Knowledge (XXG)

Cunningham chain

Source 📝

358: 119: 2215:. In this way, successive primes in a Cunningham chain are essentially shifted left in binary with ones filling in the least significant digits. For example, here is a complete length 6 chain which starts at 141361469: 2682: 124: 2755: 1843: 2607: 627: 2436: 2325: 1941: 1892: 1719: 678: 409: 2380: 2003: 1774: 478: 727: 2816: 3795: 1950:. (Note that, as with all bases, multiplying by the base "shifts" the digits to the left; e.g. in decimal we have 314 × 10 = 3140.) When we consider   2849: 2489: 2183: 2150: 2090: 353:{\displaystyle {\begin{aligned}p_{2}&=2p_{1}+1,\\p_{3}&=4p_{1}+3,\\p_{4}&=8p_{1}+7,\\&{}\ \vdots \\p_{i}&=2^{i-1}p_{1}+(2^{i-1}-1),\end{aligned}}} 2213: 2782: 2516: 2117: 2057: 2030: 1670: 3027: 3398: 2456: 429: 3480: 2966: 884:
There are computing competitions for the longest Cunningham chain or for the one built up of the largest primes, but unlike the breakthrough of
3403: 896:, that there are arithmetic progressions of primes of arbitrary length – there is no general result known on large Cunningham chains to date. 3317: 953: 3020: 2518:. As with Cunningham chains of the first kind, the bits left of the pattern shift left by one position with each successive prime. 36: 849:
Cunningham chains are now considered useful in cryptographic systems since "they provide two concurrent suitable settings for the
3654: 2871: 3735: 3013: 2612: 1633:
As of 2018, the longest known Cunningham chain of either kind is of length 19, discovered by Jaroslaw Wroblewski in 2014.
3857: 3515: 2691: 2438:. In binary notation, the primes in a Cunningham chain of the second kind end with a pattern "0...01", where, for each 2119:
is odd—that is, the least significant digit is 1 in base 2–we know that the secondmost least significant digit of  
1779: 3882: 3348: 2524: 542: 3790: 2685: 870: 854: 2385: 2975:
sequence A005602 (Smallest prime beginning a complete Cunningham chain of length n (of the first kind))
2962:
Primecoin discoveries (primes.zone): online database of primecoin findings with list of records and visualization
804:
if it cannot be further extended, i.e., if the previous and the next terms in the chain are not prime numbers.
2281: 1897: 1848: 1675: 3423: 866: 635: 366: 2922: 4296: 3940: 3069: 893: 4277: 3867: 3520: 3428: 2330: 1953: 1724: 3847: 1642: 434: 103: 683: 3842: 3500: 3950: 3887: 3877: 3862: 3495: 3353: 850: 3274: 2994:-- the first term of the lowest complete Cunningham chains of the second kind with length  2956: 2787: 3919: 3894: 3872: 3852: 3475: 3447: 3140: 2821: 2461: 2155: 2122: 2062: 3829: 3819: 3814: 3598: 3465: 3368: 2977:-- the first term of the lowest complete Cunningham chains of the first kind of length  2934: 2278:
A similar result holds for Cunningham chains of the second kind. From the observation that
2188: 1383:
106680560818292299253267832484567360951928953599522278361651385665522443588804123392×61# − 1
25: 2760: 2494: 2095: 2035: 2008: 1648: 1404:
38249410745534076442242419351233801191635692835712219264661912943040353398995076864×47# + 1
3530: 3490: 3373: 3338: 3302: 3257: 3110: 3098: 1449:
5819411283298069803200936040662511327268486153212216998535044251830806354124236416×47# + 1
1672:
be the first prime of a Cunningham chain of the first kind. The first prime is odd, thus
1342:
288320466650346626888267818984974462085357412586437032687304004479168536445314040×83# − 1
1301:
73853903764168979088206401473739410396455001112581722569026969860983656346568919×151# − 1
3935: 3909: 3806: 3674: 3525: 3485: 3470: 3342: 3233: 3198: 3153: 3078: 3060: 2441: 1428:
4631673892190914134588763508558377441004250662630975370524984655678678526944768×47# − 1
414: 2939: 1946:
The above property can be informally observed by considering the primes of a chain in
4290: 3945: 3710: 3574: 3547: 3383: 3248: 3186: 3177: 3162: 3125: 3051: 2866: 828:
89, 179, 359, 719, 1439, 2879 (The next number would be 5759, but that is not prime.)
33: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4211: 4206: 4201: 4196: 4191: 4186: 4181: 4176: 4171: 4166: 4161: 4156: 4151: 4146: 4141: 4136: 4131: 4126: 4121: 4116: 4111: 4106: 4101: 4096: 3899: 3622: 3505: 3388: 3378: 3363: 3358: 3322: 3036: 2906: 885: 29: 1626:
2 × 3 × 5 × 7 × ... × 
4091: 4086: 4081: 4076: 4071: 4066: 4061: 4056: 4051: 4046: 4041: 4036: 4031: 4026: 4021: 4016: 4011: 4006: 4001: 3996: 3991: 3837: 3510: 3418: 3413: 3393: 3307: 3210: 3086: 889: 732:
Cunningham chains are also sometimes generalized to sequences of prime numbers (
17: 3914: 3730: 3638: 3558: 3408: 3312: 107: 3955: 3904: 3785: 2860: 1623: 975: 816:
2, 5, 11, 23, 47 (The next number would be 95, but that is not prime.)
881:. There are, however, no known direct methods of generating such chains. 832:
Examples of complete Cunningham chains of the second kind include these:
2992:
sequence A005603 (Chains of length n of nearly doubled primes)
812:
Examples of complete Cunningham chains of the first kind include these:
3457: 3005: 783: 780: 1947: 431:
is not part of the sequence and need not be a prime number), we have
3452: 3438: 2891:
Algorithmic Number Theory: Third International Symposium, ANTS-III
2217: 845:
31, 61 (The next number would be 121 = 11, but that is not prime.)
825:
41, 83, 167 (The next number would be 335, but that is not prime.)
2988: 2971: 842:
19, 37, 73 (The next number would be 145, but that is not prime.)
3009: 1459: 1438: 1414: 1393: 1352: 1311: 822:
29, 59 (The next number would be 119, but that is not prime.)
836:
2, 3, 5 (The next number would be 9, but that is not prime.)
2991: 2974: 839:
7, 13 (The next number would be 25, but that is not prime.)
819:
3, 7 (The next number would be 15, but that is not prime.)
