Knowledge (XXG)

Capillary wave

Source 📝

4748: 4763: 40: 508: 63: 3939: 48: 3648: 1270: 3704: 1056:) waves (e.g. 2 mm for the water–air interface), which are proper capillary waves, do the opposite: an individual wave appears at the front of the group, grows when moving towards the group center and finally disappears at the back of the group. Phase velocity is two thirds of group velocity in this limit. 2120: 1064:
Between these two limits is a point at which the dispersion caused by gravity cancels out the dispersion due to the capillary effect. At a certain wavelength, the group velocity equals the phase velocity, and there is no dispersion. At precisely this same wavelength, the phase velocity of
3403: 4497: 784: 2428: 3934:{\displaystyle {\begin{aligned}V_{\text{g}}&={\frac {1}{4}}(\rho -\rho ')ga^{2}\lambda ,\\V_{\text{st}}&={\frac {1}{4}}\sigma k^{2}a^{2}\lambda ,\\T&={\frac {1}{4}}(\rho +\rho '){\frac {\omega ^{2}}{|k|}}a^{2}\lambda .\end{aligned}}} 1431:(waves are not high enough for gravitation to change appreciably). For surface tension, the deviations from planarity (as measured by derivatives of the surface) are supposed to be small. For common waves both approximations are good enough. 1125: 3361: 3296: 1457:) can be solved with the proper boundary conditions. On one hand, the velocity must vanish well below the surface (in the "deep water" case, which is the one we consider, otherwise a more involved result is obtained, see 3086: 637: 261: 3643:{\displaystyle {\begin{aligned}\Phi (x,y,z,t)&=+{\frac {1}{|k|}}{\text{e}}^{+|k|z}\,\omega a\,\sin \,\theta ,\\\Phi '(x,y,z,t)&=-{\frac {1}{|k|}}{\text{e}}^{-|k|z}\,\omega a\,\sin \,\theta .\end{aligned}}} 1516:
Consider two fluid domains, separated by an interface with surface tension. The mean interface position is horizontal. It separates the upper from the lower fluid, both having a different constant mass density,
1962: 3169: 497: 651:
When capillary waves are also affected substantially by gravity, they are called gravity–capillary waves. Their dispersion relation reads, for waves on the interface between two fluids of infinite depth:
4653: 959: 2629: 584: 4207: 3709: 3408: 4369: 1358:
that are easily seen by everyone and which are usually used as an example of waves in elementary courses are the worst possible example ; they have all the complications that waves can have.
658: 430: 2815: 3235:. The kinematic boundary condition at the interface, relating the potentials to the interface motion, is that the vertical velocity components must match the motion of the surface: 897: 175:
in waves. Distinction can be made between pure capillary waves – fully dominated by the effects of surface tension – and gravity–capillary waves which are also affected by gravity.
2731: 2160: 1726: 4265: 3233: 2774: 1627: 3688: 1014: 1442:
framework. Incompressibility is again involved (which is satisfied if the speed of the waves is much less than the speed of sound in the media), together with the flow being
4543: 4326: 2679: 1954: 1674: 1907: 1265:{\displaystyle \lambda _{m}=2\pi {\sqrt {\frac {\sigma }{(\rho -\rho ')g}}}\quad {\text{and}}\quad c_{m}={\sqrt {\frac {2{\sqrt {(\rho -\rho ')g\sigma }}}{\rho +\rho '}}}.} 540: 4361: 1599: 1308: 1090: 2863: 1560: 856: 361: 2926: 1876: 1409: 308: 284: 4054: 1796: 4024: 3977: 2838: 1850: 1762: 1535: 1335: 1117: 831: 332: 4688: 3387: 2900: 2149: 1028:: following a single wave's crest in a group one can see the wave appearing at the back of the group, growing and finally disappearing at the front of the group. 4285: 3997: 3301: 3192: 1823: 1503: 1479: 1429: 1389: 1054: 807: 381: 3241: 4747: 1065:
