Knowledge (XXG)

Cyanidioschyzon

Source 📝

624: 57: 44: 227: 283:(the time it takes a culture of microbes to double in cells per unit volume) of approximately 32 hours. By using the more optimal medium MA2, this can be reduced to 24 hours. Culturing is done at 42 °C (108 °F) under white fluorescent light with an approximate intensity of 50 μmol photons m s (μE). However, under a higher light intensity of 90 μE with 5% CO 594:
would for transformation purposes. To transform, cells are briefly exposed to 30% PEG with the DNA of interest, resulting in transient transformation. In this method, the DNA is taken up as a circular element and is not integrated into the genome of the organism because no homologous regions exist
1012:
Matsuzaki M; Misumi O; Shin-i T; Maruyama S; Takahara M; Miyagishima S; Mori T; Nishida K; Yagisawa F; Nishida K; Yoshida Y; Nishimura Y; Nakao S; Kobayashi T; Momoyama Y; Higashiyama T; Minoda A; Sano M; Nomoto H; Oishi K; Hayashi H; Ohta F; Nishizaka S; Haga S; Miura S; Morishita T; Kabeya Y;
652:
makes it the perfect organism for studying mechanisms of eukaryotic cell and organelle division. Synchronization of the division of organelles in cultured cells can be very simple and usually involves the use of light and dark cycles. The chemical agent
291:
can be further increased, with a doubling time of approximately 9.2 hours. Higher light is not necessarily beneficial, as above 90 μE the growth rate begins to decrease. This may be due to photodamage occurring to the photosynthetic apparatus.
704:, as might be expected, has a particularly unusual pH range in which it can function. Despite the fact that the mechanism of PSII requires protons to be quickly released, and lower pH solutions should alter the ability to do this, 1484:
Imamura S; Yoshihara S; Nakano S; Shiozaki N; Yamada A; Tanaka K; Takahashi H; Asayama M; Shirai M (2003). "Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium".
619:
machinery can be used to insert the gene at these regions. The same transformation procedure as is used for transient expression can be used here, except with the homologous DNA segments to allow for genome integration.
429:(CTAB) method may be employed. In this method, a high-salt extraction buffer is first applied and cells are disrupted, after which a chloroform-phenol mixture is used to extract the DNA at room temperature. 550:, which allowed cells to survive in the presence of 5-FOA as long as uracil was provided. By transforming this mutant with a PCR fragment carrying both a gene of interest and a functional copy of 279:
in the laboratory in Modified Allen's medium (MA) or a modified form with twice the concentration of some elements called MA2. Using MA medium, growth rates are not particularly fast, with a
223:
in 2004; its plastid was sequenced in 2000 and 2003, and its mitochondrion in 1998. The organism has been considered the simplest of eukaryotic cells for its minimalist cellular organization.
449:
As is the case for DNA and RNA, the protocol for protein extraction is also an adaptation of the protocol used in cyanobacteria. Cells are disrupted using glass beads and vortexing in a 10%
868: 1013:
Terasawa K; Suzuki Y; Ishii Y; Asakawa S; Takano H; Ohta N; Kuroiwa H; Tanaka K; Shimizu N; Sugano S; Sato N; Nozaki H; Ogasawara N; Kohara Y; Kuroiwa T (2004).
881: 1284:, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae" 1757:
Imoto Y; Kuroiwa H; Yoshida Y; Ohnuma M; Fujiwara T; Yoshida M; Nishida K; Yagisawa F; Hirooka S; Miyagishima S; Misumi O; Kawano S; Kuroiwa T (2013).
1352:
Kobayashi Y; Ohnuma M; Kuroiwa T; Tanaka K; Hanaoka M (2010). "The basics of cultivation and molecular genetic analysis of the unicellular red alga
855: 611:. By including regions of DNA several hundred base pairs long on the ends of the gene of interest that are complementary to a sequence within the 308:, meaning it is not capable of taking up fixed carbon from its environment and must rely on oxygenic photosynthesis to fix carbon from CO 1146: 398:
for transient or stable transformation, and methods for selection including a uracil auxotroph that can be used as a selection marker.