3986: 3981: 3976: 3971: 2863:, which uses Cunningham chains as a proof-of-work system 2851:). Thus, no Cunningham chain can be of infinite length. 2059:
becomes the secondmost least significant digit of  
102:. (Hence each term of such a chain except the last is a 2961: 877:
there are infinitely many Cunningham chains of length
2824: 2790: 2763: 2694: 2615: 2527: 2497: 2464: 2444: 2388: 2333: 2284: 2191: 2158: 2125: 2098: 2065: 2038: 2011: 1956: 1900: 1851: 1782: 1727: 1678: 1651: 686: 638: 545: 437: 417: 369: 122: 2677:{\displaystyle p_{i}\equiv 2^{i-1}-1{\pmod {p_{1}}}} 3964: 3928: 3828: 3805: 3779: 3546: 3539: 3437: 3331: 3295: 3044: 2843: 2810: 2776: 2750:{\displaystyle 2^{p_{1}-1}\equiv 1{\pmod {p_{1}}}} 2749: 2676: 2601: 2510: 2483: 2450: 2430: 2374: 2319: 2207: 2177: 2144: 2111: 2084: 2051: 2024: 1997: 1935: 1886: 1838:{\displaystyle p_{i}\equiv 2^{i}-1{\pmod {2^{i}}}} 1837: 1768: 1713: 1664: 873:, both widely believed to be true, that for every 721: 672: 621: 472: 423: 403: 352: 3668: = 0, 1, 2, 3, ... 2602:{\displaystyle p_{i}=2^{i-1}p_{1}+(2^{i-1}-1)\,} 2152:is also 1. And, finally, we can see that   853:... can be implemented in any field where the 622:{\displaystyle p_{i}=2^{i-1}p_{1}-(2^{i-1}-1).} 1721:. Since each successive prime in the chain is 3021: 2005:in base 2, we see that, by multiplying   8: 2431:{\displaystyle p_{i}\equiv 1{\pmod {2^{i}}}} 2032:by 2, the least significant digit of   3543: 3028: 3014: 3006: 898: 2938: 2901: 2899: 2835: 2823: 2800: 2795: 2789: 2768: 2762: 2737: 2724: 2704: 2699: 2693: 2664: 2651: 2633: 2620: 2614: 2598: 2577: 2561: 2545: 2532: 2526: 2502: 2496: 2491:is one more than the number of zeros for 2469: 2463: 2458:, the number of zeros in the pattern for 2443: 2418: 2405: 2393: 2387: 2360: 2338: 2332: 2301: 2289: 2283: 2199: 2190: 2163: 2157: 2130: 2124: 2103: 2097: 2070: 2064: 2043: 2037: 2016: 2010: 1983: 1961: 1955: 1917: 1905: 1899: 1868: 1856: 1850: 1825: 1812: 1800: 1787: 1781: 1754: 1732: 1726: 1695: 1683: 1677: 1656: 1650: 900:Largest known Cunningham chain of length 704: 691: 685: 652: 645: 637: 595: 579: 563: 550: 544: 455: 442: 436: 416: 383: 376: 368: 322: 306: 290: 273: 257: 237: 217: 194: 174: 151: 131: 123: 121: 2320:{\displaystyle p_{1}\equiv 1{\pmod {2}}} 2185:will be odd due to the addition of 1 to 1936:{\displaystyle p_{3}\equiv 7{\pmod {8}}} 1887:{\displaystyle p_{2}\equiv 3{\pmod {4}}} 1714:{\displaystyle p_{1}\equiv 1{\pmod {2}}} 2882: 2923:"Long chains of nearly doubled primes" 673:{\displaystyle a={\frac {p_{1}-1}{2}}} 404:{\displaystyle a={\frac {p_{1}+1}{2}}} 106:, and each term except the first is a 1473:14354792166345299956567113728×43# - 1 525: − 1 for all 1 ≤  94: + 1 for all 1 ≤  7: 2957:The Prime Glossary: Cunningham chain 1363:906644189971753846618980352×233# + 1 536:It follows that the general term is 32:. Cunningham chains are named after 2732: 2659: 2413: 2309: 1925: 1876: 1820: 1703: 484:Cunningham chain of the second kind 1527:2×1540797425367761006138858881 − 1 1281:2044300700000658875613184×311# + 1 1264:3696772637099483023015936×311# − 1 1051:Michael Angel & Dirk Augustin 1031:Michael Angel & Dirk Augustin 793:; the resulting chains are called 53:Cunningham chain of the first kind 14: 2940:10.1090/S0025-5718-1989-0979939-8 2905:Norman Luhn & Dirk Augustin, 2269:100001101101000000010011110111111 1322:341841671431409652891648×311# + 1 1244:173129832252242394185728×401# + 1 1133:52992297065385779421184×1531# + 1 994:Ryan Propper & Serge Batalov 3404:Supersingular (moonshine theory) 2893:. New York: Springer (1998): 290 2872:Primes in arithmetic progression 2375:{\displaystyle p_{i+1}=2p_{i}-1} 2261:10000110110100000001001111011111 1998:{\displaystyle p_{i+1}=2p_{i}+1} 1769:{\displaystyle p_{i+1}=2p_{i}+1} 1637:Congruences of Cunningham chains 1190:89628063633698570895360×593# − 1 490:is a sequence of prime numbers ( 59:is a sequence of prime numbers ( 2725: 2652: 2406: 2302: 2253:1000011011010000000100111101111 1918: 1869: 1813: 1696: 1096:181439827616655015936×4673# + 1 861:Largest known Cunningham chains 473:{\displaystyle p_{i}=2^{i}a-1.