Knowledge (XXG)

Dielectric

Source 📝

3810: 133: 2381:(orientation polarisation), or can be induced in any molecule in which the asymmetric distortion of the nuclei is possible (distortion polarisation). Orientation polarisation results from a permanent dipole, e.g., that arises from the 104.45° angle between the asymmetric bonds between oxygen and hydrogen atoms in the water molecule, which retains polarisation in the absence of an external electric field. The assembly of these dipoles forms a macroscopic polarisation. 157: 3050: 2206: 5193: 36: 3533: 2857: 1643: 2233:. It is the relationship between the electric field and the dipole moment that gives rise to the behaviour of the dielectric. (Note that the dipole moment points in the same direction as the electric field in the figure. This is not always the case, and is a major simplification, but is true for many materials.) 4019:
Researchers "doped" BST thin films with magnesium, analyzing the "structure, microstructure, surface morphology and film/substrate compositional quality" of the result. The Mg doped BST films showed "improved dielectric properties, low leakage current, and good tunability", meriting potential for use
2396:
of the molecules. Because the rotation is not instantaneous, dipolar polarisations lose the response to electric fields at the highest frequencies. A molecule rotates about 1 radian per picosecond in a fluid, thus this loss occurs at about 10 Hz (in the microwave region). The delay of the response to
2213:
In the classical approach to the dielectric, the material is made up of atoms. Each atom consists of a cloud of negative charge (electrons) bound to and surrounding a positive point charge at its center. In the presence of an electric field, the charge cloud is distorted, as shown in the top right of
4343:
considered from the standpoint of their interaction with electric, magnetic or electromagnetic fields. Thus we are concerned with gases as well as with liquids and solids and with the storage of electric and magnetic energy as well as its dissipation." (p. 1) (Technology Press of MIT and John Wiley,
2432:
If a crystal or molecule consists of atoms of more than one kind, the distribution of charges around an atom in the crystal or molecule leans to positive or negative. As a result, when lattice vibrations or molecular vibrations induce relative displacements of the atoms, the centers of positive and
4012:
The research was part of an effort to provide the Army with highly-tunable, microwave-compatible materials for broadband electric-field tunable devices, which operate consistently in extreme temperatures. This work improved tunability of bulk barium strontium titanate, which is a thin film enabler
2526:
is the dependence of the permittivity of a dielectric material on the frequency of an applied electric field. Because there is a lag between changes in polarisation and changes in the electric field, the permittivity of the dielectric is a complex function of the frequency of the electric field.
4777:
Lee, Che-Hui; Orloff, Nathan D.; Birol, Turan; Zhu, Ye; Goian, Veronica; Rocas, Eduard; Haislmaier, Ryan; Vlahos, Eftihia; Mundy, Julia A.; Kourkoutis, Lena F.; Nie, Yuefeng; Biegalski, Michael D.; Zhang, Jingshu; Bernhagen, Margitta; Benedek, Nicole A.; Kim, Yongsam; Brock, Joel D.; Uecker,
3390: 2408:
frequencies or less, the molecules are bent and stretched by the field and the molecular dipole moment changes. The molecular vibration frequency is roughly the inverse of the time it takes for the molecules to bend, and this distortion polarisation disappears above the infrared.
1782: 3045:{\displaystyle {\begin{aligned}\varepsilon '&=\varepsilon _{\infty }+{\frac {\varepsilon _{s}-\varepsilon _{\infty }}{1+\omega ^{2}\tau ^{2}}}\\\varepsilon ''&={\frac {(\varepsilon _{s}-\varepsilon _{\infty })\omega \tau }{1+\omega ^{2}\tau ^{2}}}\end{aligned}}} 1003:, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field. This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly 4778:
Reinhard; Xi, X. X.; Gopalan, Venkatraman; Nuzhnyy, Dmitry; Kamba, Stanislav; Muller, David A.; Takeuchi, Ichiro; Booth, James C.; Fennie, Craig J.; Schlom, Darrell G. (2013). "Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics".
1507: 4009:(ARL) conducted research on thin film technology. Barium strontium titanate (BST), a ferroelectric thin film, was studied for the fabrication of radio frequency and microwave components, such as voltage-controlled oscillators, tunable filters and phase shifters. 2755: 3681:
that operates by polarising the paraelectric, allowing it to return to ambient temperature (by dissipating the extra heat), bringing it into contact with the object to be cooled, and finally depolarising it, would result in refrigeration.
2063: 4130:), may retain excess internal charge or "frozen in" polarisation. Electrets have a semi-permanent electric field, and are the electrostatic equivalent to magnets. Electrets have numerous practical applications in the home and industry. 2243:
This is the essence of the model in physics. The behaviour of the dielectric now depends on the situation. The more complicated the situation, the richer the model must be to accurately describe the behaviour. Important questions are:
3380: 3317: 2433:
negative charges are also displaced. The locations of these centers are affected by the symmetry of the displacements. When the centers do not correspond, polarisation arises in molecules or crystals. This polarisation is called
3952: 2620:, and therefore dielectric relaxation is measured relative to the expected linear steady state (equilibrium) dielectric values. The time lag between electrical field and polarisation implies an irreversible degradation of 3828:
The most obvious advantage to using such a dielectric material is that it prevents the conducting plates, on which the charges are stored, from coming into direct electrical contact. More significantly, however, a high
2577:
is the permittivity of the free space. Because permittivity indicates the strength of the relation between an electric field and polarisation, if a polarisation process loses its response, permittivity decreases.
5018:
Cole, M. W.; Hubbard, C.; Ngo, E.; Ervin, M.; Wood, M.; Geyer, R. G. (July 2002). "Structure–property relationships in pure and acceptor-doped Ba1−xSrxTiO3 thin films for tunable microwave device applications".
1293: 3891: 3528:{\displaystyle \tan(\delta )={\frac {\varepsilon ''}{\varepsilon '}}={\frac {\left(\varepsilon _{s}-\varepsilon _{\infty }\right)\omega \tau }{\varepsilon _{s}+\varepsilon _{\infty }\omega ^{2}\tau ^{2}}}} 1972: 2674: 2862: 1657: 2334: 5064: 1407: 3090: 2593:
of a material. This is usually caused by the delay in molecular polarisation with respect to a changing electric field in a dielectric medium (e.g., inside capacitors or between two large
3821:
dielectric material with high permittivity as the intervening medium between the stored positive and negative charges. This material is often referred to in technical contexts as the
3254: 2850: 2658:
is the dielectric relaxation response of an ideal, noninteracting population of dipoles to an alternating external electric field. It is usually expressed in the complex permittivity
995:, because they have no loosely bound, or free, electrons that may drift through the material, but instead they shift, only slightly, from their average equilibrium positions, causing 1638:{\displaystyle \mathbf {D} \ =\ \varepsilon _{0}\mathbf {E} +\mathbf {P} \ =\ \varepsilon _{0}\left(1+\chi _{e}\right)\mathbf {E} \ =\ \varepsilon _{0}\varepsilon _{r}\mathbf {E} .} 714: 4016:
In a 2004 research paper, U.S. ARL researchers explored how small concentrations of acceptor dopants can dramatically modify the properties of ferroelectric materials such as BST.
2444:
as well as dipolar polarisation. The ferroelectric transition, which is caused by the lining up of the orientations of permanent dipoles along a particular direction, is called an
2117: 1988: 1872: 3989:
of the polarisation response for a narrow range of frequencies, generally in the microwave band. It consists of a "puck" of ceramic that has a large dielectric constant and a low
2635:
refers to the relaxation response of a dielectric medium to an external, oscillating electric field. This relaxation is often described in terms of permittivity as a function of
1827: 3229: 2825: 2190: 4837:
Kong, L. B.; Li, S.; Zhang, T. S.; Zhai, J. W.; Boey, F. Y. C.; Ma, J. (2010-11-30). "Electrically tunable dielectric materials and strategies to improve their performances".
3204: 3163: 1356: 1322: 3122: 687: 1451: 3591:
This shows the response of dielectrics to an applied DC field to behave according to a power law, which can be expressed as an integral over weighted exponential functions.
2146: 1901: 1500: 1478: 1238: 1216: 2639:, which can, for ideal systems, be described by the Debye equation. On the other hand, the distortion related to ionic and electronic polarisation shows behaviour of the 2514:
different electrical properties. As a result, some parts of the membrane of a neuron may be excitable (capable of generating action potentials), whereas others are not.
699: 1171: 1076:
storing capacity of the material (by means of polarisation). A common example of a dielectric is the electrically insulating material between the metallic plates of a
4967:
Developments in Dielectric Materials and Electronic Devices: Proceedings of the 106th Annual Meeting of The American Ceramic Society, Indianapolis, Indiana, USA 2004
4315:
Dielectric, insulating material or a very poor conductor of electric current. When dielectrics are placed in an electric field, practically no current flows in them.
3904: 5319: 4874:
Giere, A.; Zheng, Y.; Maune, H.; Sazegar, M.; Paul, F.; Zhou, X.; Binder, J. R.; Muller, S.; Jakoby, R. (2008). "Tunable dielectrics for microwave applications".
5253: 3618:
causes polarisation and/or alignment of dipoles only parallel to the applied electric field. Contrary to the analogy with a paramagnetic material, no permanent
4160:
behave within an externally applied magnetic field. Ferroelectric materials often have very high dielectric constants, making them quite useful for capacitors.
2388:, remains constant in orientation polarisation; however, the direction of polarisation itself rotates. This rotation occurs on a timescale that depends on the 3790:
have a paraelectric–ferroelectric transition just below ambient temperature, providing high tunability. Films suffer significant losses arising from defects.
4039:
Solid dielectrics are perhaps the most commonly used dielectrics in electrical engineering, and many solids are very good insulators. Some examples include
5221: 4924:
published 2003-11-06, issued 2004-10-18, assigned to IHP GmbH- Innovations for High Performance Microelectronics/Institute Fur Innovative Mikroelektronik
3813:
Charge separation in a parallel-plate capacitor causes an internal electric field. A dielectric (orange) reduces the field and increases the capacitance.