1965: 1098: 355:. The reduced nature of the genome has led to several other unusual features. While most eukaryotes contain 10 or so copies of the 1378:
Castenholz RW; McDermott TR (2010). "The Cyanidiales: Ecology, Biodiversity, and Biogeography". In Seckbach J; Chapman DJ (eds.).
917: 1715:
Terui S; Suzuki K; Takahiashi H; Itoh R; Kuroiwa T (1995). "High synchronization of chloroplast division in the ultramicro-alga
56: 1077:
Kuroiwa T; Kuroiwa H; Sakai A; Takahashi H; Toda K; Itoh R (1998). "The division apparatus of plastids and mitochondria".
603:
To create a stable mutant line, gene targeting can be used to insert a gene of interest into a particular location of the
527: 1901:"A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, 488:
commonly used for selection of successfully transformed individuals in the laboratory, but it resistant to some, notably
370:
contains many genes not present in the chloroplast genomes of other algae and plants. Most of its genes are intronless.
425:(PCR), wherein phenol is added to whole cells and incubated at 65 °C to extract DNA. If purer DNA is required, the 1181:"Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, 426: 1899:
Krupnik T; Kotabova E; van Bezouwen LS; Mazur R; Garstka M; Nixon PJ; Barber J; Kana R; Boekema EJ; Kargul J (2013).
1443:
Ohta, N; Matsuzaki, M; Misumi, O; Miyagishima, S. Y.; Nozaki, H; Tanaka, K; Shin-i, T; Kohara, Y; Kuroiwa, T (2003).
807: 949:«Cyanidioschyzon merolae»: a new alga of thermal acidic environments. P De Luca, R Taddei and L Varano, Webbia, 1978 886: 518:
in the presence of a compound, 5-FOA, which in and of itself is non-toxic but is converted to the toxic compound
422: 1960: 608: 470: 352: 543: 207:
is considered an excellent model system for study of cellular and organelle division processes, as well as
1522:"Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells" 769: 179:
adapted to high sulfur acidic hot spring environments (pH 1.5, 45 °C). The cellular architecture of
1573:"The plant‐specific TFIIB related protein, PBRP, is a general transcription factor for RNA polymerase I" 718: 144: 1445:"Complete sequenced analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae" 922: 829: 567: 363:
only contains two, a fact that researchers have taken advantage of when studying organelle division.
821: 747: 623: 335:
and was found to contain 5,331 genes, of which 86.3% were found to be expressed and only 26 contain
628: 575: 1736: 648:
The extremely simple divisome, simple cell architecture, and ability to synchronize divisions in
212: 51: 873: 1936: 1881: 1840: 1790: 1759:"Single-membrane–bounded peroxisome division revealed by isolation of dynamin-based machinery" 1697: 1602: 1553: 1502: 1466: 1425: 1313: 1256: 1206: 1104: 1094: 1040: 983: 894: 636: 458: 419: 43: 909: 708:
PSII is capable of exchanging and splitting water at the same rate as other related species.
1926: 1916: 1871: 1830: 1780: 1770: 1728: 1687: 1677: 1637: 1592: 1584: 1543: 1533: 1494: 1456: 1415: 1303: 1295: 1246: 1196: 1142: 1086: 1030: 975: 500: 899: 539: 91: 1815:"Substrate water exchange in photosystem II core complexes of the extremophilic red alga 1133:
as model system for investigating the dividing apparatus of mitochondria and plastids".
1931: 1900: 1785: 1758: 1692: 1661: 1597: 1572: 1548: 1521: 1308: 1276:"Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, 1275: 697: 685: 519: 454: 331:
was sequenced in 2004. The reduced, extremely simple, compact genome is made up of 20
71: 1498: 1090: 17: 1954: 1732: 635:, showing two cells, one in which the plastid has begun to divide. Courtesy of Prof. 531: 418:
extraction, which is a quick extraction that can be used to isolate DNA suitable for
407: 348: 280: 268: 243: 188: 1740: 979: 554:, researchers can confirm that the gene of interest has been incorporated into the 466: 276: 208: 111: 1666:: single- and multi-copy insertion using authentic and chimeric selection markers" 300:
plates for purposes of colony selection or strain maintenance in the laboratory.