} 41:chains of nearly doubled primes 3399:Supersingular (elliptic curve) 2998:, for 1 ≤  2981:, for 1 ≤  2967:PrimeLinks++: Cunningham chain 2743: 2726: 2670: 2653: 2595: 2570: 2424: 2407: 2313: 2303: 2245:100001101101000000010011110111 1929: 1919: 1880: 1870: 1831: 1814: 1707: 1697: 1170:25802590081726373888×1033# + 1 1079:31017701152691334912×4091# − 1 722:{\displaystyle p_{i}=2^{i}a+1} 613: 588: 340: 315: 1: 3180:2 ± 2 ± 1 2237:10000110110100000001001111011 800:A Cunningham chain is called 795:generalized Cunningham chains 2921:Löh, Günter (October 1989). 2229:1000011011010000000100111101 1564:1540797425367761006138858881 1490:67040002730422542592×53# + 1 1207:2373007846680317952×761# + 1 2267: 2259: 2251: 2243: 2235: 2227: 1606: 1586: 1584:658189097608811942204322721 1566: 1549: 1529: 1512: 1492: 1475: 1451: 1430: 1406: 1385: 1365: 1344: 1324: 1303: 1283: 1266: 1246: 1229: 1227:553374939996823808×593# − 1 1209: 1192: 1172: 1155: 1153:82466536397303904×1171# − 1 1135: 1118: 1098: 1081: 1061: 1044: 1024: 1007: 987: 968: 945: 4313: 2927:Mathematics of Computation 2911:. Retrieved on 2018-06-08. 1613:Chermoni & Wroblewski 1604:79910197721667870187016101 1593:Chermoni & Wroblewski 1573:Chermoni & Wroblewski 1536:Chermoni & Wroblewski 855:discrete logarithm problem 4275: 2811:{\displaystyle p_{p_{1}}} 1540: 1503: 1466: 1421: 1376: 1335: 1294: 1257: 1220: 1183: 1146: 1109: 1072: 1035: 998: 959: 3786:Mega (1,000,000+ digits) 3655:Arithmetic progression ( 2908:Cunningham Chain records 2844:{\displaystyle i=p_{1}} 2686:Fermat's little theorem 2484:{\displaystyle p_{i+1}} 2178:{\displaystyle p_{i+1}} 2145:{\displaystyle p_{i+1}} 2085:{\displaystyle p_{i+1}} 1510:91304653283578934559359 1116:2799873605326×2371# - 1 871:Schinzel's hypothesis H 39:. They are also called 3941:Industrial-grade prime 3318:Newman–Shanks–Williams 2845: 2812: 2778: 2751: 2678: 2603: 2512: 2485: 2452: 2432: 2376: 2321: 2209: 2208:{\displaystyle 2p_{i}} 2179: 2146: 2113: 2086: 2053: 2026: 1999: 1937: 1888: 1839: 1770: 1715: 1666: 1547:2759832934171386593519 904:(as of 17 March 2023) 771:for all 1 ≤  723: 674: 623: 474: 425: 405: 354: 4278:List of prime numbers 3736:Sophie Germain/Safe ( 2846: 2813: 2779: 2777:{\displaystyle p_{1}} 2752: 2679: 2604: 2513: 2511:{\displaystyle p_{i}} 2486: 2453: 2433: 2377: 2322: 2210: 2180: 2147: 2114: 2112:{\displaystyle p_{i}} 2087: 2054: 2052:{\displaystyle p_{i}} 2027: 2025:{\displaystyle p_{i}} 2000: 1938: 1889: 1840: 1771: 1716: 1667: 1665:{\displaystyle p_{1}} 1059:49325406476×9811# + 1 1042:13720852541×7877# − 1 724: 675: 624: 475: 426: 406: 355: 3460:(10 − 1)/9 2822: 2788: 2761: 2692: 2613: 2525: 2495: 2462: 2442: 2386: 2331: 2282: 2189: 2156: 2123: 2096: 2063: 2036: 2009: 1954: 1898: 1849: 1780: 1725: 1676: 1649: 1556:Jaroslaw Wroblewski 1519:Jaroslaw Wroblewski 867:Dickson's conjecture 851:ElGamal cryptosystem 684: 636: 543: 435: 415: 367: 120: 104:Sophie Germain prime 3769: ± 7, ... 3296:By integer sequence 3081:(2 + 1)/3 2521:Similarly, because 1005:1128330746865×2 − 1 966:2618163402417×2 − 1 905: 37:A. J. C. Cunningham 3951:Formula for primes 3584: + 2 or 3516:Smarandache–Wellin 2841: 2808: 2774: 2747: 2674: 2599: 2508: 2481: 2448: 2428: 2372: 2317: 2205: 2175: 2142: 2109: 2082: 2049: 2022: 1995: 1933: 1884: 1835: 1766: 1711: 1662: 1022:742478255901×2 + 1 985:213778324725×2 + 1 899: 719: 670: 619: 470: 421: 401: 350: 348: 4284: 4283: 3895:Carmichael number 3830:Composite numbers 3765: ± 3, 8 3761: ± 1, 4 3724: ± 1, … 3720: ± 1, 4 3716: ± 1, 2 3706: 3705: 3251:3·2 − 1 3156:2·3 + 1 3070:Double Mersenne ( 2451:{\displaystyle i} 2327:and the relation 2276: 2275: 1617: 1616: 952:Patrick Laroche, 894:Green–Tao theorem 668: 424:{\displaystyle a} 399: 261: 4304: 3815:Eisenstein prime 3770: 3746: 3725: 3697: 3669: 3649: 3633: 3617: 3612: + 6, 3608: + 2, 3593: 3588: + 4, 3569: 3544: 3461: 3424:Highly cototient 3286: 3285: 3279: 3269: 3252: 3243: 3228: 3205: 3204:·2 − 1 3193: 3192:·2 + 1 3181: 3172: 3157: 3148: 3135: 3120: 3105: 3093: 3092:·2 + 1 3082: 3073: 3064: 3055: 3030: 3023: 3016: 3007: 2990: 2973: 2945: 2944: 2942: 2933:(188): 751–759. 2918: 2912: 2903: 2894: 2887: 2850: 2848: 2847: 2842: 2840: 2839: 2817: 2815: 2814: 2809: 2807: 2806: 2805: 2804: 2783: 2781: 2780: 2775: 2773: 2772: 2756: 2754: 2753: 2748: 2746: 2742: 2741: 2717: 2716: 2709: 2708: 2683: 2681: 2680: 2675: 2673: 2669: 2668: 2644: 2643: 2625: 2624: 2609:it follows that 2608: 2606: 2605: 2600: 2588: 2587: 2566: 2565: 2556: 2555: 2537: 2536: 2517: 2515: 2514: 2509: 2507: 2506: 2490: 2488: 2487: 2482: 2480: 2479: 2457: 2455: 2454: 2449: 2437: 2435: 2434: 2429: 2427: 2423: 2422: 2398: 2397: 2382:it follows that 2381: 2379: 2378: 2373: 2365: 2364: 2349: 2348: 2326: 2324: 2323: 2318: 2316: 2294: 2293: 2218: 2214: 2212: 2211: 2206: 2204: 2203: 2184: 2182: 2181: 2176: 2174: 2173: 2151: 2149: 2148: 2143: 2141: 2140: 2118: 2116: 2115: 2110: 2108: 2107: 2091: 2089: 2088: 2083: 2081: 2080: 2058: 2056: 2055: 2050: 2048: 2047: 2031: 2029: 2028: 2023: 2021: 2020: 2004: 2002: 2001: 1996: 1988: 1987: 1972: 1971: 1943:, and so forth. 