1245: 950: 719: 4992: 3853: 2067:
The susceptibility (or equivalently the permittivity) is frequency dependent. The change of susceptibility with respect to frequency characterises the
4965: 3614:
Paraelectricity is the nominal behaviour of dielectrics when the dielectric permittivity tensor is proportional to the unit matrix, i.e., an applied
3124:
in the denominator due to an ongoing sign convention ambiguity whereby many sources represent the time dependence of the complex electric field with
729: 3622:
needs to exist in a paraelectric material. Removal of the fields results in the dipolar polarisation returning to zero. The mechanisms that causes
1080:. The polarisation of the dielectric by the applied electric field increases the capacitor's surface charge for the given electric field strength. 3322: 3259: 1049: 5201: 3993:. Such resonators are often used to provide a frequency reference in an oscillator circuit. An unshielded dielectric resonator can be used as a 5177: 554: 2295: 1652:
In general, a material cannot polarise instantaneously in response to an applied field. The more general formulation as a function of time is
5156: 5120: 4891: 4678: 4597: 4152:
dielectrics exhibit a spontaneous dipole moment, which can be reversed by an externally applied electric field. This behaviour is called the
569: 191: 5216: 3967:. This allows the capacitor to operate at higher voltages before the insulating dielectric ionises and begins to allow undesirable current. 3757:. The two have mismatched crystal spacing that produces strain within the strontium titanate layer that makes it less stable and tunable. 3746:) substitutes for room temperature devices. Other potential materials include microwave dielectrics and carbon nanotube (CNT) composites. 3673:
Paraelectricity has been explored as a possible refrigeration mechanism; polarising a paraelectric by applying an electric field under
1363: 449: 5246: 5002: 4975: 4635: 1910: 181: 119: 2483:
All cells in animal body tissues are electrically polarised – in other words, they maintain a voltage difference across the cell's
4708:
Debye, P. (1913), Ver. Deut. Phys. Gesell. 15, 777; reprinted 1954 in collected papers of Peter J.W. Debye. Interscience, New York
3833:
allows a greater stored charge at a given voltage. This can be seen by treating the case of a linear dielectric with permittivity
4298: 3566: 2527:
Dielectric dispersion is very important for the applications of dielectric materials and the analysis of polarisation systems.
364: 4280: 5102: 4084:
as a fluid dielectric and to assist in cooling. Dielectric fluids with higher dielectric constants, such as electrical grade
3580: 943: 709: 186: 57: 4937:
Cole, M. W.; Geyer, R. G. (2004). "Novel tunable acceptor doped BST thin films for high quality tunable microwave devices".
2384:
When an external electric field is applied, the distance between charges within each permanent dipole, which is related to
5183:
Dissemination of IT for the Promotion of Materials Science (DoITPoMS) Teaching and Learning Package "Dielectric Materials"
4614: 3644:
Most dielectric materials are paraelectrics. A specific example of a paraelectric material of high dielectric constant is
724: 429: 4137:, or (equivalently) change physical shape if an external voltage is applied across the material. This property is called 3586: 100: 5239: 3994: 3630:(displacement of the electron cloud from the nucleus) and polarisation of molecules or combinations of ions or defects. 3574: 2338:
When both the type of electric field and the type of material have been defined, one then chooses the simplest function
1978: 589: 579: 564: 329: 196: 2153: 629: 319: 72: 882: 757: 654: 53: 3594: 3558: 2750:{\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon _{\infty }+{\frac {\Delta \varepsilon }{1+i\omega \tau }},} 2647:
type. The character of the distortion process depends on the structure, composition, and surroundings of the sample.
549: 3057: 1777:{\displaystyle \mathbf {P} (t)=\varepsilon _{0}\int _{-\infty }^{t}\chi _{e}\left(t-t'\right)\mathbf {E} (t')\,dt'.} 1420: 4285: 4246: 4181: 382: 2502:
In neurons, the types of ion channels in the membrane usually vary across different parts of the cell, giving the
79: 46: 3713: 2351: 2288:
gives rise to the behaviour of the dielectric, which, for a given material, can be characterised by the function
2236:
When the electric field is removed, the atom returns to its original state. The time required to do so is called
936: 897: 424: 414: 354: 349: 289: 4231: 4006: 2226: 867: 747: 434: 2552:
The ionic polarisation and molecular distortion polarisation can no longer track the electric field past the
5186: 5148: 4257: 4201: 4157: 4116: 4108: 2222: 1144: 1134: 1044: 976: 872: 842: 274: 264: 259: 86: 3550: 2077: 1832: 5206: 4211: 4206: 3754: 2342:
that correctly predicts the phenomena of interest. Examples of phenomena that can be so modelled include:
694: 464: 239: 4330: 1793: 4226: 4186: 3809: 2259: 2159: 2074:
Moreover, the fact that the polarisation can only depend on the electric field at previous times (i.e.,
1456: 1061: 792: 479: 469: 419: 409: 156: 132: 68: 5298: 4991:
Nair, K. M.; Bhalla, Amar S.; Hirano, S.-I.; Suvorov, D.; Schwartz, Robert W.; Zhu, Wei (2012-04-11).
3168: 3127: 1334: 1300: 5324: 5293: 5288: 5112: 5028: 4946: 4787: 4746: 4723: 4434: 4377: 4326: 4216: 4104: 3976: 3095: 2594: 2441: 2237: 1904: 1174: 1122: 1000: 992: 917: 817: 782: 534: 399: 299: 284: 219: 3234: 2830: 324: 4480:"Malignant cell characterisation via mathematical analysis of bio impedance and optical properties" 4221: 4196: 4056: 4033: 3209: 2805: 2590: 2531: 2366: 2122: 2068: 1982: 1877: 1325: 1027: 877: 857: 852: 659: 644: 529: 499: 394: 20: 3666:, and above this temperature it transforms into a disordered paraelectric phase. Similarly, other 2417:
Ionic polarisation is polarisation caused by relative displacements between positive and negative
1483: 1461: 1221: 1199: 5081: 4897: 4819: 4737:
Kuhn, U.; LĂŒty, F. (1965). "Paraelectric heating and cooling with OH—dipoles in alkali halides".
4570: 4515: 4367: 4067: 4060: 3990: 3697: 3645: 2488: 1181:
of the material and thus influences many other phenomena in that medium, from the capacitance of
752: 492: 294: 254: 3637:
phases where electric dipoles are unaligned and thus have the potential to align in an external
3599:
This is used when the dielectric loss is approximately constant for a wide range of frequencies.
4535:"Biodielectric phenomenon for actively differentiating malignant and normal cells: An overview" 3753:
produced a dielectric capable of operating at up to 125 GHz. The material was created via
1149: 5152: 5126: 5116: 5044: 4998: 4971: 4887: 4811: 4674: 4631: 4593: 4562: 4554: 4507: 4499: 4460: 4403: 4191: 2663: 2621: 2597:
surfaces). Dielectric relaxation in changing electric fields could be considered analogous to
2473: 2058:{\displaystyle \mathbf {P} (\omega )=\varepsilon _{0}\chi _{e}(\omega )\mathbf {E} (\omega ).} 1118: 812: 4647: 5283: 5073: 5036: 4879: 4854: 4846: 4803: 4795: 4754: 4546: 4491: 4450: 4442: 4393: 4385: 4251: 4153: 4138: 4134: 4093: 3609: 2541:
The dipolar polarisation can no longer follow the oscillations of the electric field in the
2346: 2273: 964: 912: 827: 787: 777: 664: 619: 602: 519: 454: 224: 148: 4099:
Because dielectrics resist the flow of electricity, the surface of a dielectric may retain
3693:
are insulators whose ability to store electrical charge changes when a voltage is applied.
5278: 5182: 5062:
Lyon, David (2013). "Gap size dependence of the dielectric strength in nano vacuum gaps".
4103:
excess electrical charges. This may occur accidentally when the dielectric is rubbed (the
3750: 3652: 3619: 2799: 2492: 2484: 2477: 2469: 2426: 1104: 1090: 1031: 1015: 988: 847: 772: 767: 634: 509: 474: 369: 334: 234: 4612:
James, Frank A.J.L., editor. The Correspondence of Michael Faraday, Volume 3, 1841–1848,
3963:
Dielectric materials used for capacitors are also chosen such that they are resistant to
887: 5032: 4950: 4791: 4750: 4438: 4381: 93: 5138: 4455: 4422: 4398: 4355: 3638: 3615: 2602: 2511: 2378: 1186: 1073: 1057: 984: 980: 807: 802: 624: 514: 439: 389: 339: 312: 269: 244: 214: 207: 3677:
conditions raises the temperature, while removing the field lowers the temperature. A
2559:
The electronic polarisation loses its response in the ultraviolet region around 10 Hz.
1829:. The upper limit of this integral can be extended to infinity as well if one defines 1125:; therefore it stores and returns electrical energy as if it were an ideal capacitor. 1007:
molecules, those molecules not only become polarised, but also reorient so that their
5313: 4758: 4574: 4519: 4176: 4127: 4112: 3659: 3541:(1913). It is characteristic for dynamic polarisation with only one relaxation time. 2617: 2613: 2465: 2422: 2385: 2361: 2356: 2269: 1008: 1004: 922: 907: 892: 832: 544: 459: 444: 359: 344: 249: 4901: 3749:
In 2013, multi-sheet layers of strontium titanate interleaved with single layers of
2476:, energetically unfavourable transport of ions, and cell-to-cell communication (the 1790:
of the electric field at previous times with time-dependent susceptibility given by
1014:
The study of dielectric properties concerns storage and dissipation of electric and
4964:
Nair, K. M.; Guo, Ruyan; Bhalla, Amar S.; Hirano, S.-I.; Suvorov, D. (2012-04-11).