gravity–capillary waves as a function of wavelength (or wave number) has a minimum. Waves with wavelengths much smaller than this critical wavelength
4762: 2934: 589: 5058: 4820: 5190: 1340:
If one drops a small stone or droplet into liquid, the waves then propagate outside an expanding circle of fluid at rest; this circle is a
189: 2115:{\displaystyle V_{\mathrm {g} }=\iint dx\,dy\;\int _{0}^{\eta }dz\;(\rho -\rho ')gz={\frac {1}{2}}(\rho -\rho ')g\iint dx\,dy\;\eta ^{2},} 1461:.) On the other, its vertical component must match the motion of the surface. This contribution ends up being responsible for the extra 3105: 1371:. The first two are potential energies, and responsible for the two terms inside the parenthesis, as is clear from the appearance of 5099: 5080: 4936: 438: 143:
waves. Light breezes which stir up such small ripples are also sometimes referred to as cat's paws. On the open ocean, much larger
1092:
are dominated by surface tension, and much above by gravity. The value of this wavelength and the associated minimum phase speed
5119: 4840: 2634:
Use is made of the fluid being incompressible and its flow is irrotational (often, sensible approximations). As a result, both
4551: 4492:{\displaystyle \omega ^{2}=|k|\left({\frac {\rho -\rho '}{\rho +\rho '}}\,g+{\frac {\sigma }{\rho +\rho '}}\,k^{2}\right),} 2450: 545: 4062: 1411:. For gravity, an assumption is made of the density of the fluids being constant (i.e., incompressibility), and likewise 779:{\displaystyle \omega ^{2}=|k|\left({\frac {\rho -\rho '}{\rho +\rho '}}g+{\frac {\sigma }{\rho +\rho '}}k^{2}\right),} 4998: 902: 394: 5094:. Advanced Series on Ocean Engineering. Vol. 13. World Scientific, Singapore. pp. 2 Parts, 967 pages. 4708: 2423:{\displaystyle V_{\mathrm {st} }=\sigma \iint dx\,dy\;\left\approx {\frac {1}{2}}\sigma \iint dx\,dy\;\left,} 5180: 3394: 32: 4723: 2779: 52: 4219: 3200: 2437:'s) representation, and the second applies for small values of the derivatives (surfaces not too rough). 4660: 2743: 1511:
Dispersion relation for gravity–capillary waves on an interface between two semi–infinite fluid domains
865: 3656: 982: 511:
Dispersion of gravity–capillary waves on the surface of deep water (zero mass density of upper layer,
5185: 5131: 5068: 5010: 3945: 2684: 1679: 87: 4508: 4290: 2637: 2154:
An increase in area of the surface causes a proportional increase of energy due to surface tension:
1912: 1632: 4213: 2869: 1604: 164: 28: 4331: 1581: 1286: 1068: 5034: 4733: 4718: 2865:
must vanish well away from the surface (in the "deep water" case, which is the one we consider).
1458: 4713: 5165: 647: • Dash-dotted lines: dispersion relation valid for deep-water capillary waves. 5147: 5095: 5076: 5054: 5026: 4932: 4924: 4816: 1881: 514: 287: 2905: 1855: 1394: 432:
For the boundary between fluid and vacuum (free surface), the dispersion relation reduces to