1942: 1940: 1939: 1934: 1932: 1910: 1909: 1893: 1891: 1890: 1885: 1883: 1861: 1860: 1844: 1842: 1841: 1836: 1834: 1830: 1829: 1805: 1804: 1792: 1791: 1776:it follows that 1775: 1773: 1772: 1767: 1759: 1758: 1743: 1742: 1720: 1718: 1717: 1712: 1710: 1688: 1687: 1671: 1669: 1668: 1663: 1661: 1660: 1499:Andrey Balyakin 1482:Andrey Balyakin 1372:Andrey Balyakin 1331:Andrey Balyakin 1290:Andrey Balyakin 1273:Andrey Balyakin 1253:Andrey Balyakin 1236:Andrey Balyakin 1216:Andrey Balyakin 1199:Andrey Balyakin 1179:Andrey Balyakin 1162:Andrey Balyakin 1142:Andrey Balyakin 1105:Andrey Balyakin 1088:Andrey Balyakin 1014:Michael Paridon 923:(starting prime) 906: 869:and the broader 865:It follows from 728: 726: 725: 720: 709: 708: 696: 695: 679: 677: 676: 671: 669: 664: 657: 656: 646: 632:Now, by setting 628: 626: 625: 620: 606: 605: 584: 583: 574: 573: 555: 554: 529: <  479: 477: 476: 471: 460: 459: 447: 446: 430: 428: 427: 422: 410: 408: 407: 402: 400: 395: 388: 387: 377: 359: 357: 356: 351: 349: 333: 332: 311: 310: 301: 300: 278: 277: 259: 258: 255: 242: 241: 222: 221: 199: 198: 179: 178: 156: 155: 136: 135: 113:It follows that 98: <  22:Cunningham chain 4312: 4311: 4307: 4306: 4305: 4303: 4302: 4301: 4287: 4286: 4285: 4280: 4271: 3965:First 60 primes 3960: 3924: 3824: 3807:Complex numbers 3801: 3775: 3753: 3737: 3712: 3711:Bi-twin chain ( 3702: 3676: 3656: 3640: 3624: 3600: 3576: 3560: 3535: 3521:Strobogrammatic 3459: 3433: 3327: 3291: 3283: 3277: 3276: 3259: 3250: 3235: 3212: 3200: 3188: 3179: 3164: 3155: 3142: 3134:# + 1 3132: 3127: 3119:# ± 1 3117: 3112: 3104:! ± 1 3100: 3088: 3080: 3072:2 − 1 3071: 3063:2 − 1 3062: 3054:2 + 1 3053: 3040: 3034: 3002: ≤ 15 2985: ≤ 14 2953: 2948: 2920: 2919: 2915: 2904: 2897: 2888: 2884: 2880: 2857: 2831: 2820: 2819: 2796: 2791: 2786: 2785: 2764: 2759: 2758: 2733: 2700: 2695: 2690: 2689: 2660: 2629: 2616: 2611: 2610: 2573: 2557: 2541: 2528: 2523: 2522: 2498: 2493: 2492: 2465: 2460: 2459: 2440: 2439: 2414: 2389: 2384: 2383: 2356: 2334: 2329: 2328: 2285: 2280: 2279: 2195: 2187: 2186: 2159: 2154: 2153: 2126: 2121: 2120: 2099: 2094: 2093: 2066: 2061: 2060: 2039: 2034: 2033: 2012: 2007: 2006: 1979: 1957: 1952: 1951: 1901: 1896: 1895: 1852: 1847: 1846: 1821: 1796: 1783: 1778: 1777: 1750: 1728: 1723: 1722: 1679: 1674: 1673: 1652: 1647: 1646: 1639: 922: 863: 857:is difficult." 810: 766: 757: 747: 738: 700: 687: 682: 681: 648: 647: 634: 633: 591: 575: 559: 546: 541: 540: 524: 515: 505: 496: 451: 438: 433: 432: 413: 412: 379: 378: 365: 364: 363:or, by setting 347: 346: 318: 302: 286: 279: 269: 266: 265: 253: 252: 233: 223: 213: 210: 209: 190: 180: 170: 167: 166: 147: 137: 127: 118: 117: 93: 84: 74: 65: 49: 12: 11: 5: 4310: 4308: 4300: 4299: 4289: 4288: 4282: 4281: 4276: 4273: 4272: 4270: 4269: 4264: 4259: 4254: 4249: 4244: 4239: 4234: 4229: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4184: 4179: 4174: 4169: 4164: 4159: 4154: 4149: 4144: 4139: 4134: 4129: 4124: 4119: 4114: 4109: 4104: 4099: 4094: 4089: 4084: 4079: 4074: 4069: 4064: 4059: 4054: 4049: 4044: 4039: 4034: 4029: 4024: 4019: 4014: 4009: 4004: 3999: 3994: 3989: 3984: 3979: 3974: 3968: 3966: 3962: 3961: 3959: 3958: 3953: 3948: 3943: 3938: 3936:Probable prime 3932: 3930: 3929:Related topics 3926: 3925: 3923: 3922: 3917: 3912: 3910:Sphenic number 3907: 3902: 3897: 3892: 3891: 3890: 3885: 3880: 3875: 3870: 3865: 3860: 3855: 3850: 3845: 3834: 3832: 3826: 3825: 3823: 3822: 3820:Gaussian prime 3817: 3811: 3809: 3803: 3802: 3800: 3799: 3798: 3788: 3783: 3781: 3777: 3776: 3774: 3773: 3749: 3745: + 1 3733: 3728: 3707: 3704: 3703: 3701: 3700: 3672: 3652: 3648: + 6 3636: 3632: + 4 3620: 3616: + 8 3596: 3592: + 6 3572: 3568: + 2 3555: 3553: 3541: 3537: 3536: 3534: 3533: 3528: 3523: 3518: 3513: 3508: 3503: 3498: 3493: 3488: 3483: 3478: 3473: 3468: 3463: 3455: 3450: 3444: 3442: 3435: 3434: 3432: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3396: 