4823: 4302: 4236: 4171: 4089: 3830: 2496: 1178: 1138: 902: 797: 762: 704: 639: 524: 404: 279: 16:
Electrically insulating substance able to be polarised by an applied electric field
5085: 4850: 4550: 4495: 4133:
Some dielectrics can generate a potential difference when subjected to mechanical
559: 5172: 5142: 5106: 2460:
Ionic polarisation enables the production of energy-rich compounds in cells (the
5262: 4534: 4479: 4081: 4077: 3896: 3563:
This equation is used when the dielectric loss peak shows asymmetric broadening.
3538: 2610: 2563:
In the frequency region above ultraviolet, permittivity approaches the constant
2461: 1787: 1085: 1019: 822: 674: 504: 166: 35: 4618: 4446: 4389: 3947:{\displaystyle c={\frac {\sigma _{\varepsilon }}{V}}={\frac {\varepsilon }{d}}} 3555:
This equation is used when the dielectric loss peak shows symmetric broadening.
2205: 5192: 5077: 4920: 4883: 4085: 3964: 3667: 2644: 2598: 539: 5048: 4558: 4503: 4339:... are not a narrow class of so-called insulators, but the broad expanse of 4876:
2008 17th IEEE International Symposium on the Applications of Ferroelectrics
4040: 3986: 3804: 3678: 3674: 3375:{\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon '-i\varepsilon ''} 3312:{\displaystyle {\hat {\varepsilon }}(\omega )=\varepsilon '+i\varepsilon ''} 2640: 2636: 2542: 2393: 2209:
Electric field interaction with an atom under the classical dielectric model
2149: 1182: 1077: 1018:
in materials. Dielectrics are important for explaining various phenomena in
862: 837: 649: 574: 171: 24: 4815: 4566: 4511: 4464: 4407: 5130: 4032:
can also be a useful, nearly lossless dielectric even though its relative
1095: 5147:. Monographs on the Physics & Chemistry of Materials (2nd ed.). 4423:"Recovery of Alumina Nanocapacitors after High and Low Voltage Breakdown" 4294: 4241: 4123: 4071: 4052: 2606: 2553: 2503: 2405: 2398: 2252: 1177:
in response to an electric field. This, in turn, determines the electric
614: 609: 229: 4799: 2491:. This electrical polarisation results from a complex interplay between 2248:
Is the electric field constant, or does it vary with time? At what rate?
4859: 4630:
The Institution of Electrical Engineers, London, United Kingdom, 1996.
4290: 4149: 4145: 4141:. Piezoelectric materials are another class of very useful dielectrics. 4074:
provide a dielectric barrier between the substrate and its environment.
4048: 3634: 2628: 2448:. The transition caused by ionic polarisations in crystals is called a 1331:
The susceptibility of a medium is related to its relative permittivity
584: 5231: 5040: 4807: 3537:
This relaxation model was introduced by and named after the physicist
4029: 3663: 2389: 2218: 1412: 1193: 1023: 669: 176: 4372: 2534:: a frequency-dependent response of a medium for wave propagation. 1981:
and write this relationship as a function of frequency. Due to the
1288:{\displaystyle \mathbf {P} =\varepsilon _{0}\chi _{e}\mathbf {E} ,} 4698:. London: Elsevier Publishing Companys. pp. 231–232, 348–349. 4044: 3818: 3808: 2546: 2377:
Dipolar polarisation is a polarisation that is either inherent to
2229:, a vector quantity shown in the figure as the blue arrow labeled 2204: 131: 3886:{\displaystyle \sigma _{\varepsilon }=\varepsilon {\frac {V}{d}}} 3571:
This equation considers both symmetric and asymmetric broadening.
1192:
It is defined as the constant of proportionality (which may be a
3627: 2616:). Relaxation in general is a delay or lag in the response of a 2507: 2251:
Does the response depend on the direction of the applied field (
5235: 4028:
Dielectric materials can be solids, liquids, or gases. (A high
2418: 2265:
Do any boundaries or interfaces have to be taken into account?
1967:{\displaystyle \chi _{e}(\Delta t)=\chi _{e}\delta (\Delta t)} 1115: 29: 4916:
Semiconductor capacitor with praseodymium oxide as dielectric
4254:– variation of dielectric strength of gas related to pressure 3960:
leads to greater charge stored and thus greater capacitance.
3385:
The dielectric loss is also represented by the loss tangent:
987:. When a dielectric material is placed in an electric field, 4421:
Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A. (2017).
3712:) is used for devices operating at low temperatures, while 1068:
is generally used to indicate electrical obstruction while
5065:
IEEE Transactions on Dielectrics and Electrical Insulation
3841:
between two conducting plates with uniform charge density
1121:
infinite electrical conductivity), thus exhibiting only a
4115:, or it can be potentially destructive as in the case of 2329:{\displaystyle \mathbf {M} =\mathbf {F} (\mathbf {E} ).} 1173:
of a dielectric material is a measure of how easily it
2530:
This is one instance of a general phenomenon known as
2156:
on the real and imaginary parts of the susceptibility
3907: 3856: 3817:
Commercially manufactured capacitors typically use a
3393: 3325: 3262: 3237: 3212: 3171: 3130: 3098: 3060: 2860: 2833: 2808: 2677: 2298: 2162: 2125: 2080: 1991: 1977:
It is more convenient in a linear system to take the
1913: 1880: 1835: 1796: 1660: 1510: 1486: 1464: 1423: 1366: 1337: 1303: 1248: 1224: 1202: 1152: 4994:
Ceramic Materials and Multilayer Electronic Devices
4673:. London: Elsevier Academic Press. pp. 92–93. 3670:also exhibit paraelectricity at high temperatures. 3256:representing real and imaginary parts are given by 60:. Unsourced material may be challenged and removed. 3946: 3885: 3527: 3374: 3311: 3248: 3223: 3198: 3157: 3116: 3084: 3044: 2844: 2819: 2749: 2328: 2184: 2140: 2111: 2057: 1966: 1895: 1866: 1821: 1776: 1637: 1494: 1472: 1445: 1401: 1350: 1316: 1287: 1232: 1210: 1165: 991:do not flow through the material as they do in an 4615:"Letter 1798, William Whewell to Faraday, p. 442" 4172:Classification of materials based on permittivity 3382:. The above equation uses the latter convention. 2766:is the permittivity at the high frequency limit, 1114:is a material with zero electrical conductivity ( 1060:. The latter is expressed by a number called the 4356:"Dielectric study on mixtures of ionic liquids" 3985:(DRO) is an electronic component that exhibits 3956:From this, it can easily be seen that a larger 2852:of the complex dielectric permittivity yields: 2794:is the static, low frequency permittivity, and 1402:{\displaystyle \chi _{e}\ =\varepsilon _{r}-1.} 1218:to the induced dielectric polarisation density 3848:. In this case the charge density is given by 3085:{\displaystyle {\hat {\varepsilon }}(\omega )} 2404:When an external electric field is applied at 5247: 2802:of the medium. Separating into the real part 944: 8: 4275: 4273: 2280:The relationship between the electric field 4156:. These materials are analogous to the way 1903:. An instantaneous response corresponds to 5254: 5240: 5232: 3206:. In the former convention, the functions 951: 937: 155: 139: 4858: 4649:Microwave Engineering – R. S. Rao (Prof.) 4454: 4397: 4371: 3934: 3920: 3914: 3906: 3873: 3861: 3855: 3516: 3506: 3496: 3483: 3460: 3447: 3435: 3412: 3392: 3327: 3326: 3324: 3264: 3263: 3261: 3236: 3211: 3170: 3129: 3097: 3062: 3061: 3059: 3029: 3019: 2992: 2979: 2969: 2941: 2931: 2913: 2900: 2893: 2884: 2861: 2859: 2832: 2807: 2715: 2706: 2679: 2678: 2676: 2662:of a medium as a function of the field's 2315: 2307: 2299: 2297: 2167: 2161: 2124: 2085: 2079: 2038: 2023: 2013: 1992: 1990: 1985:, the integral becomes a simple product, 1943: 1918: 1912: 1879: 1840: 1834: 1801: 1795: 1759: 1740: 1710: 1700: 1692: 1682: 1661: 1659: 1627: 1621: 1611: 1593: 1582: 1561: 1543: 1535: 1529: 1511: 1509: 1487: 1485: 1465: 1463: 1428: 1422: 1387: 1371: 1365: 1342: 1336: 1308: 1302: 1277: 1271: 1261: 1249: 1247: 1225: 1223: 1203: 1201: 1157: 1151: 120:Learn how and when to remove this message 4354:Thoms, E.; Sippel, P.; et., al. (2017). 