293: 269: 5139: 5018: 4969: 4703: 4029: 2843: 2734: 1771: 1765: 1735: 1540: 1454: 1341: 974: 836: 810: 341: 125: 4002: 3950: 2823: 1828: 1740: 1520: 1313: 1095: 816: 317: 4835: 3356:{\displaystyle {\frac {\partial \Phi '}{\partial z}}={\frac {\partial \eta }{\partial t}}} 1799: 1364: 1353: 311: 95: 39: 4667: 3366: 3291:{\displaystyle {\frac {\partial \Phi }{\partial z}}={\frac {\partial \eta }{\partial t}}} 2879: 2128: 1852:
due to gravity is the simplest: integrating the potential energy density due to gravity,
5135: 5014: 4728: 4270: 3982: 3653:
Then the contributions to the wave energy, horizontally integrated over one wavelength
3177: 2441: 1808: 1803: 1729: 1575: 1567: 1505:, and high ones (except around the one value at which the two dispersions cancel out.) 1488: 1464: 1447: 1435: 1414: 1374: 1039: 1025: 1021: 792: 366: 91: 83: 62: 5174: 5038: 4953: 4754: 3195: 2434: 1439: 1368: 962: 152: 507: 4363:
is just the expression in the square brackets, so that the dispersion relation is:
1571: 1443: 1017: 859: 133: 21: 645: • Dashed lines: dispersion relation for deep-water gravity waves. 1360:" The derivation of the general dispersion relation is therefore quite involved. 641: • Blue lines (A): phase velocity, Red lines (B): group velocity. 5046: 643: • Drawn lines: dispersion relation for gravity–capillary waves. 114: 5143: 5022: 4658:
As usual for linear wave motions, the potential and kinetic energy are equal (
3092: 388: 384: 168: 110: 47: 5030: 4973: 3081:{\displaystyle T\approx {\frac {1}{2}}\iint dx\,dy\;\left_{{\text{at }}z=0}.} 113:
of capillary waves on water is typically less than a few centimeters, with a
632:{\displaystyle \scriptstyle {\frac {1}{\lambda }}{\sqrt {\sigma /(\rho g)}}} 172: 148: 144: 5151: 2872:, and assuming the deviations of the surface elevation to be small (so the 1563: 1562:
for the lower and upper domain respectively. The fluid is assumed to be
139:
When generated by light wind in open water, a nautical name for them is
335: 129: 67: 1450:. These are typically also good approximations for common situations. 1578:, and the velocity in the lower and upper layer can be obtained from 256:{\displaystyle \omega ^{2}={\frac {\sigma }{\rho +\rho '}}\,|k|^{3},} 102: 56: 5001:(1963). "The generation of capillary waves by steep gravity waves". 4957: 2820:
These equations can be solved with the proper boundary conditions:
155:) may result from coalescence of smaller wind-caused ripple-waves. 1280: 506: 61: 46: 38: 5111:
Statistical thermodynamics of surfaces, interfaces, and membranes
3164:{\displaystyle \eta =a\,\cos \,(kx-\omega t)=a\,\cos \,\theta ,} 3091:
To find the dispersion relation, it is sufficient to consider a
1363:
There are three contributions to the energy, due to gravity, to
124:
which are influenced by both the effects of surface tension and
79: 4505:
As a result, the average wave energy per unit horizontal area,
1276: 492:{\displaystyle \omega ^{2}={\frac {\sigma }{\rho }}\,|k|^{3}.} 4267:, so that variation with respect to the only free parameter, 3393:
To tackle the problem of finding the potentials, one may try
4815:. Cambridge University Press. Section 3.1 and Exercise 3.3. 16:
Wave on the surface of a fluid, dominated by surface tension
1909:) from a reference height to the position of the surface, 1438:
of the fluids. It is the most complicated and calls for a
5118:
Tufillaro, N. B.; Ramshankar, R.; Gollub, J. P. (1989).
4648:{\displaystyle {\bar {E}}={\frac {1}{2}}\,\left\,a^{2}.} 120:
A longer wavelength on a fluid interface will result in