3391: 3386: 3381: 3376: 3371: 3366: 3361: 3356: 3351: 3346: 3335: 3333: 3329: 3328: 3326: 3325: 3320: 3315: 3310: 3305: 3299: 3297: 3293: 3292: 3290: 3289: 3272: 3268: − 1 3255: 3246: 3231: 3208: 3196: 3184: 3175: 3160: 3151: 3147: + 1 3138: 3130: 3123: 3115: 3108: 3096: 3084: 3076: 3067: 3058: 3048: 3046: 3042: 3041: 3035: 3033: 3032: 3025: 3018: 3010: 3004: 3003: 2986: 2969: 2964: 2959: 2952: 2951:External links 2949: 2947: 2946: 2913: 2895: 2881: 2879: 2876: 2875: 2874: 2869: 2864: 2856: 2853: 2838: 2834: 2830: 2827: 2803: 2799: 2794: 2771: 2767: 2745: 2740: 2736: 2731: 2728: 2723: 2720: 2715: 2712: 2707: 2703: 2698: 2672: 2667: 2663: 2658: 2655: 2650: 2647: 2642: 2639: 2636: 2632: 2628: 2623: 2619: 2597: 2594: 2591: 2586: 2583: 2580: 2576: 2572: 2569: 2564: 2560: 2554: 2551: 2548: 2544: 2540: 2535: 2531: 2505: 2501: 2478: 2475: 2472: 2468: 2447: 2426: 2421: 2417: 2412: 2409: 2404: 2401: 2396: 2392: 2371: 2368: 2363: 2359: 2355: 2352: 2347: 2344: 2341: 2337: 2315: 2312: 2308: 2305: 2300: 2297: 2292: 2288: 2274: 2273: 2270: 2266: 2265: 2262: 2258: 2257: 2254: 2250: 2249: 2246: 2242: 2241: 2238: 2234: 2233: 2230: 2226: 2225: 2222: 2202: 2198: 2194: 2172: 2169: 2166: 2162: 2139: 2136: 2133: 2129: 2106: 2102: 2079: 2076: 2073: 2069: 2046: 2042: 2019: 2015: 1994: 1991: 1986: 1982: 1978: 1975: 1970: 1967: 1964: 1960: 1931: 1928: 1924: 1921: 1916: 1913: 1908: 1904: 1882: 1879: 1875: 1872: 1867: 1864: 1859: 1855: 1833: 1828: 1824: 1819: 1816: 1811: 1808: 1803: 1799: 1795: 1790: 1786: 1765: 1762: 1757: 1753: 1749: 1746: 1741: 1738: 1735: 1731: 1709: 1706: 1702: 1699: 1694: 1691: 1686: 1682: 1659: 1655: 1638: 1635: 1622:# denotes the 1615: 1614: 1611: 1608: 1605: 1602: 1599: 1595: 1594: 1591: 1588: 1585: 1582: 1579: 1575: 1574: 1571: 1568: 1565: 1562: 1558: 1557: 1554: 1551: 1548: 1545: 1542: 1538: 1537: 1534: 1531: 1528: 1525: 1521: 1520: 1517: 1514: 1511: 1508: 1505: 1501: 1500: 1497: 1494: 1491: 1488: 1484: 1483: 1480: 1477: 1474: 1471: 1468: 1464: 1463: 1456: 1453: 1450: 1447: 1443: 1442: 1435: 1432: 1429: 1426: 1423: 1419: 1418: 1411: 1408: 1405: 1402: 1398: 1397: 1390: 1387: 1384: 1381: 1378: 1374: 1373: 1370: 1367: 1364: 1361: 1357: 1356: 1349: 1346: 1343: 1340: 1337: 1333: 1332: 1329: 1326: 1323: 1320: 1316: 1315: 1308: 1305: 1302: 1299: 1296: 1292: 1291: 1288: 1285: 1282: 1279: 1275: 1274: 1271: 1268: 1265: 1262: 1259: 1255: 1254: 1251: 1248: 1245: 1242: 1238: 1237: 1234: 1231: 1228: 1225: 1222: 1218: 1217: 1214: 1211: 1208: 1205: 1201: 1200: 1197: 1194: 1191: 1188: 1185: 1181: 1180: 1177: 1174: 1171: 1168: 1164: 1163: 1160: 1157: 1154: 1151: 1148: 1144: 1143: 1140: 1137: 1134: 1131: 1127: 1126: 1125:Serge Batalov 1123: 1120: 1117: 1114: 1111: 1107: 1106: 1103: 1100: 1097: 1094: 1090: 1089: 1086: 1083: 1080: 1077: 1074: 1070: 1069: 1066: 1063: 1060: 1057: 1053: 1052: 1049: 1046: 1043: 1040: 1037: 1033: 1032: 1029: 1026: 1023: 1020: 1016: 1015: 1012: 1009: 1006: 1003: 1000: 996: 995: 992: 989: 986: 983: 979: 978: 973: 970: 967: 964: 961: 957: 956: 950: 947: 944: 941: 938: 934: 933: 930: 927: 924: 920: 915: 912: 862: 859: 847: 846: 843: 840: 837: 830: 829: 826: 823: 820: 817: 809: 806: 762: 752: 743: 736: 718: 715: 712: 707: 703: 699: 694: 690: 667: 663: 660: 655: 651: 644: 641: 630: 629: 618: 615: 612: 609: 604: 601: 598: 594: 590: 587: 582: 578: 572: 569: 566: 562: 558: 553: 549: 520: 516: = 2 510: 501: 494: 469: 466: 463: 458: 454: 450: 445: 441: 420: 398: 394: 391: 386: 382: 375: 372: 361: 360: 345: 342: 339: 336: 331: 328: 325: 321: 317: 314: 309: 305: 299: 296: 293: 289: 285: 282: 280: 276: 272: 268: 267: 264: 256: 254: 251: 248: 245: 240: 236: 232: 229: 226: 224: 220: 216: 212: 211: 208: 205: 202: 197: 193: 189: 186: 183: 181: 177: 173: 169: 168: 165: 162: 159: 154: 150: 146: 143: 140: 138: 134: 130: 126: 125: 89: 85: = 2 79: 70: 63: 48: 45: 13: 10: 9: 6: 4: 3: 2: 4309: 4298: 4297:Prime numbers 4295: 4294: 4292: 4279: 4274: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4093: 4090: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4050: 4048: 4045: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4023: 4020: 4018: 4015: 4013: 4010: 4008: 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3969: 3967: 3963: 3957: 3954: 3952: 3949: 3947: 3946:Illegal prime 3944: 3942: 3939: 3937: 3934: 3933: 3931: 3927: 3921: 3918: 3916: 