1876: 1859: 1835: 1814: 1682: 792: 801: 689: 666: 654: 579: 485: 251: 247: 226: 184: 101: 1520:
Kobayashia Y; Kanesakia Y; Tanakab A; Kuroiwac H; Kuroiwac T; Tanaka K (2009).
378:
As is the case with most model organisms, genetic tools have been developed in
1060: 658: 616: 591: 489: 332: 305: 297: 220: 176: 1461: 1444: 1400:"Polyethylene Glycol (PEG)-Mediated Transient Gene Expression in a Red Alga, 987: 657:
can be added to easily and effectively synchronize chloroplast division. The
1921: 1775: 1642: 1621: 1538: 842: 816: 760:. World-wide electronic publication, National University of Ireland, Galway. 756: 724: 583: 570:
allows short-term experiments to be done using labeled or modified genes in
511: 493: 321: 264: 200: 196: 81: 1940: 1885: 1844: 1794: 1701: 1606: 1588: 1557: 1506: 1470: 1429: 1317: 1260: 1210: 1044: 1299: 1147:
10.1002/(sici)1521-1878(199804)20:4<344::aid-bies11>3.0.co;2-2
1108: 1420: 1399: 1201: 1180: 786: 670: 462: 450: 1251: 1230: 1035: 1014: 441:
cells using a variant of the hot phenol method described above for DNA.
339:, which contained strict consensus sequences. Strikingly, the genome of 860: 736: 696:
has some significant differences from that of other related organisms.
356: 234:
in flasks and a 10-litre (2.2 imp gal; 2.6 US gal)
192: 1620:
Yagisawa F; Nishida K; Okano Y; Minoda A; Tanaka K; Kuroiwa T (2004).
566:
While chromosomal integration of genes creates a stable transformant,
1858:
Bricker TM; Roose JL; Fagerlund RD; Frankel LK; Eaton-Rye JJ (2012).
665:
as a system, where peroxisome division can be synchronized using the
523: 508: 415: 336: 324: 235: 216: 173: 763: 359:
required for pinching membranes to separate dividing compartments,
847: 622: 514:(requiring exogenous uracil). The mutant was developed by growing 225: 1373: 1371: 344: 834: 767: 1179:
Minoda A; Sakagami R; Yagisawa F; Kuroiwa T; Tanaka K (2004).
387: 383: 366:
Although possessing a small genome, the chloroplast genome of
1660:
Fujiwara T; Ohnuma M; Yoshida M; Kuroiwa T; Hirano T (2013).
1398:
Ohnuma M; Yokoyama T; Inouye T; Sekine Y; Tanaka K (2008).
263:
Originally isolated by De Luca in 1978 from the solfatane
242:
is blue-green: it makes little if any of the red pigment
1347: 1231:"Genome sequence of the ultrasmall unicellular red alga 1015:"Genome sequence of the ultrasmall unicellular red alga 246:, and hence only displays the second red-algal pigment, 1345: 1343: 1341: 1339: 1337: 1335: 1333: 1331: 1329: 1327: 562:
Polyethylene glycol (PEG) mediated transient expression
1655: 1653: 1007: 1005: 1003: 1001: 999: 997: 1808: 1806: 1804: 966: »: a new alga of thermal acidic environments". 1813:
Nilsson H; Krupnik T; Kargul J; Messinger J (2014).