20:"Rippled waves" redirects here. Not to be confused with 4854:
See e.g. Safran (1994) for a more detailed description.
2876:–integrations may be approximated by integrating up to 1507: 593: 549: 4670: 4554: 4511: 4372: 4334: 4293: 4273: 4222: 4065: 4032: 4005: 3985: 3953: 3944:
The dispersion relation can now be obtained from the
3707: 3659: 3406: 3369: 3304: 3244: 3203: 3180: 3108: 2937: 2908: 2882: 2846: 2826: 2782: 2746: 2687: 2640: 2453: 2163: 2131: 1965: 1915: 1884: 1858: 1831: 1811: 1774: 1743: 1682: 1635: 1607: 1584: 1543: 1523: 1491: 1467: 1417: 1397: 1377: 1316: 1289: 1128: 1098: 1071: 1042: 985: 905: 868: 839: 819: 795: 661: 592: 548: 517: 441: 397: 369: 344: 320: 296: 272: 192: 2624:{\displaystyle T={\frac {1}{2}}\iint dx\,dy\;\left.} 1734:
Three contributions to the energy are involved: the
579:{\displaystyle \scriptstyle {\sqrt{g\sigma /\rho }}} 4768:
Light breeze ripples in the surface water of a lake
4202:{\displaystyle L={\frac {1}{4}}\lefta^{2}\lambda .} 1453:The resulting equation for the potential (which is 4682: 4647: 4537: 4491: 4355: 4320: 4279: 4259: 4201: 4048: 4018: 3991: 3971: 3933: 3682: 3642: 3381: 3355: 3290: 3227: 3186: 3163: 3080: 2920: 2894: 2857: 2832: 2809: 2768: 2725: 2673: 2623: 2422: 2143: 2114: 1948: 1901: 1870: 1844: 1817: 1790: 1756: 1720: 1668: 1621: 1593: 1554: 1529: 1497: 1473: 1423: 1403: 1383: 1329: 1302: 1264: 1111: 1084: 1048: 1008: 953: 891: 850: 825: 801: 778: 631: 578: 534: 491: 424: 375: 355: 326: 302: 278: 255: 4212:For sinusoidal waves and linear wave theory, the 1344:which corresponds to the minimal group velocity. 5120:"Order-disorder transition in capillary ripples" 1485:regimes to be dispersive, both at low values of 1310:is found to be 1.7 cm (0.67 in), and 1016:), only the first term is relevant and one has 183:The dispersion relation for capillary waves is 70:impacts on the interface between water and air. 4962:Proceedings of the London Mathematical Society 4813:Fluid Mechanics, a short course for physicists 2433:where the first equality is the area in this ( 3999:the sum of the potential energies by gravity 954:{\displaystyle (\rho -\rho ')/(\rho +\rho ')} 586:as a function of inverse relative wavelength 8: 5075:(2nd ed.). Cambridge University Press. 5053:(6th ed.). Cambridge University Press. 4799:Dingemans (1997), Section 2.1.1, p. 45. 425:{\displaystyle \lambda ={\frac {2\pi }{k}}.} 2125:assuming the mean interface position is at 5092:Water wave propagation over uneven bottoms 4919: 4917: 3095:wave on the interface, propagating in the 3009: 3005: 2970: 2573: 2516: 2486: 2333: 2201: 2098: 2019: 1997: 4889: 4887: 4877: 4875: 4873: 4871: 4869: 4801:Phillips (1977), Section 3.2, p. 37. 4669: 4636: 4631: 4620: 4606: 4580: 4570: 4556: 4555: 4553: 4527: 4510: 4475: 4470: 4447: 4440: 4404: 4394: 4386: 4377: 4371: 4333: 4292: 4272: 4251: 4221: 4187: 4172: 4128: 4120: 4113: 4107: 4072: 4064: 4037: 4031: 4010: 4004: 3984: 3952: 3915: 3903: 3895: 3888: 3882: 3852: 3826: 3816: 3799: 3786: 3766: 3729: 3716: 3708: 3706: 3694:–direction, and over a unit width in the 3672: 3658: 3629: 3625: 3618: 3608: 3600: 3596: 3591: 3582: 3574: 3568: 3512: 3508: 3501: 3491: 3483: 3479: 3474: 3465: 3457: 3451: 3407: 3405: 3368: 3333: 3305: 3303: 3268: 3245: 3243: 3202: 3179: 3154: 3150: 3122: 3118: 3107: 3059: 3058: 3028: 3027: 3018: 