3913: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3889: 3886: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3840: 3839: 3836: 3835: 3833: 3831: 3827: 3821: 3818: 3816: 3813: 3812: 3810: 3808: 3804: 3797: 3794: 3793: 3792: 3791:Largest known 3789: 3787: 3784: 3782: 3778: 3772: 3768: 3764: 3760: 3756: 3750: 3748: 3744: 3740: 3734: 3732: 3729: 3727: 3723: 3719: 3715: 3709: 3708: 3699: 3696: 3693: +  3692: 3688: 3684: 3681: −  3680: 3673: 3671: 3667: 3663: 3660: +  3659: 3653: 3651: 3647: 3643: 3637: 3635: 3631: 3627: 3621: 3619: 3615: 3611: 3607: 3603: 3597: 3595: 3591: 3587: 3583: 3579: 3573: 3571: 3567: 3563: 3557: 3556: 3554: 3552: 3550: 3545: 3542: 3538: 3532: 3529: 3527: 3524: 3522: 3519: 3517: 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3497: 3494: 3492: 3489: 3487: 3484: 3482: 3479: 3477: 3474: 3472: 3469: 3467: 3464: 3462: 3456: 3454: 3451: 3449: 3446: 3445: 3443: 3440: 3436: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3395: 3392: 3390: 3387: 3385: 3382: 3380: 3377: 3375: 3372: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3344: 3340: 3337: 3336: 3334: 3330: 3324: 3321: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3300: 3298: 3294: 3288: 3282: 3273: 3271: 3267: 3263: 3256: 3254: 3247: 3245: 3242: 3239: +  3238: 3232: 3230: 3227: 3224: −  3223: 3219: 3216: −  3215: 3209: 3207: 3203: 3197: 3195: 3191: 3185: 3183: 3176: 3174: 3171: 3168: +  3167: 3161: 3159: 3152: 3150: 3146: 3141:Pythagorean ( 3139: 3137: 3133: 3124: 3122: 3118: 3109: 3107: 3103: 3097: 3095: 3091: 3085: 3083: 3077: 3075: 3068: 3066: 3059: 3057: 3050: 3049: 3047: 3043: 3038: 3031: 3026: 3024: 3019: 3017: 3012: 3011: 3008: 3001: 2997: 2993: 2987: 2984: 2980: 2976: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2954: 2950: 2941: 2936: 2932: 2928: 2924: 2917: 2914: 2910: 2909: 2902: 2900: 2896: 2892: 2886: 2883: 2877: 2873: 2870: 2868: 2867:Bi-twin chain 2865: 2862: 2859: 2858: 2854: 2852: 2836: 2832: 2828: 2825: 2801: 2797: 2792: 2769: 2765: 2738: 2734: 2729: 2721: 2718: 2713: 2710: 2705: 2701: 2696: 2687: 2665: 2661: 2656: 2648: 2645: 2640: 2637: 2634: 2630: 2626: 2621: 2617: 2592: 2589: 2584: 2581: 2578: 2574: 2567: 2562: 2558: 2552: 2549: 2546: 2542: 2538: 2533: 2529: 2519: 2503: 2499: 2476: 2473: 2470: 2466: 2445: 2419: 2415: 2410: 2402: 2399: 2394: 2390: 2369: 2366: 2361: 2357: 2353: 2350: 2345: 2342: 2339: 2335: 2310: 2306: 2298: 2295: 2290: 2286: 2271: 2268: 2263: 2260: 2255: 2252: 2247: 2244: 2239: 2236: 2231: 2228: 2223: 2220: 2219: 2216: 2200: 2196: 2192: 2170: 2167: 2164: 2160: 2137: 2134: 2131: 2127: 2104: 2100: 2077: 2074: 2071: 2067: 2044: 2040: 2017: 2013: 1992: 1989: 1984: 1980: 1976: 1973: 1968: 1965: 1962: 1958: 1949: 1944: 1926: 1922: 1914: 1911: 1906: 1902: 1877: 1873: 1865: 1862: 1857: 1853: 1826: 1822: 1817: 1809: 1806: 1801: 1797: 1793: 1788: 1784: 1763: 1760: 1755: 1751: 1747: 1744: 1739: 1736: 1733: 1729: 1704: 1700: 1692: 1689: 1684: 1680: 1657: 1653: 1644: 1636: 1634: 1631: 1629: 1625: 1621: 1612: 1609: 1603: 1600: 1597: 1596: 1592: 1589: 1583: 1580: 1577: 1576: 1572: 1569: 1563: 1560: 1559: 1555: 1552: 1546: 1543: 1539: 1535: 1532: 1526: 1523: 1522: 1518: 1515: 1509: 1506: 1502: 1498: 1495: 1489: 1486: 1485: 1481: 1478: 1472: 1469: 1465: 1461: 1457: 1454: 1448: 1445: 1444: 1440: 1439:block 2659167 1436: 1433: 1427: 1424: 1420: 1416: 1412: 1409: 1403: 1400: 1399: 1395: 1391: 1388: 1382: 1379: 1375: 1371: 1368: 1362: 1359: 1358: 1354: 1350: 1347: 1341: 1338: 1334: 1330: 1327: 1321: 1318: 1317: 1313: 1309: 1306: 1300: 1297: 1293: 1289: 1286: 1280: 1277: 1276: 1272: 1269: 1263: 1260: 1256: 1252: 1249: 1243: 1240: 1239: 1235: 1232: 1226: 1223: 1219: 1215: 1212: 1206: 1203: 1202: 1198: 1195: 1189: 1186: 1182: 1178: 1175: 1169: 1166: 1165: 1161: 1158: 1152: 1149: 1145: 1141: 1138: 1132: 1129: 1128: 1124: 1121: 1115: 1112: 1108: 1104: 1101: 1095: 1092: 1091: 1087: 1084: 1078: 1075: 1071: 1068:Oscar Östlin 1067: 1064: 1058: 1055: 1054: 1050: 1047: 1041: 1038: 1034: 1030: 1027: 1021: 1018: 1017: 1013: 1010: 1004: 1001: 997: 993: 990: 984: 981: 980: 977: 974: 971: 965: 962: 958: 955: 951: 948: 942: 939: 936: 935: 931: 928: 925: 919: 916: 913: 911: 908: 907: 903: 897: 895: 891: 887: 882: 880: 876: 872: 868: 860: 858: 856: 852: 844: 841: 838: 835: 834: 833: 827: 824: 821: 818: 815: 814: 813: 807: 805: 803: 798: 796: 792: 788: 785: 782: 778: 775: ≤  774: 770: 767: +  765: 