4122:Specially processed dielectrics, called 2397:the change of the electric field causes 2272:with respect to the field, or are there 4932: 4930: 4590:Biographical Encyclopedia of Scientists 4269: 3626:behaviour are distortion of individual 2589:is the momentary delay (or lag) in the 1480:is related to the polarisation density 700:Electromagnetism and special relativity 147: 5320:Electric and magnetic fields in matter 5178:Dielectric Sphere in an Electric Field 4080:is used extensively inside electrical 1056:typically means materials with a high 4332:Dielectric Materials and Applications 4005:From 2002 to 2004, the United States 2258:Is the response the same everywhere ( 2112:{\displaystyle \chi _{e}(\Delta t)=0} 1867:{\displaystyle \chi _{e}(\Delta t)=0} 720:Maxwell equations in curved spacetime 7: 4772: 4770: 4768: 4539:Electromagnetic Biology and Medicine 4484:Electromagnetic Biology and Medicine 2556:or far-infrared region around 10 Hz, 58:adding citations to reliable sources 4126:(which should not be confused with 2537:When the frequency becomes higher: 2225:. A dipole is characterised by its 1822:{\displaystyle \chi _{e}(\Delta t)} 1326:electric permittivity of free space 3575:Kohlrausch–Williams–Watts function 3497: 3461: 2993: 2914: 2885: 2718: 2707: 2185:{\displaystyle \chi _{e}(\omega )} 2126: 2094: 1955: 1927: 1881: 1849: 1810: 1696: 14: 4059:are the three most commonly used 3319:whereas in the latter convention 3054:Note that the above equation for 5191: 5173:Feynman's lecture on dielectrics 3199:{\displaystyle \exp(+i\omega t)} 3158:{\displaystyle \exp(-i\omega t)} 2316: 2308: 2300: 2217:This can be reduced to a simple 2039: 1993: 1741: 1662: 1628: 1594: 1544: 1536: 1512: 1488: 1466: 1351:{\displaystyle \varepsilon _{r}} 1317:{\displaystyle \varepsilon _{0}} 1278: 1250: 1226: 1204: 1103:) in response to a request from 34: 4696:Theory of Electric Polarisation 4533:Hossain, Shadeeb (2020-04-02). 4478:Hossain, Shadeeb (2020-12-27). 4107:). This can be useful, as in a 3983:dielectric resonator oscillator 3595:Djordjevic–Sarkar approximation 3117:{\displaystyle 1-i\omega \tau } 2446:order-disorder phase transition 1786:That is, the polarisation is a 136:A polarised dielectric material 45:needs additional citations for 4671:Dielectric Phenomena in Solids 4020:in microwave tunable devices. 3581:stretched exponential function 3545:Variants of the Debye equation 3406: 3400: 3344: 3338: 3332: 3281: 3275: 3269: 3249:{\displaystyle \varepsilon ''} 3193: 3178: 3152: 3137: 3079: 3073: 3067: 2998: 2972: 2845:{\displaystyle \varepsilon ''} 2696: 2690: 2684: 2440:Ionic polarisation causes the 2320: 2312: 2179: 2173: 2100: 2091: 2049: 2043: 2035: 2029: 2003: 1997: 1961: 1952: 1933: 1924: 1855: 1846: 1816: 1807: 1756: 1745: 1672: 1666: 1446:{\displaystyle \chi _{e}\ =0.} 1: 4851:10.1016/j.pmatsci.2010.04.004 4839:Progress in Materials Science 4551:10.1080/15368378.2020.1737804 4496:10.1080/15368378.2020.1850471 4299:EncyclopĂŠdia Britannica, Inc. 3633:Paraelectricity can occur in 3224:{\displaystyle \varepsilon '} 2820:{\displaystyle \varepsilon '} 2141:{\displaystyle \Delta t<0} 1896:{\displaystyle \Delta t<0} 1196:) relating an electric field 725:Relativistic electromagnetism 4759:10.1016/0038-1098(65)90060-8 4013:for electronics components. 3995:dielectric resonator antenna 2240:time; an exponential decay. 2071:properties of the material. 1495:{\displaystyle \mathbf {P} } 1473:{\displaystyle \mathbf {D} } 1233:{\displaystyle \mathbf {P} } 1211:{\displaystyle \mathbf {E} } 4092:capacitors to help prevent 3567:Havriliak–Negami relaxation 2472:, the establishment of the 2450:displacive phase transition 5341: 5021:Journal of Applied Physics 4939:Revista Mexicana de Fisica 4739:Solid State Communications 4592:. CRC Press. p. 943. 4447:10.1038/s41598-017-01007-9 4390:10.1038/s41598-017-07982-3 4247:Rotational Brownian motion 4182:Clausius-Mossotti relation 4024:Some practical dielectrics 3974: 3802: 3607: 3092:is sometimes written with 2570:in every substance, where 2154:Kramers–Kronig constraints 1132: 450:LiĂ©nard–Wiechert potential 18: 5269: 5144:Principles of Dielectrics 5108:Classical Electrodynamics 5078:10.1109/TDEI.2013.6571470 4997:. John Wiley & Sons. 4970:. John Wiley & Sons. 4884:10.1109/ISAF.2008.4693753 4694:Böttcher, C.J.F. (1952). 4096:and increase capacitance. 3714:barium strontium titanate 2352:Group velocity dispersion 2292:defined by the equation: 1166:{\displaystyle \chi _{e}} 715:Mathematical descriptions 425:Electromagnetic radiation 415:Electromagnetic induction 355:Magnetic vector potential 350:Magnetic scalar potential 4232:Linear response function 4007:Army Research Laboratory 3587:Curie–von Schweidler law 1648:Dispersion and causality 1072:is used to indicate the 19:Not to be confused with 5222:EncyclopĂŠdia Britannica 5187:University of Cambridge 5149:Oxford University Press 4329:, in his seminal work, 4286:EncyclopĂŠdia Britannica 4258:Separator (electricity) 4202:Dielectric spectroscopy 4158:ferromagnetic materials 4117:electrostatic discharge 4109:Van de Graaff generator 2827:and the imaginary part 2223:superposition principle 2196:Dielectric polarisation 1145:electric susceptibility 1135:Electric susceptibility 1129:Electric susceptibility 1001:dielectric polarisation 997:dielectric polarisation 265:Electrostatic induction 260:Electrostatic discharge 5225:(11th ed.). 1911. 5207:Encyclopedia Americana 4914:MĂŒssig, Hans-Joachim. 4669:Kao, Kwan Chi (2004). 4212:EIA Class 2 dielectric 4207:EIA Class 1 dielectric 3948: 3887: 3814: 3755:molecular beam epitaxy 3559:Cole–Davidson equation 3529: 3376: 3313: 3250: 3225: 3200: 3159: 3118: 3086: 3046: 2846: 2821: 2798:is the characteristic 2751: 2392:and surrounding local 2330: 2284:and the dipole moment 2210: 2186: 2142: 2113: 2059: 1968: 1897: 1868: 1823: 1778: 1639: 1496: 1474: 1447: 1403: 1352: 1318: 1289: 1234: 1212: 1167: 695:Electromagnetic tensor 137: 5196:Texts on Wikisource: 5139:Scaife, Brendan K. P. 5113:John Wiley & Sons 4921:U.S. patent 7,113,388 4724:John Wiley & Sons 4588:Daintith, J. (1994). 4187:Dielectric absorption 3949: 3888: 3812: 3579:Fourier transform of 3530: 3377: 3314: 3251: 3226: 3201: 3160: 3119: 3087: 3047: 2847: 2822: 2752: 2633:dielectric relaxation 2587:Dielectric relaxation 2582:Dielectric relaxation 2524:dielectric dispersion 2518:Dielectric dispersion 2331: 2208: 2187: 2143: 2114: 2060: 1969: 1898: 1869: 1824: 1779: 1640: 1497: 1475: 1457:electric displacement 1448: 1404: 1353: 1319: 1290: 1235: 1213: 1168: 1062:relative permittivity 1050:electrical conduction 688:Covariant formulation 480:Synchrotron radiation 420:Electromagnetic pulse 410:Electromagnetic field 135: 5289:antiferroelectricity 5141:(3 September 1998). 