2985: 2984: 2980: 2963: 2944: 2936: 2928:), the kinetic energy can be written as: 2907: 2881: 2845: 2825: 2787: 2781: 2751: 2745: 2686: 2639: 2607: 2589: 2582: 2558: 2553: 2540: 2527: 2520: 2504: 2496: 2479: 2460: 2452: 2406: 2382: 2368: 2344: 2326: 2304: 2282: 2258: 2244: 2220: 2207: 2194: 2169: 2168: 2162: 2130: 2103: 2091: 2049: 2007: 2002: 1990: 1971: 1970: 1964: 1914: 1883: 1857: 1836: 1830: 1810: 1779: 1773: 1748: 1742: 1681: 1634: 1606: 1583: 1542: 1522: 1490: 1466: 1416: 1396: 1376: 1321: 1315: 1294: 1288: 1209: 1202: 1193: 1183: 1148: 1133: 1127: 1103: 1097: 1076: 1070: 1041: 998: 984: 926: 904: 867: 838: 818: 794: 762: 735: 693: 683: 675: 666: 660: 609: 604: 594: 591: 568: 559: 550: 547: 516: 480: 475: 466: 465: 455: 446: 440: 404: 396: 368: 343: 319: 295: 271: 244: 239: 230: 229: 206: 197: 191: 3397:, when both fields can be expressed as: 4985:, MacMillan, 2nd revised edition, 1894. 4845:Addison-Wesley. Volume I, Chapter 51-4. 4778: 4743: 542:). Phase and group velocity divided by 4838:, R.B. Leighton, and M. Sands (1963). 4786: 4784: 4782: 1481:outside the parenthesis, which causes 363:the density of the lighter fluid and 7: 2810:{\displaystyle \nabla ^{2}\Phi '=0.} 1434:The third contribution involves the 4260:{\displaystyle L=D(\omega ,k)a^{2}} 3228:{\displaystyle \theta =kx-\omega t} 2440:The last contribution involves the 1337:is 0.23 m/s (0.75 ft/s). 167:describes the relationship between 117:in excess of 0.2–0.3 meter/second. 5166:Capillary waves entry at sklogwiki 3524: 3411: 3344: 3336: 3321: 3312: 3308: 3279: 3271: 3256: 3251: 3248: 3044: 3035: 3031: 3020: 2996: 2991: 2988: 2981: 2794: 2784: 2769:{\displaystyle \nabla ^{2}\Phi =0} 2757: 2748: 2595: 2590: 2562: 2532: 2528: 2500: 2393: 2385: 2355: 2347: 2269: 2261: 2231: 2223: 2173: 2170: 1972: 1608: 1585: 1020:. In this limit, the waves have a 43:Capillary waves (ripples) in water 14: 4287:, gives the dispersion relation 892:{\displaystyle (\rho >\rho ')} 4790:Lamb (1994), §267, page 458–460. 4761: 4746: 3683:{\displaystyle \lambda =2\pi /k} 1570:, and the flow is assumed to be 1009:{\displaystyle k=2\pi /\lambda } 136:have a still longer wavelength. 94:are dominated by the effects of 27:For ripples in electricity, see 5073:The dynamics of the upper ocean 4841:The Feynman Lectures on Physics 2726:{\displaystyle \phi '(x,y,z,t)} 1721:{\displaystyle \phi '(x,y,z,t)} 1188: 1182: 105:, and are often referred to as 4603: 4586: 4561: 4538:{\displaystyle (T+V)/\lambda } 4524: 4512: 4395: 4387: 4350: 4338: 4321:{\displaystyle D(\omega ,k)=0} 4309: 4297: 4244: 4232: 4156: 4139: 4129: 4121: 4104: 4087: 3904: 3896: 3879: 3862: 3756: 3739: 3609: 3601: 3583: 3575: 3555: 3531: 3492: 3484: 3466: 3458: 3438: 3414: 3141: 3123: 2720: 2696: 2674:{\displaystyle \phi (x,y,z,t)} 2668: 2644: 2076: 2059: 2037: 2020: 1949:{\displaystyle z=\eta (x,y,t)} 1943: 1925: 1715: 1691: 1669:{\displaystyle \phi (x,y,z,t)} 1663: 1639: 1228: 1211: 1172: 1155: 948: 931: 923: 906: 886: 869: 684: 676: 623: 614: 476: 467: 240: 231: 101:Capillary waves are common in 1: 1622:{\displaystyle \nabla \phi '} 979:For large wavelengths (small 4954:Lord Rayleigh (J. W. Strutt) 4753:Ripples on water created by 4356:{\displaystyle D(\omega ,k)} 1594:{\displaystyle \nabla \phi } 1303:{\displaystyle \lambda _{m}} 1085:{\displaystyle \lambda _{m}} 66:Capillary waves produced by 5191:Oceanographical terminology 4863:Lamb (1994), §174 and §230. 