1393: 1391: 1389: 957: 955: 1823:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
1752: 1750: 1174: 1172: 1170: 1168: 1166: 1164: 1162: 1160: 1158: 1156: 776: 1059: 477:Transformant selection and uracil auxotrophic line 453:buffer containing the reducing agent DTT to break 410:protocols, are used for the isolation of DNA from 203:divisions can be synchronized. For these reasons, 1622:"Isolation of cycloheximide-resistant mutants of 574:. Transient expression can be achieved using a 558:genome if it can grow without exogenous uracil. 457:within proteins. This extraction will result in 1719:by treatment with both light and aphidicolin". 1224: 1222: 1220: 661:division mechanism was first ascertained using 1120: 1118: 382:. These include methods for the isolation of 183:is extremely simple, containing only a single 287:applied through bubbling, the growth rate of 8: 1358:Journal of Endocytobiosis and Cell Research 688:. Notably, the subunit composition of the 172:is a small (2μm), club-shaped, unicellular 1860:"The extrinsic proteins of photosystem II" 764: 42: 31: 1930: 1920: 1875: 1834: 1784: 1774: 1691: 1681: 1641: 1596: 1547: 1537: 1460: 1419: 1307: 1250: 1200: 1125:Kuroiwa (1998). "The primitive red algae 1034: 347:genes and an extremely minimal number of 1274:Barbier, Guillaume; et al. (2005). 590:lacks a cell wall, it behaves much as a 160:P.De Luca, R.Taddei & L.Varano, 1978 1571:Imamura S; Hanaoka M; Tanaka K (2008). 968:Journal of Plant Taxonomy and Geography 962:De Luca P; Taddei R; Varano L (1978). " 942: 586:enzymatically eliminated), and because 238:. Although classified as a red alga, 219:was the first full algal genome to be 644:Studying cell and organelle divisions 7: 1081:. International Review of Cytology. 526:in the uracil biosynthetic pathway, 1229:Matsuzaki, M.; et al. (2004). 673:in addition to light-dark cycles. 25: 1733:10.1111/j.0022-3646.1995.00958.x 1662:"Gene targeting in the red alga 437:Total RNA may be extracted from 427:Cetyl trimethyl ammonium bromide 199:. In addition, the cellular and 55: 394:, the introduction of DNA into 259:Isolation and growth in culture 980:10.1080/00837792.1978.10670110 406:Several methods, derived from 1: 1499:10.1016/s0022-2836(02)01242-1 1091:10.1016/s0074-7696(08)60415-5 1066:. Cambridge University Press. 351:gene copies, as shown in the 1877:10.1016/j.bbabio.2011.07.006 1836:10.1016/j.bbabio.2014.04.001 1683:10.1371/journal.pone.0073608 1380:Red Algae in the Genomic Age 684:is also used in researching 582:(plant cells with the rigid 615:genome, the organism's own 1982: 1058:Robert Edward Lee (1999). 627:Freeze fracture deep etch 528:orotidine 5'-monophosphate 1966:Species described in 1978 746:Guiry, M.D.; Guiry, G.M. 423:polymerase chain reaction 150: 143: 52:Scientific classification 50: 41: 34: 609:homologous recombination 544:loss-of-function mutants 304:is an obligate oxygenic 250:, and the green pigment 1922:10.1074/jbc.m113.484659 1903:Cyanidioschyzon merolae 1817:Cyanidioschyzon merolae 1776:10.1073/pnas.1303483110 1717:Cyanidioschyzon merolae 1664:Cyanidioschyzon merolae 