4327:Arthur R. von Hippel 4154:ferroelectric effect 4105:triboelectric effect 4088:, are often used in 3977:Dielectric resonator 3971:Dielectric resonator 3905: 3854: 3823:capacitor dielectric 3391: 3323: 3260: 3235: 3210: 3169: 3128: 3096: 3058: 2858: 2831: 2806: 2675: 2442:ferroelectric effect 2373:Dipolar polarisation 2296: 2160: 2148:), a consequence of 2123: 2078: 1989: 1911: 1905:Dirac delta function 1878: 1833: 1794: 1658: 1508: 1484: 1462: 1421: 1411:So in the case of a 1364: 1335: 1301: 1246: 1222: 1200: 1150: 1123:displacement current 1011:align to the field. 993:electrical conductor 977:electrical insulator 730:Stress–energy tensor 655:Reluctance (complex) 400:Displacement current 54:improve this article 5263:Polarization states 5105:(10 August 1998) . 5103:Jackson, John David 5033:2002JAP....92..475C 4951:2004RMxF...50..232C 4800:10.1038/nature12582 4792:2013Natur.502..532L 4751:1965SSCom...3...31K 4718:Chiang, Y. (1997). 4439:2017NatSR...7..932B 4382:2017NatSR...7.7463T 4197:Dielectric strength 4068:Industrial coatings 4061:gaseous dielectrics 4057:sulfur hexafluoride 4034:dielectric constant 3691:Tunable dielectrics 3165:whereas others use 2591:dielectric constant 2532:material dispersion 2456:In biological cells 2367:Harmonic generation 1983:convolution theorem 1705: 1028:solid-state physics 645:Magnetomotive force 530:Electromotive force 500:Alternating current 435:Jefimenko equations 395:Cyclotron radiation 21:dielectric constant 3991:dissipation factor 3944: 3883: 3815: 3698:strontium titanate 3646:strontium titanate 3551:Cole–Cole equation 3525: 3372: 3309: 3246: 3221: 3196: 3155: 3114: 3082: 3042: 3040: 2842: 2817: 2747: 2489:membrane potential 2435:ionic polarisation 2413:Ionic polarisation 2326: 2211: 2201:Basic atomic model 2182: 2138: 2109: 2055: 1964: 1893: 1864: 1819: 1774: 1688: 1635: 1492: 1470: 1443: 1399: 1348: 1314: 1285: 1230: 1208: 1163: 1112:perfect dielectric 1042:Although the term 493:Electrical network 330:Gauss magnetic law 295:Static electricity 255:Electric potential 138: 5307: 5306: 5158:978-0-198-56557-4 5122:978-0-471-30932-1 5041:10.1063/1.1484231 4893:978-1-4244-2744-4 4786:(7472): 532–536. 4720:Physical Ceramics 4680:978-0-12-396561-5 4599:978-0-7503-0287-6 4217:High-Îș dielectric 4192:Dielectric losses 3942: 3929: 3899:per unit area by 3881: 3675:adiabatic process 3523: 3430: 3335: 3272: 3070: 3036: 2948: 2742: 2687: 2664:angular frequency 2622:Gibbs free energy 2545:region around 10 2474:resting potential 2262:of the material)? 2255:of the material)? 1979:Fourier transform 1606: 1600: 1556: 1550: 1524: 1518: 1436: 1379: 1119:perfect conductor 973:dielectric medium 961: 960: 660:Reluctance (real) 630:Gyrator–capacitor 575:Resonant cavities 465:Maxwell equations 130: 129: 122: 104: 5332: 5299:ferrielectricity 5284:ferroelectricity 5256: 5249: 5242: 5233: 5226: 5211: 5195: 5162: 5134: 5111:(3rd ed.). 5090: 5089: 5072:(4): 1467–1471. 5059: 5053: 5052: 5015: 5009: 5008: 4988: 4982: 4981: 4961: 4955: 4954: 4934: 4925: 4923: 4912: 4906: 4905: 4871: 4865: 4864: 4862: 4834: 4828: 4827: 4774: 4763: 4762: 4734: 4728: 4727: 4715: 4709: 4706: 4700: 4699: 4691: 4685: 4684: 4666: 4660: 4659: 4657: 4656: 4644: 4638: 4629: 4627: 4626: 4617:. Archived from 4610: 4604: 4603: 4585: 4579: 4578: 4530: 4524: 4523: 4475: 4469: 4468: 4458: 4418: 4412: 4411: 4401: 4375: 4351: 4345: 4324: 4318: 4317: 4312: 4310: 4305:on 27 April 2021 4277: 4222:Low-Îș dielectric 4139:piezoelectricity 4094:corona discharge 4036:is only unity.) 3953: 3951: 3950: 3945: 3943: 3935: 3930: 3925: 3924: 3915: 3892: 3890: 3889: 3884: 3882: 3874: 3866: 3865: 3789: 3788: 3787: 3779: 3778: 3770: 3769: 3760:Systems such as 3745: 3744: 3743: 3735: 3734: 3726: 3725: 3711: 3710: 3709: 3610:Ferroelectricity 3534: 3532: 3531: 3526: 3524: 3522: 3521: 3520: 3511: 3510: 3501: 3500: 3488: 3487: 3477: 3470: 3466: 3465: 3464: 3452: 3451: 3436: 3431: 3429: 3421: 3413: 3381: 3379: 3378: 3373: 3371: 3357: 3337: 3336: 3328: 3318: 3316: 3315: 3310: 3308: 3294: 3274: 3273: 3265: 3255: 3253: 3252: 3247: 3245: 3230: 3228: 3227: 3222: 3220: 3205: 3203: 3202: 3197: 3164: 3162: 3161: 3156: 3123: 3121: 3120: 3115: 3091: 3089: 3088: 3083: 3072: 3071: 3063: 3051: 3049: 3048: 3043: 3041: 3037: 3035: 3034: 3033: 3024: 3023: 3007: 2997: 2996: 2984: 2983: 2970: 2961: 2949: 2947: 2946: 2945: 2936: 2935: 2919: 2918: 2917: 2905: 2904: 2894: 2889: 2888: 2872: 2851: 2849: 2848: 2843: 2841: 2826: 2824: 2823: 2818: 2816: 2786: 2756: 2754: 2753: 2748: 2743: 2741: 2724: 2716: 2711: 2710: 2689: 2688: 2680: 2656:Debye relaxation 2651:Debye relaxation 2493:ion transporters 2386:chemical bonding 2347:Refractive index 2335: 2333: 2332: 2327: 2319: 2311: 2303: 2268:Is the response 2191: 2189: 2188: 2183: 2172: 2171: 2147: 2145: 2144: 2139: 2118: 2116: 2115: 2110: 2090: 2089: 2064: 2062: 2061: 2056: 2042: 2028: 2027: 2018: 2017: 1996: 1973: 1971: 1970: 1965: 1948: 1947: 1923: 1922: 1902: 1900: 1899: 1894: 1873: 1871: 1870: 1865: 1845: 1844: 1828: 1826: 1825: 1820: 1806: 1805: 1783: 1781: 1780: 1775: 1770: 1755: 1744: 1739: 1735: 1734: 1715: 1714: 1704: 1699: 1687: 1686: 1665: 1644: 1642: 1641: 1636: 1631: 1626: 1625: 1616: 1615: 1604: 1598: 1597: 1592: 1588: 1587: 1586: 1566: 1565: 1554: 1548: 1547: 1539: 1534: 1533: 1522: 1516: 1515: 1501: 1499: 1498: 1493: 1491: 1479: 1477: 1476: 1471: 1469: 1452: 1450: 1449: 1444: 1434: 1433: 1432: 1413:classical vacuum 1408: 1406: 1405: 1400: 1392: 1391: 1377: 1376: 1375: 1357: 1355: 1354: 1349: 1347: 1346: 1323: 1321: 1320: 1315: 1313: 1312: 1294: 1292: 1291: 1286: 1281: 1276: 1275: 1266: 1265: 1253: 1239: 1237: 1236: 1231: 1229: 1217: 1215: 1214: 1209: 1207: 1172: 1170: 1169: 1164: 1162: 1161: 989:electric charges 965:electromagnetism 953: 946: 939: 620:Electric machine 603:Magnetic circuit 565:Parallel circuit 555:Network analysis 520:Electric current 455:London equations 300:Triboelectricity 290:Potential energy 159: 149:Electromagnetism 140: 125: 118: 114: 111: 105: 103: 62: 38: 30: 5340: 5339: 5335: 5334: 5333: 5331: 5330: 5329: 5310: 5309: 5308: 5303: 5294:helielectricity 5279:paraelectricity 5265: 5260: 5214: 5199: 5169: 5159: 5137: 5123: 5101: 5098: 5096:Further reading 5093: 5061: 5060: 5056: 5017: 5016: 5012: 5005: 4990: 4989: 4985: 4978: 4963: 4962: 4958: 4936: 4935: 4928: 4919: 4913: 4909: 4894: 4873: 4872: 4868: 4836: 4835: 4831: 4776: 4775: 4766: 4736: 4735: 4731: 4717: 4716: 4712: 4707: 4703: 4693: 4692: 4688: 4681: 4668: 4667: 4663: 4654: 4652: 4646: 4645: 4641: 4624: 4622: 4613: 4611: 4607: 4600: 4587: 4586: 4582: 4532: 4531: 4527: 4477: 4476: 4472: 4420: 4419: 4415: 4353: 4352: 4348: 4325: 4321: 4308: 4306: 4279: 4278: 4271: 4267: 4262: 4167: 4026: 4003: 3979: 3973: 3916: 3903: 3902: 3857: 3852: 3851: 3846: 3807: 3801: 3796: 3786: 3783: 3782: 3781: 3777: 3774: 3773: 3772: 3768: 3765: 3764: 3763: 3761: 3751:strontium oxide 3742: 3739: 3738: 3737: 3733: 3730: 3729: 3728: 3724: 3721: 3720: 3719: 3717: 3708: 3705: 3704: 3703: 3701: 3688: 3656: 3641:and weaken it. 3620:electric dipole 3612: 3606: 3604:Paraelectricity 3547: 3512: 3502: 3492: 3479: 3478: 3456: 3443: 3442: 3438: 3437: 3422: 3414: 3389: 3388: 3364: 3350: 3321: 3320: 3301: 3287: 3258: 3257: 3238: 3233: 3232: 3213: 3208: 3207: 3167: 3166: 3126: 3125: 3094: 3093: 3056: 3055: 