809:is the acceleration due to 5207: 5144:10.1103/PhysRevLett.62.422 5003:Journal of Fluid Mechanics 4978:Reprinted as Appendix in: 4929:Linear and nonlinear waves 972: 18: 5090:Dingemans, M. W. (1997). 5023:10.1017/S0022112063000641 4214:phase–averaged Lagrangian 961:in the first term is the 4709:Dispersion (water waves) 1902:{\displaystyle \rho 'gz} 535:{\displaystyle \rho '=0} 5124:Physical Review Letters 5109:Safran, Samuel (1994). 3395:separation of variables 2921:{\displaystyle z=\eta } 1871:{\displaystyle \rho gz} 1768:, the potential energy 1404:{\displaystyle \sigma } 503:Gravity–capillary waves 338:of the heavier fluid, 303:{\displaystyle \sigma } 279:{\displaystyle \omega } 179:Capillary waves, proper 122:gravity–capillary waves 33:Ripple (disambiguation) 4999:Longuet-Higgins, M. S. 4974:10.1112/plms/s1-9.1.21 4958:"On progressive waves" 4931:. Wiley-Interscience. 4811:Falkovich, G. (2011). 4724:Thermal capillary wave 4684: 4649: 4539: 4493: 4357: 4322: 4281: 4261: 4216:is always of the form 4203: 4050: 4049:{\displaystyle V_{st}} 4020: 3993: 3973: 3935: 3684: 3644: 3383: 3357: 3292: 3229: 3188: 3165: 3082: 2922: 2896: 2859: 2858:{\displaystyle \phi '} 2834: 2811: 2770: 2727: 2675: 2625: 2424: 2145: 2116: 1950: 1903: 1872: 1846: 1825:of the flow. The part 1819: 1792: 1791:{\displaystyle V_{st}} 1758: 1722: 1670: 1623: 1595: 1556: 1555:{\displaystyle \rho '} 1531: 1499: 1475: 1425: 1405: 1385: 1331: 1304: 1266: 1113: 1086: 1060:Phase velocity minimum 1050: 1010: 955: 893: 852: 851:{\displaystyle \rho '} 827: 803: 780: 648: 633: 580: 536: 493: 426: 377: 357: 356:{\displaystyle \rho '} 328: 304: 280: 257: 128:, as well as by fluid 71: 59: 51:Ripples on Lifjord in 44: 31:. For other uses, see 4685: 4650: 4540: 4494: 4358: 4323: 4282: 4262: 4204: 4051: 4021: 4019:{\displaystyle V_{g}} 3994: 3974: 3972:{\displaystyle L=T-V} 3936: 3685: 3645: 3384: 3358: 3293: 3230: 3189: 3166: 3083: 2923: 2897: 2860: 2835: 2833:{\displaystyle \phi } 2812: 2771: 2728: 2676: 2626: 2425: 2146: 2117: 1951: 1904: 1873: 1847: 1845:{\displaystyle V_{g}} 1820: 1793: 1759: 1757:{\displaystyle V_{g}} 1723: 1671: 1629:, respectively. Here 1624: 1596: 1574:. Then the flows are 1557: 1532: 1530:{\displaystyle \rho } 1500: 1476: 1426: 1406: 1386: 1332: 1330:{\displaystyle c_{m}} 1305: 1267: 1114: 1112:{\displaystyle c_{m}} 1087: 1051: 1032:Capillary wave regime 1011: 973:Further information: 956: 894: 853: 828: 826:{\displaystyle \rho } 804: 781: 634: 581: 537: 510: 494: 427: 378: 358: 329: 327:{\displaystyle \rho } 305: 281: 258: 65: 50: 42: 4668: 4552: 4509: 4370: 4332: 4291: 4271: 4220: 4063: 4030: 4026:and surface tension 4003: 3983: 3951: 3705: 3698:–direction, become: 3657: 3404: 3367: 3302: 3242: 3201: 3178: 3106: 2935: 2906: 2880: 2844: 2824: 2780: 2744: 2685: 2638: 2451: 2161: 2129: 1963: 1913: 1882: 1856: 1829: 1809: 1772: 1741: 1680: 1633: 1605: 1582: 1541: 1521: 1489: 1465: 1415: 1395: 1375: 1314: 1287: 1126: 1096: 1069: 1040: 983: 903: 866: 837: 817: 793: 659: 590: 546: 515: 439: 395: 367: 342: 318: 294: 270: 190: 82:traveling along the 5136:1989PhRvL..62..422T 5015:1963JFM....16..138L 4683:{\displaystyle T=V} 4502:the same as above. 