1643:10.1508/cytologia.69.97 1624:Cyanidioschyzon merolae 1539:10.1073/pnas.0804270105 1402:Cyanidioschyzon merolae 1354:Cyanidioschyzon merolae 1282:Cyanidioschyzon merolae 1233:Cyanidioschyzon merolae 1183:Cyanidioschyzon merolae 1131:Cyanidioschyzon merolae 1017:Cyanidioschyzon merolae 964:Cyanidioschyzon merolae 808:Cyanidioschyzon merolae 778:Cyanidioschyzon merolae 750:Cyanidioschyzon merolae 738:Cyanidioschyzon merolae 677:Photosynthesis research 461:, which can be used in 353:genome comparison table 169:Cyanidioschyzon merolae 154:Cyanidioschyzon merolae 1864:Biochim. Biophys. Acta 1589:10.1038/emboj.2008.151 1462:10.1093/dnares/10.2.67 640: 578:(PEG) based method in 503:for transformation in 255: 18:Cyanidioschyzon merolæ 1763:Proc. Natl. Acad. Sci 1526:Proc. Natl. Acad. Sci 1300:10.1104/pp.104.051169 1278:Galdieria sulphuraria 719:Galdieria sulphuraria 626: 484:is sensitive to many 414:. The first is a hot 296:can also be grown on 230:Growing the red alga 229: 568:transient expression 1915:(32): 23529–23542. 1382:. pp. 357–371. 1252:10.1038/nature02398 1127:Cyanidium caldarium 1036:10.1038/nature02398 629:electron microscopy 576:polyethylene glycol 1421:10.1093/pcp/pcm157 1408:Plant Cell Physiol 1202:10.1093/pcp/pch087 1189:Plant Cell Physiol 641: 459:denatured proteins 445:Protein extraction 267:of Campi Flegrei ( 256: 213:structural biology 1769:(23): 9583–9588. 1583:(17): 2317–2327. 1245:(6983): 653–657. 1029:(6983): 653–657. 933: 932: 895:Open Tree of Life 770:Taxon identifiers 669:-disrupting drug 637:Ursula Goodenough 595:for integration. 534:, encoded by the 420:DNA amplification 374:Molecular biology 343:contains only 30 215:. The organism's 165: 164: 16:(Redirected from 1973: 1945: 1944: 1934: 1924: 1896: 1890: 1889: 1879: 1855: 1849: 1848: 1838: 1829:(8): 1257–1262. 1810: 1799: 1798: 1788: 1778: 1754: 1745: 1744: 1712: 1706: 1705: 1695: 1685: 1657: 1648: 1647: 1645: 1617: 1611: 1610: 1600: 1568: 1562: 1561: 1551: 1541: 1517: 1511: 1510: 1481: 1475: 1474: 1464: 1440: 1434: 1433: 1423: 1395: 1384: 1383: 1375: 1366: 1365: 1349: 1322: 1321: 1311: 1288:Plant Physiology 1271: 1265: 1264: 1254: 1226: 1215: 1214: 1204: 1176: 1151: 1150: 1122: 1113: 1112: 1074: 1068: 1067: 1065: 1055: 1049: 1048: 1038: 1009: 992: 991: 959: 950: 947: 926: 925: 913: 912: 903: 902: 890: 889: 877: 876: 864: 863: 851: 850: 838: 837: 825: 824: 812: 811: 810: 797: 796: 795: 765: 761: 501:selection marker 499:A commonly used 467:Western blotting 275:can be grown in 156: 60: 59: 46: 32: 21: 1981: 1980: 1976: 1975: 1974: 1972: 1971: 1970: 1961:Cyanidiophyceae 1951: 1950: 1949: 1948: 1898: 1897: 1893: 1857: 1856: 1852: 1812: 1811: 1802: 1756: 1755: 1748: 1714: 1713: 1709: 1659: 1658: 1651: 1619: 1618: 1614: 1570: 1569: 1565: 1519: 1518: 1514: 1483: 1482: 1478: 1442: 1441: 1437: 1397: 1396: 1387: 1377: 1376: 1369: 1351: 1350: 1325: 1273: 1272: 1268: 1228: 1227: 1218: 1178: 1177: 1154: 1124: 1123: 1116: 1101: 1079:Int. Rev. Cytol 1076: 1075: 1071: 1057: 1056: 1052: 1011: 1010: 995: 961: 960: 953: 948: 944: 939: 934: 929: 921: 916: 908: 906: 898: 893: 885: 880: 872: 867: 859: 854: 846: 841: 833: 828: 820: 815: 806: 805: 800: 791: 790: 785: 772: 745: 733: 714: 679: 646: 601: 564: 542:led to several 540:Random mutation 479: 455:disulfide bonds 447: 435: 404: 376: 318: 311: 286: 261: 161: 158: 152: 139: 136:C. merolae 123:Cyanidioschyzon 92:Cyanidiophyceae 54: 36:Cyanidioschyzon 28: 27:Species of alga 23: 22: 15: 12: 11: 5: 1979: 1977: 1969: 1968: 1963: 1953: 1952: 1947: 1946: 1891: 1870:(1): 121–142. 