3039: 3038: 3025: 3015: 3008: 2988: 2975: 2971: 2962: 2954: 2951: 2950: 2937: 2927: 2920: 2909: 2896: 2895: 2880: 2873: 2865: 2856: 2855: 2834: 2829: 2828: 2809: 2804: 2803: 2800:relaxation time 2792: 2784: 2777: 2767: 2764: 2725: 2717: 2702: 2673: 2672: 2653: 2603:magnetic fields 2584: 2576: 2569: 2520: 2487:, known as the 2485:plasma membrane 2470:plasma membrane 2458: 2415: 2379:polar molecules 2375: 2294: 2293: 2203: 2198: 2163: 2158: 2157: 2121: 2120: 2081: 2076: 2075: 2019: 2009: 1987: 1986: 1939: 1914: 1909: 1908: 1907:susceptibility 1876: 1875: 1836: 1831: 1830: 1797: 1792: 1791: 1763: 1748: 1727: 1720: 1716: 1706: 1678: 1656: 1655: 1650: 1617: 1607: 1578: 1571: 1567: 1557: 1525: 1506: 1505: 1482: 1481: 1460: 1459: 1424: 1419: 1418: 1383: 1367: 1362: 1361: 1338: 1333: 1332: 1304: 1299: 1298: 1267: 1257: 1244: 1243: 1220: 1219: 1198: 1197: 1153: 1148: 1147: 1141: 1133:Main articles: 1131: 1105:Michael Faraday 1091:William Whewell 1040: 1032:cell biophysics 1016:magnetic energy 957: 928: 927: 743: 735: 734: 690: 680: 679: 635:Induction motor 605: 595: 594: 510:Current density 495: 485: 484: 475:Poynting vector 385: 383:Electrodynamics 375: 374: 370:Right-hand rule 335:Magnetic dipole 325:Biot–Savart law 315: 305: 304: 240:Electric dipole 235:Electric charge 210: 126: 115: 109: 106: 63: 61: 51: 39: 28: 17: 12: 11: 5: 5338: 5336: 5328: 5327: 5322: 5312: 5311: 5305: 5304: 5302: 5301: 5296: 5291: 5286: 5281: 5276: 5270: 5267: 5266: 5261: 5259: 5258: 5251: 5244: 5236: 5230: 5229: 5228: 5227: 5212: 5189: 5180: 5175: 5168: 5167:External links 5165: 5164: 5163: 5157: 5135: 5121: 5097: 5094: 5092: 5091: 5054: 5027:(1): 475–483. 5010: 5003: 4983: 4976: 4956: 4926: 4907: 4892: 4866: 4845:(8): 840–893. 4829: 4764: 4729: 4710: 4701: 4686: 4679: 4661: 4639: 4605: 4598: 4580: 4525: 4470: 4413: 4346: 4319: 4301:Archived from 4268: 4266: 4263: 4261: 4260: 4255: 4249: 4244: 4239: 4234: 4229: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4184: 4179: 4174: 4168: 4166: 4163: 4162: 4161: 4142: 4131: 4128:ferroelectrics 4120: 4097: 4075: 4025: 4022: 4002: 4001:BST thin films 3999: 3975:Main article: 3972: 3969: 3941: 3938: 3933: 3928: 3923: 3919: 3913: 3910: 3880: 3877: 3872: 3869: 3864: 3860: 3844: 3837:and thickness 3803:Main article: 3800: 3797: 3795: 3792: 3784: 3775: 3766: 3740: 3731: 3722: 3706: 3687: 3684: 3654: 3639:electric field 3616:electric field 3605: 3602: 3601: 3600: 3597: 3592: 3589: 3584: 3577: 3572: 3569: 3564: 3561: 3556: 3553: 3546: 3543: 3519: 3515: 3509: 3505: 3499: 3495: 3491: 3486: 3482: 3476: 3473: 3469: 3463: 3459: 3455: 3450: 3446: 3441: 3434: 3428: 3425: 3420: 3417: 3411: 3408: 3405: 3402: 3399: 3396: 3370: 3367: 3363: 3360: 3356: 3353: 3349: 3346: 3343: 3340: 3334: 3331: 3307: 3304: 3300: 3297: 3293: 3290: 3286: 3283: 3280: 3277: 3271: 3268: 3244: 3241: 3219: 3216: 3195: 3192: 3189: 3186: 3183: 3180: 3177: 3174: 3154: 3151: 3148: 3145: 3142: 3139: 3136: 3133: 3113: 3110: 3107: 3104: 3101: 3081: 3078: 3075: 3069: 3066: 3032: 3028: 3022: 3018: 3014: 3011: 3006: 3003: 3000: 2995: 2991: 2987: 2982: 2978: 2974: 2968: 2965: 2963: 2960: 2957: 2953: 2952: 2944: 2940: 2934: 2930: 2926: 2923: 2916: 2912: 2908: 2903: 2899: 2892: 2887: 2883: 2879: 2876: 2874: 2871: 2868: 2864: 2863: 2840: 2837: 2815: 2812: 2790: 2782: 2775: 2762: 2746: 2740: 2737: 2734: 2731: 2728: 2723: 2720: 2714: 2709: 2705: 2701: 2698: 2695: 2692: 2686: 2683: 2652: 2649: 2583: 2580: 2574: 2567: 2561: 2560: 2557: 2550: 2519: 2516: 2468:) and, at the 2457: 2454: 2425:(for example, 2423:ionic crystals 2414: 2411: 2374: 2371: 2370: 2369: 2364: 2359: 2354: 2349: 2325: 2322: 2318: 2314: 2310: 2306: 2302: 2278: 2277: 2274:nonlinearities 2266: 2263: 2256: 2249: 2202: 2199: 2197: 2194: 2181: 2178: 2175: 2170: 2166: 2137: 2134: 2131: 2128: 2108: 2105: 2102: 2099: 2096: 2093: 2088: 2084: 2054: 2051: 2048: 2045: 2041: 2037: 2034: 2031: 2026: 2022: 2016: 2012: 2008: 2005: 2002: 1999: 1995: 1963: 1960: 1957: 1954: 1951: 1946: 1942: 1938: 1935: 1932: 1929: 1926: 1921: 1917: 1892: 1889: 1886: 1883: 1863: 1860: 1857: 1854: 1851: 1848: 1843: 1839: 1818: 1815: 1812: 1809: 1804: 1800: 1773: 1769: 1766: 1762: 1758: 1754: 1751: 1747: 1743: 1738: 1733: 1730: 1726: 1723: 1719: 1713: 1709: 1703: 1698: 1695: 1691: 1685: 1681: 1677: 1674: 1671: 1668: 1664: 1649: 1646: 1634: 1630: 1624: 1620: 1614: 1610: 1603: 1596: 1591: 1585: 1581: 1577: 1574: 1570: 1564: 1560: 1553: 1546: 1542: 1538: 1532: 1528: 1521: 1514: 1490: 1468: 1442: 1439: 1431: 1427: 1398: 1395: 1390: 1386: 1382: 1374: 1370: 1345: 1341: 1311: 1307: 1284: 1280: 1274: 1270: 1264: 1260: 1256: 1252: 1228: 1206: 1187:speed of light 1160: 1156: 1130: 1127: 1089:was coined by 1058:polarisability 1039: 1036: 985:electric field 983:by an applied 959: 958: 956: 955: 948: 941: 933: 930: 929: 926: 925: 920: 915: 910: 905: 900: 895: 890: 885: 880: 875: 870: 865: 860: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 744: 741: 740: 737: 736: 733: 732: 727: 722: 717: 712: 710:Four-potential 707: 702: 697: 691: 686: 685: 682: 681: 678: 677: 672: 667: 662: 657: 652: 647: 642: 637: 632: 627: 625:Electric motor 622: 617: 612: 606: 601: 600: 597: 596: 593: 592: 587: 582: 580:Series circuit 577: 572: 567: 562: 557: 552: 550:Kirchhoff laws 547: 542: 537: 532: 527: 522: 517: 515:Direct current 512: 507: 502: 496: 491: 490: 487: 486: 483: 482: 477: 472: 470:Maxwell tensor 467: 462: 457: 452: 447: 442: 440:Larmor formula 437: 432: 427: 422: 417: 412: 407: 402: 397: 392: 390:Bremsstrahlung 386: 381: 380: 377: 376: 373: 372: 367: 362: 357: 352: 347: 342: 340:Magnetic field 337: 332: 327: 322: 316: 313:Magnetostatics 311: 310: 307: 306: 303: 302: 297: 292: 287: 282: 277: 272: 267: 262: 257: 252: 247: 245:Electric field 242: 237: 232: 227: 222: 217: 215:Charge density 211: 208:Electrostatics 206: 205: 202: 201: 200: 199: 194: 189: 184: 179: 174: 169: 161: 160: 152: 151: 145: 144: 143:Articles about 128: 127: 42: 40: 33: 15: 13: 10: 9: 6: 4: 3: 2: 5337: 5326: 5323: 5321: 5318: 5317: 5315: 5300: 5297: 5295: 5292: 5290: 5287: 5285: 5282: 5280: 5277: 5275: 5272: 5271: 5268: 5264: 5257: 5252: 5250: 5245: 5243: 5238: 5237: 5234: 5224: 5223: 5218: 5213: 5209: 5208: 5203: 5198: 5197: 5194: 5190: 5188: 5184: 5181: 5179: 5176: 5174: 5171: 5170: 5166: 5160: 5154: 5150: 5146: 5145: 5140: 5136: 5132: 5128: 5124: 5118: 5114: 5110: 5109: 5104: 5100: 5099: 5095: 5087: 5083: 5079: 5075: 5071: 5067: 5066: 5058: 5055: 5050: 5046: 5042: 5038: 5034: 5030: 5026: 5022: 5014: 5011: 5006: 5004:9781118406762 5000: 4996: 4995: 4987: 4984: 4979: 4977:9781118408193 4973: 4969: 4968: 4960: 4957: 4952: 4948: 4944: 4940: 4933: 4931: 4927: 4922: 4917: 4911: 4908: 4903: 4899: 4895: 4889: 4885: 4881: 4878:. p. 1. 