3382:{\displaystyle z=0} 2895:{\displaystyle z=0} 2566: 2509: 2144:{\displaystyle z=0} 2012: 1730:velocity potentials 1459:Ocean surface waves 1446:– the flow is then 969:Gravity wave regime 165:dispersion relation 159:Dispersion relation 145:ocean surface waves 53:Øksnes Municipality 29:Ripple (electrical) 4911:Lamb (1994), §230. 4881:Lamb (1994), §266. 4734:Wave-formed ripple 4719:Ocean surface wave 4680: 4645: 4535: 4489: 4353: 4318: 4277: 4257: 4199: 4046: 4016: 3989: 3969: 3931: 3929: 3680: 3640: 3638: 3379: 3353: 3298:  and   3288: 3225: 3184: 3161: 3078: 2918: 2892: 2855: 2830: 2807: 2776:  and   2766: 2723: 2671: 2621: 2549: 2492: 2420: 2141: 2112: 1998: 1946: 1899: 1868: 1842: 1815: 1788: 1754: 1718: 1666: 1619: 1591: 1552: 1527: 1495: 1471: 1421: 1401: 1381: 1327: 1300: 1262: 1109: 1082: 1046: 1006: 951: 889: 862:of the two fluids 848: 823: 799: 776: 649: 629: 628: 576: 575: 532: 489: 422: 373: 353: 324: 300: 276: 253: 86:of a fluid, whose 72: 60: 45: 5113:. Addison-Wesley. 5060:978-0-521-45868-9 4943:See section 11.7. 4893:Lamb (1994), §61. 4822:978-1-107-00575-4 4695: 4694: 4578: 4564: 4468: 4438: 4280:{\displaystyle a} 4134: 4080: 3992:{\displaystyle V} 3909: 3860: 3807: 3789: 3737: 3719: 3594: 3588: 3477: 3471: 3351: 3328: 3286: 3263: 3187:{\displaystyle a} 3062: 3051: 3003: 2952: 2733:must satisfy the 2468: 2400: 2362: 2312: 2288: 2276: 2238: 2057: 1818:{\displaystyle T} 1498:{\displaystyle k} 1474:{\displaystyle k} 1424:{\displaystyle g} 1384:{\displaystyle g} 1257: 1256: 1237: 1186: 1180: 1179: 1049:{\displaystyle k} 802:{\displaystyle g} 756: 727: 626: 602: 573: 463: 417: 376:{\displaystyle k} 288:angular frequency 227: 5198: 5155: 5114: 5105: 5086: 5064: 5042: 4986: 4977: 4950: 4944: 4942: 4921: 4912: 4909: 4903: 4902:Lamb (1994), §20 4900: 4894: 4891: 4882: 4879: 4864: 4861: 4855: 4852: 4846: 4833: 4827: 4826: 4808: 4802: 4797: 4791: 4788: 4765: 4750: 4704:Capillary action 4689: 4687: 4686: 4681: 4654: 4652: 4651: 4646: 4641: 4640: 4630: 4626: 4625: 4624: 4602: 4579: 4571: 4566: 4565: 4557: 4544: 4542: 4541: 4536: 4531: 4498: 4496: 4495: 4490: 4485: 4481: 4480: 4479: 4469: 4467: 4466: 4448: 4439: 4437: 4436: 4421: 4420: 4405: 4398: 4390: 4382: 4381: 4362: 4360: 4359: 4354: 4327: 4325: 4324: 4319: 4286: 4284: 4283: 4278: 4266: 4264: 4263: 4258: 4256: 4255: 4208: 4206: 4205: 4200: 4192: 4191: 4182: 4178: 4177: 4176: 4155: 4135: 4133: 4132: 4124: 4118: 4117: 4108: 4103: 4081: 4073: 4055: 4053: 4052: 4047: 4045: 4044: 4025: 4023: 4022: 4017: 4015: 4014: 3998: 3996: 3995: 3990: 3978: 3976: 3975: 3970: 3940: 3938: 3937: 3932: 3930: 3920: 3919: 3910: 3908: 3907: 3899: 3893: 3892: 3883: 3878: 3861: 3853: 3831: 3830: 3821: 3820: 3808: 3800: 3791: 3790: 3787: 3771: 3770: 3755: 3738: 3730: 3721: 3720: 3717: 3689: 3687: 3686: 3681: 3676: 3649: 3647: 3646: 3641: 3639: 3617: 3616: 3612: 3604: 3595: 3592: 3589: 3587: 3586: 3578: 3569: 3530: 3500: 3499: 3495: 3487: 3478: 3475: 3472: 3470: 3469: 3461: 3452: 3388: 3386: 3385: 3380: 3362: 3360: 3359: 3354: 3352: 3350: 3342: 3334: 3329: 3327: 3319: 3318: 3306: 3297: 3295: 3294: 3289: 3287: 3285: 3277: 3269: 3264: 3262: 3254: 3246: 3234: 3232: 3231: 3226: 3193: 3191: 3190: 3185: 3170: 3168: 3167: 3162: 3087: 3085: 3084: 3079: 3074: 3073: 3063: 3060: 3057: 3053: 3052: 3050: 3042: 3041: 3029: 3026: 3017: 3004: 3002: 2994: 2986: 2953: 2945: 2927: 2925: 2924: 2919: 2901: 2899: 2898: 2893: 2870:Green's identity 2864: 2862: 2861: 2856: 2854: 2839: 2837: 