1850: 1800: 1746: 1707: 1649: 1612: 1563: 1532:(3): 803–807. 1512: 1493:(5): 857–872. 1476: 1435: 1414:(1): 117–120. 1385: 1367: 1323: 1294:(2): 460–474. 1266: 1216: 1195:(6): 667–671. 1152: 1141:(4): 344–354. 1114: 1099: 1069: 1050: 993: 951: 941: 940: 938: 935: 931: 930: 928: 927: 914: 904: 891: 878: 865: 852: 839: 826: 813: 798: 782: 780: 774: 773: 768: 743: 742: 740:Genome Project 732: 731:External links 729: 728: 727: 722: 713: 710: 698:Photosystem II 686:photosynthesis 678: 675: 645: 642: 600: 599:Gene targeting 597: 563: 560: 520:5-Fluorouracil 478: 475: 446: 443: 434: 431: 408:cyanobacterial 403: 400: 375: 372: 317: 314: 309: 284: 260: 257: 191:and lacking a 163: 162: 159: 148: 147: 141: 140: 133: 131: 127: 126: 119: 115: 114: 109: 105: 104: 99: 95: 94: 89: 85: 84: 79: 75: 74: 72:Archaeplastida 69: 62: 61: 48: 47: 39: 38: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1978: 1967: 1964: 1962: 1959: 1958: 1956: 1942: 1938: 1933: 1928: 1923: 1918: 1914: 1910: 1909:J. Biol. Chem 1906: 1904: 1895: 1892: 1887: 1883: 1878: 1873: 1869: 1865: 1861: 1854: 1851: 1846: 1842: 1837: 1832: 1828: 1824: 1820: 1818: 1809: 1807: 1805: 1801: 1796: 1792: 1787: 1782: 1777: 1772: 1768: 1764: 1760: 1753: 1751: 1747: 1742: 1738: 1734: 1730: 1726: 1722: 1718: 1711: 1708: 1703: 1699: 1694: 1689: 1684: 1679: 1676:(9): e73608. 1675: 1671: 1667: 1665: 1656: 1654: 1650: 1644: 1639: 1635: 1631: 1627: 1625: 1616: 1613: 1608: 1604: 1599: 1594: 1590: 1586: 1582: 1578: 1574: 1567: 1564: 1559: 1555: 1550: 1545: 1540: 1535: 1531: 1527: 1523: 1516: 1513: 1508: 1504: 1500: 1496: 1492: 1488: 1480: 1477: 1472: 1468: 1463: 1458: 1454: 1450: 1446: 1439: 1436: 1431: 1427: 1422: 1417: 1413: 1409: 1405: 1403: 1394: 1392: 1390: 1386: 1381: 1374: 1372: 1368: 1363: 1359: 1355: 1348: 1346: 1344: 1342: 1340: 1338: 1336: 1334: 1332: 1330: 1328: 1324: 1319: 1315: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1283: 1279: 1270: 1267: 1262: 1258: 1253: 1248: 1244: 1240: 1236: 1234: 1225: 1223: 1221: 1217: 1212: 1208: 1203: 1198: 1194: 1190: 1186: 1184: 1175: 1173: 1171: 1169: 1167: 1165: 1163: 1161: 1159: 1157: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1119: 1115: 1110: 1106: 1102: 1100:9780123645852 1096: 1092: 1088: 1084: 1080: 1073: 1070: 1064: 1063: 1054: 1051: 1046: 1042: 1037: 1032: 1028: 1024: 1020: 1018: 1008: 1006: 1004: 1002: 1000: 998: 994: 989: 985: 981: 977: 973: 969: 965: 958: 956: 952: 946: 943: 936: 924: 919: 915: 911: 905: 901: 896: 892: 888: 883: 879: 875: 870: 866: 862: 857: 853: 849: 844: 840: 836: 831: 827: 823: 818: 814: 809: 803: 799: 794: 788: 784: 783: 781: 779: 775: 771: 766: 762: 759: 758: 753: 751: 741: 739: 735: 734: 730: 726: 723: 721: 