4877: 4870: 4867: 4861: 4856: 4852: 4848: 4844: 4840: 4833: 4830: 4825: 4821: 4817: 4813: 4809: 4805: 4801: 4797: 4793: 4789: 4785: 4781: 4773: 4771: 4769: 4765: 4760: 4756: 4752: 4748: 4744: 4740: 4733: 4730: 4725: 4721: 4714: 4711: 4705: 4702: 4697: 4690: 4687: 4682: 4676: 4672: 4665: 4662: 4651: 4650: 4643: 4640: 4637: 4636:0-86341-250-5 4633: 4621:on 2016-12-23 4620: 4616: 4609: 4606: 4601: 4595: 4591: 4584: 4581: 4576: 4572: 4568: 4564: 4560: 4556: 4552: 4548: 4544: 4540: 4536: 4529: 4526: 4521: 4517: 4513: 4509: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4474: 4471: 4466: 4462: 4457: 4452: 4448: 4444: 4440: 4436: 4432: 4428: 4424: 4417: 4414: 4409: 4405: 4400: 4395: 4391: 4387: 4383: 4379: 4374: 4369: 4365: 4361: 4357: 4350: 4347: 4342: 4338: 4334: 4333: 4328: 4323: 4320: 4316: 4304: 4300: 4296: 4292: 4288: 4287: 4282: 4276: 4274: 4270: 4264: 4259: 4256: 4253: 4252:Paschen's law 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4177:Paramagnetism 4175: 4173: 4170: 4169: 4164: 4159: 4155: 4151: 4147: 4143: 4140: 4136: 4132: 4129: 4125: 4121: 4118: 4114: 4113:electrophorus 4110: 4106: 4102: 4098: 4095: 4091: 4087: 4083: 4079: 4076: 4073: 4069: 4066: 4065: 4064: 4062: 4058: 4054: 4050: 4046: 4042: 4037: 4035: 4031: 4023: 4021: 4017: 4014: 4010: 4008: 4000: 3998: 3996: 3992: 3988: 3984: 3978: 3970: 3968: 3966: 3961: 3959: 3954: 3939: 3936: 3931: 3926: 3921: 3917: 3911: 3908: 3900: 3898: 3893: 3878: 3875: 3870: 3867: 3862: 3858: 3849: 3847: 3840: 3836: 3832: 3826: 3824: 3820: 3811: 3806: 3798: 3793: 3791: 3758: 3756: 3752: 3747: 3715: 3699: 3694: 3692: 3685: 3683: 3680: 3676: 3671: 3669: 3665: 3661: 3660:ferroelectric 3657: 3649: 3647: 3642: 3640: 3636: 3631: 3629: 3625: 3621: 3617: 3611: 3603: 3598: 3596: 3593: 3590: 3588: 3585: 3582: 3578: 3576: 3573: 3570: 3568: 3565: 3562: 3560: 3557: 3554: 3552: 3549: 3548: 3544: 3542: 3540: 3535: 3517: 3513: 3507: 3503: 3493: 3489: 3484: 3480: 3474: 3471: 3467: 3457: 3453: 3448: 3444: 3439: 3432: 3426: 3423: 3418: 3415: 3409: 3403: 3397: 3394: 3386: 3383: 3368: 3365: 3361: 3358: 3354: 3351: 3347: 3341: 3329: 3305: 3302: 3298: 3295: 3291: 3288: 3284: 3278: 3266: 3242: 3239: 3217: 3214: 3190: 3187: 3184: 3181: 3175: 3172: 3149: 3146: 3143: 3140: 3134: 3131: 3111: 3108: 3105: 3102: 3099: 3076: 3064: 3052: 3030: 3026: 3020: 3016: 3012: 3009: 3004: 3001: 2989: 2985: 2980: 2976: 2966: 2964: 2958: 2955: 2942: 2938: 2932: 2928: 2924: 2921: 2910: 2906: 2901: 2897: 2890: 2881: 2877: 2875: 2869: 2866: 2853: 2838: 2835: 2813: 2810: 2801: 2797: 2793: 2785: 2778: 2771: 2765: 2757: 2744: 2738: 2735: 2732: 2729: 2726: 2721: 2712: 2703: 2699: 2693: 2681: 2670: 2668: 2665: 2661: 2657: 2650: 2648: 2646: 2642: 2638: 2634: 2630: 2625: 2623: 2619: 2618:linear system 2615: 2612: 2608: 2604: 2600: 2596: 2592: 2588: 2581: 2579: 2573: 2566: 2558: 2555: 2551: 2548: 2544: 2540: 2539: 2538: 2535: 2533: 2528: 2525: 2517: 2515: 2513: 2509: 2505: 2500: 2498: 2494: 2490: 2486: 2481: 2479: 2478:Na+/K+-ATPase 2475: 2471: 2467: 2463: 2455: 2453: 2451: 2447: 2443: 2438: 2436: 2430: 2428: 2424: 2420: 2412: 2410: 2407: 2402: 2400: 2395: 2391: 2387: 2382: 2380: 2372: 2368: 2365: 2363: 2362:Self-focusing 2360: 2358: 2357:Birefringence 2355: 2353: 2350: 2348: 2345: 2344: 2343: 2341: 2336: 2323: 2304: 2291: 2287: 2283: 2275: 2271: 2267: 2264: 2261: 2257: 2254: 2250: 2247: 2246: 2245: 2241: 2239: 2234: 2232: 2228: 2227:dipole moment 2224: 2220: 2215: 2207: 2200: 2195: 2193: 2176: 2168: 2164: 2155: 2151: 2135: 2132: 2129: 2106: 2103: 2097: 2086: 2082: 2072: 2070: 2065: 2052: 2046: 2032: 2024: 2020: 2014: 2010: 2006: 2000: 1984: 1980: 1975: 1958: 1949: 1944: 1940: 1936: 1930: 1919: 1915: 1906: 1890: 1887: 1884: 1861: 1858: 1852: 1841: 1837: 1813: 1802: 1798: 1789: 1784: 1771: 1767: 1764: 1760: 1752: 1749: 1736: 1731: 1728: 1724: 1721: 1717: 1711: 1707: 1701: 1693: 1689: 1683: 1679: 1675: 1669: 1653: 1647: 1645: 1632: 1622: 1618: 1612: 1608: 1601: 1589: 1583: 1579: 1575: 1572: 1568: 1562: 1558: 1551: 1540: 1530: 1526: 1519: 1503: 1458: 1453: 1440: 1437: 1429: 1425: 1416: 1414: 1409: 1396: 1393: 1388: 1384: 1380: 1372: 1368: 1359: 1343: 1339: 1329: 1327: 1309: 1305: 1295: 1282: 1272: 1268: 1262: 1258: 1254: 1241: 1195: 1190: 1188: 1184: 1180: 1176: 1158: 1154: 1146: 1140: 1136: 1128: 1126: 1124: 1120: 1117: 1113: 1108: 1106: 1102: 1098: 1097: 1092: 1088: 1087: 1081: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1046: 1037: 1035: 1033: 1029: 1025: 1021: 1017: 1012: 1010: 1009:symmetry axes 1006: 1002: 999:. Because of 998: 994: 990: 986: 982: 978: 974: 970: 966: 954: 949: 947: 942: 940: 935: 934: 932: 931: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 884: 881: 879: 876: 874: 871: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 745: 739: 738: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 692: 689: 684: 683: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 607: 604: 599: 598: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 545:Joule heating 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 497: 494: 489: 488: 481: 478: 476: 473: 471: 468: 466: 463: 461: 460:Lorentz force 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 406: 403: 401: 398: 396: 393: 391: 388: 387: 384: 379: 378: 371: 368: 366: 363: 361: 360:Magnetization 358: 356: 353: 351: 348: 346: 345:Magnetic flux 343: 341: 338: 336: 333: 331: 328: 326: 323: 321: 318: 317: 314: 309: 308: 301: 298: 296: 293: 291: 288: 286: 283: 281: 278: 276: 273: 271: 268: 266: 263: 261: 258: 256: 253: 251: 250:Electric flux 248: 246: 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 212: 209: 204: 203: 198: 195: 193: 190: 188: 187:Computational 185: 183: 180: 178: 175: 173: 170: 168: 165: 164: 163: 162: 158: 154: 153: 150: 146: 142: 141: 134: 124: 121: 113: 110:December 2022 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: â€“  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 26: 22: 5273: 5220: 5205: 5143: 5107: 5069: 5063: 5057: 5024: 5020: 5013: 4993: 4986: 4966: 4959: 4942: 4938: 4915: 4910: 4875: 4869: 4842: 4838: 4832: 4783: 4779: 4742: 4738: 4732: 4722:. New York: 4719: 4713: 4704: 4695: 4689: 4670: 4664: 4653:. Retrieved 4648: 4642: 4623:. Retrieved 4619:the original 4608: 4589: 4583: 4545:(2): 89–96. 4542: 4538: 4528: 4490:(1): 65–83. 4487: 4483: 4473: 4430: 4426: 4416: 4363: 4359: 4349: 4340: 4336: 4331: 4322: 4314: 4307:. Retrieved 4303:the original 4284: 4281:"Dielectric" 4237:Metamaterial 4100: 4090:high voltage 4082:transformers 4038: 4027: 4018: 4015: 4011: 4004: 3982: 3980: 3962: 3957: 3955: 3901: 3894: 3850: 3842: 3838: 3834: 3831:permittivity 3827: 3822: 3816: 3794:Applications 3759: 3748: 3695: 3690: 3689: 3672: 3650: 3643: 3632: 3624:paraelectric 3623: 3613: 3536: 3387: 3384: 3053: 2854: 2795: 2788: 2780: 2773: 2769: 2760: 2758: 2671: 2666: 2659: 2655: 2654: 2632: 2626: 2601:in changing 2586: 2585: 2571: 2564: 2562: 2536: 2529: 2523: 2522:In physics, 2521: 2501: 2497:ion channels 2482: 2466:mitochondria 2459: 2449: 2445: 2439: 2434: 2431: 2416: 2403: 2383: 2376: 2339: 2337: 2289: 2285: 2281: 2279: 2242: 2235: 2230: 2216: 2214:the figure. 2212: 2073: 2066: 1976: 1785: 1654: 1651: 1504: 1454: 1417: 1410: 1360: 1330: 1296: 1242: 1191: 1179:permittivity 1142: 1139:Permittivity 1111: 1109: 1100: 1094: 1084: 1082: 1069: 1065: 1053: 1048:implies low 1043: 1041: 1013: 996: 979:that can be 972: 968: 962: 705:Four-current 640:Linear motor 525:Electrolysis 405:Eddy current 365:Permeability 285:Polarization 280:Permittivity 116: 107: 97: 90: 83: 76: 69:"Dielectric" 64: 52:Please help 47:verification 44: 5325:Dielectrics 4860:10356/93905 4366:(1): 7463. 4337:Dielectrics 4335:, stated: " 4309:20 November 4144:Some ionic 4078:Mineral oil 4047:, and most 3897:capacitance 3696:Generally, 3668:perovskites 3662:below 1430 3658:crystal is 3539:Peter Debye 2611:transformer 2462:proton pump 2260:homogeneity 1788:convolution 1038:Terminology 1020:electronics 675:Transformer 505:Capacitance 430:Faraday law 225:Coulomb law 167:Electricity 5314:Categories 5274:dielectric 5217:Dielectric 5202:Dielectric 4945:(3): 232. 