099:. 7074:. 7020:. 6980:. 6966:. 6941:. 6781:. 6692:. 6680:: 6266:R 6262:s 6258:R 6250:R 6246:s 6242:R 6207:0 6203:U 6178:s 6149:C 6140:s 6137:n 6134:i 6129:R 6125:= 6119:s 6088:0 6084:U 6060:, 6052:s 6042:/ 6038:t 6030:e 6020:0 6016:U 6012:= 6009:) 6006:t 6003:( 6000:u 5838:C 5830:L 5822:f 5818:f 5799:C 5796:L 5792:1 5787:= 5772:L 5768:C 5707:R 5704:C 5630:R 5627:C 5600:0 5596:f 5575:B 5540:B 5535:0 5531:f 5525:= 5509:1 5504:= 5501:Q 5471:C 5462:R 5459:S 5456:E 5453:= 5421:L 5418:S 5415:E 5390:L 5386:X 5363:C 5359:X 5329:R 5322:R 5315:R 5268:L 5264:C 5250:Z 5218:R 5215:S 5212:E 5189:L 5185:X 5181:= 5176:C 5172:X 5155:. 5140:L 5137:S 5134:E 5129:L 5122:= 5117:L 5113:X 5079:C 5072:1 5064:= 5059:C 5055:X 5020:2 5016:) 5012:) 5006:L 5001:X 4994:( 4991:+ 4985:C 4980:X 4976:( 4973:+ 4968:2 4963:R 4960:S 4957:E 4950:= 4947:Z 4924:Z 4901:R 4881:L 4861:C 4835:. 4827:C 4824:A 4819:I 4812:C 4809:A 4804:U 4798:= 4778:u 4771:= 4768:Z 4738:Z 4719:δ 4701:R 4698:U 4691:R 4688:U 4681:R 4678:U 4671:R 4668:U 4656:R 4653:U 4647:R 4644:U 4635:R 4632:U 4625:R 4622:U 4613:R 4610:U 4603:R 4600:U 4592:R 4589:U 4582:R 4579:U 4543:R 4392:0 4351:- 4348:Z 4337:- 4334:S 4317:M 4300:K 4283:J 4266:G 4249:F 4233:R 4231:C 4223:R 4221:C 4167:R 4165:C 4160:R 4153:R 4151:C 4141:R 4139:C 4134:R 4132:C 4122:N 4118:R 4095:L 4082:R 4069:R 4063:C 3547:– 3544:– 3541:– 3538:– 3535:– 3532:– 3529:– 3509:– 3506:– 3503:– 3500:– 3497:– 3471:– 3468:– 3465:– 3439:– 3436:– 3433:– 3407:– 3404:– 3401:– 3375:– 3372:– 3369:– 3343:– 3340:– 3337:– 3308:– 3305:– 3294:– 3273:– 3262:– 3241:– 3230:– 3198:– 3166:– 3145:– 3134:– 3116:– 3113:– 3014:– 3011:– 3008:– 3005:– 3002:– 2999:– 2996:– 2976:– 2973:– 2970:– 2967:– 2964:– 2941:– 2938:– 2935:– 2932:– 2909:– 2906:– 2903:– 2900:– 2877:– 2874:– 2871:– 2868:– 2839:– 2836:– 2804:– 2761:– 2729:– 2711:– 2697:– 2679:– 2665:– 2662:– 2659:– 2656:– 2650:– 2647:– 1899:d 1895:A 1887:ε 1869:d 1864:A 1858:n 1846:= 1843:C 1832:C 1579:3 1572:( 1528:0 1514:0 1474:– 1457:6 1454:− 1440:5 1423:4 1406:3 1389:2 1372:1 1351:N 1347:0 1338:0 1316:0 1306:0 1296:0 1286:0 1276:0 1266:0 1256:0 1106:3 1099:( 831:0 579:O 577:9 573:2 559:4 545:3 531:6 529:O 527:2 513:6 511:O 509:2 495:6 493:O 491:2 477:6 475:O 473:2 459:ε 428:2 413:2 406:( 368:– 139:( 20:)

Index

C0G

through-hole
capacitor
dielectric
ceramic
electrodes
volumetric efficiency
RFI/EMI
transmitters

porcelain
mica
dielectric
Marconi
transmitters
Paraelectric
titanium dioxide
rutile
permittivity
barium titanate
permittivity

crystallography

decoupling capacitors
microprocessor
semiconductor
doped
Apollo program

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.