720: 716: 715: 711: 709: 707: 703: 699: 695: 691: 687: 683: 676: 674: 672: 668: 664: 660: 656: 651: 643: 638: 634: 630: 625: 621: 618: 614: 610: 606: 598: 596: 593: 589: 585: 581: 577: 573: 569: 561: 559: 557: 553: 549: 545: 541: 537: 533: 532:decarboxylase 529: 525: 521: 517: 513: 510: 506: 502: 497: 495: 491: 487: 483: 476: 474: 472: 468: 464: 460: 456: 452: 444: 442: 440: 433:RNA isolation 432: 430: 428: 424: 421: 417: 413: 409: 402:DNA isolation 401: 399: 397: 393: 389: 385: 381: 373: 371: 369: 364: 362: 358: 354: 350: 349:ribosomal RNA 346: 342: 338: 334: 330: 326: 323: 322:megabase pair 315: 313: 307: 303: 299: 295: 290: 282: 281:doubling time 278: 274: 270: 269:Naples, Italy 266: 258: 253: 249: 245: 244:phycoerythrin 241: 237: 233: 228: 224: 222: 218: 214: 210: 206: 202: 198: 194: 190: 189:mitochondrion 187:and a single 186: 182: 178: 175: 171: 170: 157: 155: 149: 146: 145:Binomial name 142: 138: 137: 132: 129: 128: 125: 124: 120: 117: 116: 113: 110: 107: 106: 103: 100: 97: 96: 93: 90: 87: 86: 83: 80: 77: 76: 73: 70: 67: 64: 63: 58: 53: 49: 45: 40: 37: 33: 30: 19: 1912: 1908: 1902: 1894: 1867: 1863: 1853: 1826: 1822: 1816: 1766: 1762: 1724: 1720: 1716: 1710: 1673: 1669: 1663: 1633: 1629: 1623: 1615: 1580: 1576: 1566: 1529: 1525: 1515: 1490: 1487:J. Mol. Biol 1486: 1479: 1455:(2): 67–77. 1452: 1449:DNA Research 1448: 1438: 1411: 1407: 1401: 1379: 1361: 1357: 1353: 1291: 1287: 1281: 1277: 1269: 1242: 1238: 1232: 1192: 1188: 1182: 1138: 1134: 1130: 1126: 1082: 1078: 1072: 1061: 1053: 1026: 1022: 1016: 974:(1): 37–44. 971: 967: 963: 945: 777: 755: 749: 744: 737: 717: 705: 701: 693: 690:photosystems 681: 680: 662: 649: 647: 632: 612: 604: 602: 587: 571: 565: 555: 551: 547: 535: 515: 504: 498: 481: 480: 448: 438: 436: 411: 405: 395: 391: 379: 377: 367: 365: 360: 340: 328: 319: 301: 293: 288: 272: 262: 239: 231: 209:biochemistry 204: 180: 168: 167: 166: 153: 151: 135: 134: 122: 121: 112:Cyanidiaceae 65: 35: 29: 1727:: 958–961. 802:Wikispecies 667:microtubule 655:aphidicolin 607:genome via 580:protoplasts 507:involves a 486:antibiotics 333:chromosomes 252:chlorophyll 248:phycocyanin 185:chloroplast 102:Cyanidiales 1955:Categories 1636:: 97–100. 937:References 706:C. merolae 702:C. merolae 700:(PSII) of 694:C. merolae 682:C. merolae 663:C. merolae 659:peroxisome 650:C. merolae 633:C. merolae 617:DNA repair 613:C. merolae 605:C. merolae 592:protoplast 588:C. merolae 572:C. merolae 556:C. merolae 516:C. merolae 505:C. merolae 490:ampicillin 482:C. merolae 473:staining. 439:C. merolae 412:C. merolae 396:C. merolae 392:C. merolae 380:C. merolae 368:C. merolae 361:C. merolae 341:C. merolae 329:C. merolae 306:phototroph 302:C. merolae 298:gellan gum 294:C. merolae 289:C. merolae 273:C. merolae 240:C. merolae 232:C. merolae 205:C. merolae 181:C. merolae 82:Rhodophyta 78:Division: 1721:J. Phycol 1630:Cytologia 1135:BioEssays 1062:Phycology 988:0083-7792 817:AlgaeBase 793:Q16034656 757:AlgaeBase 725:Red algae 631:image of 584:cell wall 512:auxotroph 494:kanamycin 471:Coomassie 465:gels for 320:The 16.5 265:fumaroles 221:sequenced 201:organelle 197:cell wall 130:Species: 1941:23775073 1886:21801710 1845:24726350 1795:23696667 1741:84124611 1702:24039997 1670:PLOS ONE 1607:18668124 1558:19141634 1507:12527296 1471:12755171 1430:18003671 1364:: 53–61. 