4808:2117/21213 4655:2013-11-08 4625:2012-05-18 4433:(1): 932. 4373:1703.05625 4344:NY, 1954). 4265:References 4086:castor oil 3965:ionisation 3799:Capacitors 3686:Tunability 3608:See also: 2645:oscillator 2605:(e.g., in 2599:hysteresis 2595:conducting 2401:and heat. 2238:relaxation 2221:using the 2152:, imposes 2069:dispersion 1240:such that 1183:capacitors 1086:dielectric 1070:dielectric 1054:dielectric 969:dielectric 742:Scientists 590:Waveguides 570:Resistance 540:Inductance 320:AmpĂšre law 80:newspapers 5185:from the 5049:0021-8979 4745:(2): 31. 4575:212565141 4559:1536-8378 4520:229694503 4504:1536-8378 4341:nonmetals 4124:electrets 4041:porcelain 3987:resonance 3937:ε 3922:ε 3918:σ 3871:ε 3863:ε 3859:σ 3805:Capacitor 3679:heat pump 3514:τ 3504:ω 3498:∞ 3494:ε 3481:ε 3475:τ 3472:ω 3462:∞ 3458:ε 3454:− 3445:ε 3424:ε 3416:ε 3404:δ 3398:⁡ 3366:ε 3359:− 3352:ε 3342:ω 3333:^ 3330:ε 3303:ε 3289:ε 3279:ω 3270:^ 3267:ε 3240:ε 3215:ε 3188:ω 3176:⁡ 3147:ω 3141:− 3135:⁡ 3112:τ 3109:ω 3103:− 3077:ω 3068:^ 3065:ε 3027:τ 3017:ω 3005:τ 3002:ω 2994:∞ 2990:ε 2986:− 2977:ε 2956:ε 2939:τ 2929:ω 2915:∞ 2911:ε 2907:− 2898:ε 2886:∞ 2882:ε 2867:ε 2836:ε 2811:ε 2739:τ 2736:ω 2722:ε 2719:Δ 2708:∞ 2704:ε 2694:ω 2685:^ 2682:ε 2641:resonance 2637:frequency 2543:microwave 2512:cell body 2504:dendrites 2394:viscosity 2177:ω 2165:χ 2150:causality 2127:Δ 2095:Δ 2083:χ 2047:ω 2033:ω 2021:χ 2011:ε 2001:ω 1956:Δ 1950:δ 1941:χ 1928:Δ 1916:χ 1882:Δ 1850:Δ 1838:χ 1811:Δ 1799:χ 1725:− 1708:χ 1697:∞ 1694:− 1690:∫ 1680:ε 1619:ε 1609:ε 1580:χ 1559:ε 1527:ε 1426:χ 1394:− 1385:ε 1369:χ 1340:ε 1306:ε 1269:χ 1259:ε 1175:polarises 1155:χ 1083:The term 1078:capacitor 1066:Insulator 1045:insulator 981:polarised 898:Steinmetz 828:Kirchhoff 813:Jefimenko 808:Hopkinson 793:Helmholtz 788:Heaviside 650:Permeance 535:Impedance 275:Insulator 270:Gauss law 220:Conductor 197:Phenomena 192:Textbooks 172:Magnetism 25:dialectic 4902:15835472 4816:24132232 4567:32138569 4512:33356700 4465:28428625 4427:Sci. Rep 4408:28785071 4360:Sci. Rep 4295:Illinois 4242:RC delay 4165:See also 4146:crystals 4101:stranded 4072:Parylene 4070:such as 4053:nitrogen 4049:plastics 3895:and the 3427:′ 3419:″ 3369:″ 3355:′ 3306:″ 3292:′ 3243:″ 3218:′ 2959:″ 2870:′ 2839:″ 2814:′ 2607:inductor 2554:infrared 2406:infrared 2399:friction 2253:isotropy 1768:′ 1753:′ 1732:′ 1101:electric 975:) is an 923:Wiechert 878:Poynting 768:Einstein 615:DC motor 610:AC motor 445:Lenz law 230:Electret 5210:. 1920. 5029:Bibcode 4947:Bibcode 4824:4457286 4788:Bibcode 4747:Bibcode 4456:5430567 4435:Bibcode 4399:5547043 4378:Bibcode 4291:Chicago 4227:Leakage 4150:polymer 4051:. Air, 3997:(DRA). 3635:crystal 2629:physics 1324:is the 1185:to the 908:Thomson 883:Ritchie 873:Poisson 858:Neumann 853:Maxwell 848:Lorentz 843:LiĂ©nard 773:Faraday 758:Coulomb 585:Voltage 560:Ohm law 182:History 94:scholar 5155:  5131:535998 5129:  5119:  5086:709782 5084:  5047:  5001:  4974:  4900:  4890:  4822:  4814:  4780:Nature 4677:  4634:  4596:  4573:  4565:  4557:  4518:  4510:  4502:  4463:  4453:  4406:  4396:  4135:stress 4030:vacuum 2787:where 2759:where 2510:, and 2390:torque 2270:linear 2219:dipole 1605:  1599:  1555:  1549:  1523:  1517:  1435:  1378:  1297:where 1194:tensor 1093:(from 1074:energy 1024:optics 1005:bonded 893:Singer 888:Savart 868:Ørsted 833:Larmor 823:Kelvin 778:Fizeau 748:AmpĂšre 670:Stator 177:Optics 96:  89:  82:  75:  67:  5082:S2CID 4898:S2CID 4820:S2CID 4571:S2CID 4516:S2CID 4368:arXiv 4045:glass 3819:solid 3702:SrTiO 3653:LiNbO 2614:cores 918:Weber 913:Volta 903:Tesla 818:Joule 803:Hertz 798:Henry 783:Gauss 665:Rotor 101:JSTOR 87:books 5153:ISBN 5127:OCLC 5117:ISBN 5045:ISSN 4999:ISBN 4972:ISBN 4888:ISBN 4812:PMID 4675:ISBN 4632:ISBN 4594:ISBN 4563:PMID 4555:ISSN 4508:PMID 4500:ISSN 4461:PMID 4404:PMID 4311:2021 4148:and 4055:and 3651:The 3628:ions 3231:and 2508:axon 2495:and 2427:NaCl 2419:ions 2133:< 2119:for 1888:< 1874:for 1455:The 1143:The 1137:and 1030:and 971:(or 967:, a 838:Lenz 763:Davy 753:Biot 73:news 5219:". 5204:". 5074:doi 5037:doi 4880:doi 4855:hdl 4847:doi 4804:hdl 4796:doi 4784:502 4755:doi 4547:doi 4492:doi 4451:PMC 4443:doi 4394:PMC 4386:doi 4111:or 3780:TiO 3767:1−x 3736:TiO 3723:1−x 3395:tan 3173:exp 3132:exp 2643:or 2627:In 2609:or 2480:). 2464:in 2429:). 2421:in 1502:by 1358:by 1116:cf. 1096:dia 963:In 863:Ohm 56:by 23:or 5316:: 5151:. 5125:. 5115:. 5080:. 5070:20 5068:. 5043:. 5035:. 5025:92 5023:. 4943:50 4941:. 4929:^ 4918:, 4896:. 4886:. 4853:. 4843:55 4841:. 4818:. 4810:. 4802:. 4794:. 4782:. 4767:^ 4753:. 4741:. 4569:. 4561:. 4553:. 4543:39 4541:. 4537:. 4514:. 4506:. 4498:. 4488:40 4486:. 4482:. 4459:. 4449:. 4441:. 4429:. 4425:. 4402:. 4392:. 4384:. 4376:. 4362:. 4358:. 4313:. 4297:: 4293:, 4289:. 4283:. 4272:^ 4063:. 4043:, 3981:A 3825:. 3771:Sr 3762:Ba 3727:Sr 3718:Ba 3648:. 2779:− 2772:= 2669:: 2631:, 2624:. 2547:Hz 2506:, 2499:. 2452:. 2437:. 2192:. 1974:. 1441:0. 1415:, 1397:1. 1328:. 1189:. 1110:A 1107:. 1099:+ 1064:. 1052:, 1034:. 1026:, 1022:, 5255:e 5248:t 5241:v 5215:" 5200:" 5161:. 5133:. 5088:. 5076:: 5051:. 5039:: 5031:: 5007:. 4980:. 4953:. 4949:: 4904:. 4882:: 4863:. 4857:: 4849:: 4826:. 4806:: 4798:: 4790:: 4761:. 4757:: 4749:: 4743:3 4726:. 4683:. 4658:. 4628:. 4602:. 4577:. 4549:: 4522:. 4494:: 4467:. 4445:: 4437:: 4431:7 4410:. 4388:: 4380:: 4370:: 4364:7 4119:. 3958:Δ 3940:d 3932:= 3927:V 3912:= 3909:c 3879:d 3876:V 3868:= 3845:Δ 3843:σ 3839:d 3835:Δ 3785:3 3776:x 3741:3 3732:x 3716:( 3707:3 3700:( 3664:K 3655:3 3583:. 3518:2 3508:2 3490:+ 3485:s 3468:) 3449:s 3440:( 3433:= 3410:= 3407:) 3401:( 3362:i 3348:= 3345:) 3339:( 3299:i 3296:+ 3285:= 3282:) 3276:( 3194:) 3191:t 3185:i 3182:+ 3179:( 3153:) 3150:t 3144:i 3138:( 3106:i 3100:1 3080:) 3074:( 3031:2 3021:2 3013:+ 3010:1 2999:) 2981:s 2973:( 2967:= 2943:2 2933:2 2925:+ 2922:1 2902:s 2891:+ 2878:= 2796:τ 2791:s 2789:Δ 2783:∞ 2781:Δ 2776:s 2774:Δ 2770:Δ 2768:Δ 2763:∞ 2761:Δ 2745:, 2733:i 2730:+ 2727:1 2713:+ 2700:= 2697:) 2691:( 2667:ω 2660:Δ 2575:0 2572:Δ 2568:0 2565:Δ 2549:, 2340:F 2324:. 2321:) 2317:E 2313:( 2309:F 2305:= 2301:M 2290:F 2286:M 2282:E 2276:? 2231:M 2180:) 2174:( 2169:e 2136:0 2130:t 2107:0 2104:= 2101:) 2098:t 2092:( 2087:e 2053:. 2050:) 2044:( 2040:E 2036:) 2030:( 2025:e 2015:0 2007:= 2004:) 1998:( 1994:P 1962:) 1959:t 1953:( 1945:e 1937:= 1934:) 1931:t 1925:( 1920:e 1891:0 1885:t 1862:0 1859:= 1856:) 1853:t 1847:( 1842:e 1817:) 1814:t 1808:( 1803:e 1772:. 1765:t 1761:d 1757:) 1750:t 1746:( 1742:E 1737:) 1729:t 1722:t 1718:( 1712:e 1702:t 1684:0 1676:= 1673:) 1670:t 1667:( 1663:P 1633:. 1629:E 1623:r 1613:0 1602:= 1595:E 1590:) 1584:e 1576:+ 1573:1 1569:( 1563:0 1552:= 1545:P 1541:+ 1537:E 1531:0 1520:= 1513:D 1489:P 1467:D 1438:= 1430:e 1389:r 1381:= 1373:e 1344:r 1310:0 1283:, 1279:E 1273:e 1263:0 1255:= 1251:P 1227:P 1205:E 1159:e 952:e 945:t 938:v 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 27:.

Index

dielectric constant
dialectic

verification
improve this article
adding citations to reliable sources
"Dielectric"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