761: 755: 751: 746: 742: 735: 730: 716: 713: 710: 705: 701: 697: 692: 688: 665: 661: 658: 653: 649: 642: 639: 616: 610: 607: 602: 599: 596: 592: 585: 580: 576: 570: 567: 564: 560: 556: 551: 547: 539: 538: 537: 534: 532: 528: 523: 519: 513: 509: 504: 500: 493: 489: 485: 482:Similarly, a 480: 467: 464: 461: 456: 452: 448: 443: 439: 418: 396: 392: 389: 384: 380: 373: 370: 343: 337: 334: 329: 326: 323: 319: 312: 307: 303: 297: 294: 291: 287: 283: 281: 274: 270: 262: 249: 246: 243: 238: 234: 230: 227: 225: 218: 214: 206: 203: 200: 195: 191: 187: 184: 182: 175: 171: 163: 160: 157: 152: 148: 144: 141: 139: 132: 128: 116: 115: 114: 111: 109: 105: 101: 97: 92: 88: 82: 78: 73: 69: 62: 58: 54: 46: 44: 42: 38: 35: 34:mathematician 31: 30:prime numbers 27: 24:is a certain 23: 19: 3900:Almost prime 3858:Euler–Jacobi 3766: 3762: 3758: 3754: 3752:Cunningham ( 3751: 3742: 3738: 3721: 3717: 3713: 3694: 3690: 3686: 3682: 3678: 3677:consecutive 3665: 3661: 3657: 3645: 3641: 3629: 3625: 3613: 3609: 3605: 3601: 3599:Quadruplet ( 3589: 3585: 3581: 3577: 3565: 3561: 3548: 3496:Full reptend 3354:Wolstenholme 3349:Wall–Sun–Sun 3280: 3265: 3261: 3240: 3236: 3225: 3221: 3217: 3213: 3201: 3189: 3169: 3165: 3144: 3128: 3113: 3101: 3089: 3037:Prime number 2999: 2995: 2982: 2978: 2930: 2926: 2916: 2907: 2890: 2889:Joe Buhler, 2885: 2520: 2277: 1945: 1640: 1632: 1627: 1619: 1618: 1460:block 547276 1415:block 539977 1394:block 368051 1353:block 558800 917: 909: 901: 886:Ben J. Green 883: 878: 874: 864: 848: 831: 811: 801: 799: 794: 790: 786: 776: 772: 768: 763: 759: 753: 749: 748:) such that 744: 740: 733: 731: 631: 535: 530: 526: 521: 517: 511: 507: 506:) such that 502: 498: 491: 487: 483: 481: 411:(the number 362: 112: 99: 95: 90: 86: 80: 76: 75:) such that 71: 67: 60: 56: 52: 50: 40: 21: 15: 3883:Somer–Lucas 3838:Pseudoprime 3476:Truncatable 3448:Palindromic 3332:By property 3111:Primorial ( 3099:Factorial ( 2818:(i.e. with 2272:4523567039 2264:2261783519 2256:1130891759 1458:Primecoin ( 1437:Primecoin ( 1413:Primecoin ( 1392:Primecoin ( 1351:Primecoin ( 1312:block 95569 1310:Primecoin ( 932:Discoverer 890:Terence Tao 18:mathematics 3920:Pernicious 3915:Interprime 3675:Balanced ( 3466:Permutable 3441:-dependent 3258:Williams ( 3154:Pierpont ( 3079:Wagstaff 3061:Mersenne ( 3045:By formula 2878:References 2684:. But, by 2248:565445879 2240:282722939 2232:141361469 2092:. Because 779:for fixed 680:, we have 486:of length 108:safe prime 55:of length 47:Definition 3956:Prime gap 3905:Semiprime 3868:Frobenius 3575:Triplet ( 3374:Ramanujan 3369:Fortunate 3339:Wieferich 3303:Fibonacci 3234:Leyland ( 3199:Woodall ( 3178:Solinas ( 3163:Quartan ( 2861:Primecoin 2719:≡ 2711:− 2646:− 2638:− 2627:≡ 2590:− 2582:− 2550:− 2400:≡ 2367:− 2296:≡ 1912:≡ 1863:≡ 1807:− 1794:≡ 1690:≡ 1624:primorial 976:PrimeGrid 940:1st / 2nd 659:− 608:− 600:− 586:− 568:− 465:− 335:− 327:− 295:− 263:⋮ 4291:Category 3848:Elliptic 3623:Cousin ( 3540:Patterns 3531:Tetradic 3526:Dihedral 3491:Primeval 3486:Delicate 3471:Circular 3458:Repunit 3249:Thabit ( 3187:Cullen ( 3126:Euclid ( 3052:Fermat ( 2855:See also 2784:divides 2224:Decimal 1845:. Thus, 1641:Let the 946:24862048 808:Examples 802:complete 784:integers 26:sequence 3843:Catalan 3780:By size 3551:-tuples 3481:Minimal 3384:Regular 3275:Mills ( 3211:Cuban ( 3087:Proth ( 3039:classes 781:coprime 758:=  739:, ..., 497:, ..., 66:, ..., 3888:Strong 3878:Perrin 3863:Fermat 3639:Sexy ( 3559:Twin ( 3501:Unique 3429:Unique 3389:Strong 3379:Pillai 3359:Wilson 3323:Perrin 2221:Binary 1948:base 2 1645:prime 988:169015 969:388342 926:Digits 892:– the 260:  3873:Lucas 3853:Euler 3506:Happy 3453:Emirp 3419:Higgs 3414:Super 3394:Stern 3364:Lucky 3308:Lucas 2757:, so 1025:12074 1008:20013 954:GIMPS 943:2 − 1 3796:list 3731:Chen 3511:Self 3439:Base 3409:Good 3343:pair 3313:Pell 3264:−1)· 2989:OEIS 2972:OEIS 1610:2014 1590:2014 1570:2014 1553:2008 1533:2014 1516:2008 1496:2016 1479:2016 1455:2014 1434:2018 1410:2014 1389:2014 1369:2015 1348:2014 1328:2016 1307:2013 1287:2016 1270:2016 1250:2015 1233:2016 1213:2016 1196:2015 1176:2015 1159:2016 1139:2015 1122:2015 1119:1016 1102:2016 1099:2018 1085:2016 1082:1765 1065:2019 1062:4234 1048:2016 1045:3384 1028:2016 1011:2020 991:2023 972:2016 949:2018 929:Year 914:Kind 888:and 789:and 20:, a 4267:281 4262:277 4257:271 4252:269 4247:263 4242:257 4237:251 4232:241 