1318:15710685 1261:15071595 1211:15215501 1085:: 1–41. 1045:15071595 874:10006752 787:Wikidata 712:See also 671:oryzalin 463:SDS-PAGE 451:glycerol 357:dynamins 177:red alga 108:Family: 1932:5395030 1786:3677435 1693:3764038 1598:2529366 1549:2625283 1309:1065348 1109:9522454 910:1469579 861:2668940 337:introns 277:culture 193:vacuole 174:haploid 118:Genus: 98:Order: 88:Class: 1939:  1929:  1884:  1843:  1793:  1783:  1739:  1700:  1690:  1605:  1595:  1577:EMBO J 1556:  1546:  1505:  1469:  1428:  1316:  1306:  1259:  1239:Nature 1209:  1107:  1097:  1043:  1023:Nature 986:  923:611455 907:uBio: 835:912450 552:Ura5.3 548:Ura5.3 538:gene. 536:Ura5.3 530:(OMP) 524:enzyme 522:by an 509:uracil 416:phenol 325:genome 316:Genome 236:carboy 217:genome 1737:S2CID 918:WoRMS 900:85503 887:45157 869:IRMNG 848:KYAME 822:36733 390:from 66:Clade 1937:PMID 1882:PMID 1868:1817 1841:PMID 1827:1837 1791:PMID 1698:PMID 1603:PMID 1554:PMID 1503:PMID 1467:PMID 1426:PMID 1404:10D" 1314:PMID 1280:and 1257:PMID 1235:10D" 1207:PMID 1185:10D" 1129:and 1105:PMID 1095:ISBN 1041:PMID 1019:10D" 984:ISSN 882:NCBI 856:GBIF 843:EPPO 492:and 469:and 386:and 345:tRNA 211:and 195:and 1927:PMC 1917:doi 1913:288 1872:doi 1831:doi 1781:PMC 1771:doi 1767:110 1729:doi 1688:PMC 1678:doi 1638:doi 1593:PMC 1585:doi 1544:PMC 1534:doi 1530:106 1495:doi 1491:325 1457:doi 1416:doi 1356:". 1304:PMC 1296:doi 1292:137 1247:doi 1243:428 1197:doi 1143:doi 1087:doi 1083:181 1031:doi 1027:428 976:doi 830:EoL 692:in 546:in 388:RNA 384:DNA 327:of 271:), 1957:: 1935:. 1925:. 1911:. 1907:. 1880:. 1866:. 1862:. 1839:. 1825:. 1821:. 1803:^ 1789:. 1779:. 1765:. 1761:. 1749:^ 1735:. 1725:31 1723:. 1696:. 1686:. 1672:. 1668:. 1652:^ 1634:69 1632:. 1628:. 1601:. 1591:. 1581:27 1579:. 1575:. 1552:. 1542:. 1528:. 1524:. 1501:. 1489:. 1465:. 1453:10 1451:. 1447:. 1424:. 1412:49 1410:. 1406:. 1388:^ 1370:^ 1362:20 1360:. 1326:^ 1312:. 1302:. 1290:. 1286:. 1255:. 1241:. 1237:. 1219:^ 1205:. 1193:45 1191:. 1187:. 1155:^ 1139:20 1137:. 1117:^ 1103:. 1093:. 1039:. 1025:. 1021:. 996:^ 982:. 972:33 970:. 954:^ 920:: 897:: 884:: 871:: 858:: 845:: 832:: 819:: 804:: 789:: 754:. 496:. 312:. 68:: 1943:. 1919:: 1905:" 1888:. 1874:: 1847:. 1833:: 1819:" 1797:. 1773:: 1743:. 1731:: 1704:. 1680:: 1674:8 1646:. 1640:: 1626:" 1609:. 1587:: 1560:. 1536:: 1509:. 1497:: 1473:. 1459:: 1432:. 1418:: 1320:. 1298:: 1263:. 1249:: 1213:. 1199:: 1149:. 1145:: 1111:. 1089:: 1047:. 1033:: 990:. 978:: 752:" 748:" 639:. 310:2 285:2 254:. 20:)

Index

Cyanidioschyzon merolæ

Scientific classification
Edit this classification
Archaeplastida
Rhodophyta
Cyanidiophyceae
Cyanidiales
Cyanidiaceae
Cyanidioschyzon
Binomial name
haploid
red alga
chloroplast
mitochondrion
vacuole
cell wall
organelle
biochemistry
structural biology
genome
sequenced

carboy
phycoerythrin
phycocyanin
chlorophyll
fumaroles
Naples, Italy
culture

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.