4227:239 4222:233 4217:229 4212:227 4207:223 4202:211 4197:199 4192:197 4187:193 4182:191 4177:181 4172:179 4167:173 4162:167 4157:163 4152:157 4147:151 4142:149 4137:139 4132:137 4127:131 4122:127 4117:113 4112:109 4107:107 4102:103 4097:101 3757:, 2 3741:, 2 3662:a·n 3220:)/( 2935:doi 2730:mod 2657:mod 2411:mod 2307:mod 1923:mod 1874:mod 1818:mod 1701:mod 1643:odd 1601:2nd 1581:2nd 1561:2nd 1544:1st 1524:2nd 1507:1st 1487:2nd 1470:1st 1452:100 1446:2nd 1425:1st 1407:101 1401:2nd 1386:107 1380:1st 1366:121 1360:2nd 1345:113 1339:1st 1325:149 1319:2nd 1304:140 1298:1st 1284:150 1278:2nd 1267:150 1261:1st 1247:187 1241:2nd 1230:260 1224:1st 1210:337 1204:2nd 1193:265 1187:1st 1173:453 1167:2nd 1156:509 1150:1st 1136:668 1130:2nd 1113:1st 1093:2nd 1076:1st 1056:2nd 1039:1st 1019:2nd 1002:1st 982:2nd 963:1st 110:). 43:. 28:of 16:In 4293:: 4092:97 4087:89 4082:83 4077:79 4072:73 4067:71 4062:67 4057:61 4052:59 4047:53 4042:47 4037:43 4032:41 4027:37 4022:31 4017:29 4012:23 4007:19 4002:17 3997:13 3992:11 3689:, 3685:, 3664:, 3644:, 3628:, 3604:, 3580:, 3564:, 2931:53 2929:. 2925:. 2898:^ 2688:, 1894:, 1630:. 1607:26 1598:19 1587:27 1578:18 1567:28 1550:22 1541:17 1530:28 1513:23 1504:16 1493:40 1476:45 1467:15 1462:) 1441:) 1431:97 1422:14 1417:) 1396:) 1377:13 1355:) 1336:12 1314:) 1295:11 1258:10 797:. 760:ap 756:+1 729:. 533:. 514:+1 468:1. 83:+1 51:A 3987:7 3982:5 3977:3 3972:2 3771:) 3767:p 3763:p 3759:p 3755:p 3747:) 3743:p 3739:p 3726:) 3722:n 3718:n 3714:n 3698:) 3695:n 3691:p 3687:p 3683:n 3679:p 3670:) 3666:n 3658:p 3650:) 3646:p 3642:p 3634:) 3630:p 3626:p 3618:) 3614:p 3610:p 3606:p 3602:p 3594:) 3590:p 3586:p 3582:p 3578:p 3570:) 3566:p 3562:p 3549:k 3345:) 3341:( 3287:) 3284:⌋ 3281:A 3278:⌊ 3270:) 3266:b 3262:b 3260:( 3253:) 3244:) 3241:y 3237:x 3229:) 3226:y 3222:x 3218:y 3214:x 3206:) 3202:n 3194:) 3190:n 3182:) 3173:) 3170:y 3166:x 3158:) 3149:) 3145:n 3143:4 3136:) 3131:n 3129:p 3121:) 3116:n 3114:p 3106:) 3102:n 3094:) 3090:k 3074:) 3065:) 3056:) 3029:e 3022:t 3015:v 3000:n 2996:n 2983:n 2979:n 2943:. 2937:: 2837:1 2833:p 2829:= 2826:i 2802:1 2798:p 2793:p 2770:1 2766:p 2744:) 2739:1 2735:p 2727:( 2722:1 2714:1 2706:1 2702:p 2697:2 2671:) 2666:1 2662:p 2654:( 2649:1 2641:1 2635:i 2631:2 2622:i 2618:p 2596:) 2593:1 2585:1 2579:i 2575:2 2571:( 2568:+ 2563:1 2559:p 2553:1 2547:i 2543:2 2539:= 2534:i 2530:p 2504:i 2500:p 2477:1 2474:+ 2471:i 2467:p 2446:i 2425:) 2420:i 2416:2 2408:( 2403:1 2395:i 2391:p 2370:1 2362:i 2358:p 2354:2 2351:= 2346:1 2343:+ 2340:i 2336:p 2314:) 2311:2 2304:( 2299:1 2291:1 2287:p 2201:i 2197:p 2193:2 2171:1 2168:+ 2165:i 2161:p 2138:1 2135:+ 2132:i 2128:p 2105:i 2101:p 2078:1 2075:+ 2072:i 2068:p 2045:i 2041:p 2018:i 2014:p 1993:1 1990:+ 1985:i 1981:p 1977:2 1974:= 1969:1 1966:+ 1963:i 1959:p 1930:) 1927:8 1920:( 1915:7 1907:3 1903:p 1881:) 1878:4 1871:( 1866:3 1858:2 1854:p 1832:) 1827:i 1823:2 1815:( 1810:1 1802:i 1798:2 1789:i 1785:p 1764:1 1761:+ 1756:i 1752:p 1748:2 1745:= 1740:1 1737:+ 1734:i 1730:p 1708:) 1705:2 1698:( 1693:1 1685:1 1681:p 1658:1 1654:p 1628:q 1620:q 1221:9 1184:8 1147:7 1110:6 1073:5 1036:4 999:3 960:2 937:1 921:1 918:p 910:k 902:k 879:k 875:k 791:b 787:a 777:n 773:i 769:b 764:i 754:i 750:p 745:n 741:p 737:1 734:p 717:1 714:+ 711:a 706:i 702:2 698:= 693:i 689:p 666:2 662:1 654:1 650:p 643:= 640:a 617:. 614:) 611:1 603:1 597:i 593:2 589:( 581:1 577:p 571:1 565:i 561:2 557:= 552:i 548:p 531:n 527:i 522:i 518:p 512:i 508:p 503:n 499:p 495:1 492:p 488:n 462:a 457:i 453:2 449:= 444:i 440:p 419:a 397:2 393:1 390:+ 385:1 381:p 374:= 371:a 344:, 341:) 338:1 330:1 324:i 320:2 316:( 313:+ 308:1 304:p 298:1 292:i 288:2 284:= 275:i 271:p 250:, 247:7 244:+ 239:1 235:p 231:8 228:= 219:4 215:p 207:, 204:3 201:+ 196:1 192:p 188:4 185:= 176:3 172:p 164:, 161:1 158:+ 153:1 149:p 145:2 142:= 133:2 129:p 100:n 96:i 91:i 87:p 81:i 77:p 72:n 68:p 64:1 61:p 57:n

Index

mathematics
sequence
prime numbers
mathematician
A. J. C. Cunningham
Sophie Germain prime
safe prime
coprime
integers
ElGamal cryptosystem
discrete logarithm problem
Dickson's conjecture
Schinzel's hypothesis H
Ben J. Green
Terence Tao
Green–Tao theorem
GIMPS
PrimeGrid
block 95569
block 558800
block 368051
block 539977
block 2659167
block 547276
primorial
odd
base 2
Fermat's little theorem
Primecoin
Bi-twin chain

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.