2836: 2831: 2816: 2814: 2813: 2808: 2800: 2792: 2791: 2775: 2773: 2772: 2767: 2756: 2755: 2735:Laplace equation 2732: 2730: 2729: 2724: 2695: 2680: 2678: 2677: 2672: 2630: 2628: 2627: 2622: 2617: 2613: 2612: 2611: 2606: 2602: 2601: 2593: 2581: 2565: 2557: 2545: 2544: 2539: 2535: 2531: 2508: 2503: 2469: 2461: 2429: 2427: 2426: 2421: 2416: 2412: 2411: 2410: 2405: 2401: 2399: 2391: 2383: 2373: 2372: 2367: 2363: 2361: 2353: 2345: 2313: 2305: 2300: 2296: 2289: 2287: 2286: 2281: 2277: 2275: 2267: 2259: 2249: 2248: 2243: 2239: 2237: 2229: 2221: 2208: 2178: 2177: 2176: 2150: 2148: 2147: 2142: 2121: 2119: 2118: 2113: 2108: 2107: 2075: 2058: 2050: 2036: 2011: 2006: 1977: 1976: 1975: 1955: 1953: 1952: 1947: 1908: 1906: 1905: 1900: 1892: 1877: 1875: 1874: 1869: 1851: 1849: 1848: 1843: 1841: 1840: 1824: 1822: 1821: 1816: 1797: 1795: 1794: 1789: 1787: 1786: 1763: 1761: 1760: 1755: 1753: 1752: 1736:potential energy 1727: 1725: 1724: 1719: 1690: 1675: 1673: 1672: 1667: 1628: 1626: 1625: 1620: 1618: 1600: 1598: 1597: 1592: 1561: 1559: 1558: 1553: 1551: 1536: 1534: 1533: 1528: 1508: 1504: 1502: 1501: 1496: 1480: 1478: 1477: 1472: 1455:Laplace equation 1436:kinetic energies 1430: 1428: 1427: 1422: 1410: 1408: 1407: 1402: 1390: 1388: 1387: 1382: 1336: 1334: 1333: 1328: 1326: 1325: 1309: 1307: 1306: 1301: 1299: 1298: 1271: 1269: 1268: 1263: 1258: 1255: 1254: 1239: 1238: 1227: 1210: 1204: 1203: 1198: 1197: 1187: 1184: 1181: 1178: 1171: 1150: 1149: 1138: 1137: 1118: 1116: 1115: 1110: 1108: 1107: 1091: 1089: 1088: 1083: 1081: 1080: 1055: 1053: 1052: 1047: 1015: 1013: 1012: 1007: 1002: 975:Airy wave theory 960: 958: 957: 952: 947: 930: 922: 898: 896: 895: 890: 885: 857: 855: 854: 849: 847: 832: 830: 829: 824: 808: 806: 805: 800: 785: 783: 782: 777: 772: 768: 767: 766: 757: 755: 754: 736: 728: 726: 725: 710: 709: 694: 687: 679: 671: 670: 638: 636: 635: 630: 627: 613: 605: 603: 595: 585: 583: 582: 577: 574: 572: 567: 563: 551: 541: 539: 538: 533: 525: 498: 496: 495: 490: 485: 484: 479: 470: 464: 456: 451: 450: 431: 429: 428: 423: 418: 413: 405: 382: 380: 379: 374: 362: 360: 359: 354: 352: 333: 331: 330: 325: 309: 307: 306: 301: 285: 283: 282: 277: 262: 260: 259: 254: 249: 248: 243: 234: 228: 226: 225: 207: 202: 201: 36: 25: 5206: 5205: 5201: 5200: 5199: 5197: 5196: 5195: 5171: 5170: 5162: 5117: 5108: 5102: 5089: 5083: 5069:Phillips, O. M. 5067: 5061: 5045: 4997: 4994: 4989: 4980:Theory of Sound 4952: 4951: 4947: 4939: 4923: 4922: 4915: 4910: 4906: 4901: 4897: 4892: 4885: 4880: 4867: 4862: 4858: 4853: 4849: 4834: 4830: 4823: 4810: 4809: 4805: 4800: 4798: 4794: 4789: 4780: 4776: 4769: 4766: 4757: 4751: 4742: 4700: 4666: 4665: 4632: 4616: 4595: 4585: 4581: 4550: 4549: 4507: 4506: 4471: 4459: 4452: 4429: 4422: 4413: 4406: 4403: 4399: 4373: 4368: 4367: 4330: 4329: 4289: 4288: 4269: 4268: 4247: 4218: 4217: 4183: 4168: 4148: 4119: 4109: 4096: 4086: 4082: 4061: 4060: 4033: 4028: 4027: 4006: 4001: 4000: 3981: 3980: 3949: 3948: 3928: 3927: 3911: 3894: 3884: 3871: 3845: 3839: 3838: 3822: 3812: 3792: 3782: 3779: 3778: 3762: 3748: 3722: 3712: 3703: 3702: 3655: 3654: 3637: 3636: 3590: 3573: 3558: 3523: 3520: 3519: 3473: 3456: 3441: 3402: 3401: 3365: 3364: 3343: 3335: 3320: 3311: 3307: 3300: 3299: 3278: 3270: 3255: 3247: 3240: 3239: 3199: 3198: 3176: 3175: 3174:with amplitude 3104: 3103: 3043: 3034: 3030: 3019: 3010: 2995: 2987: 2976: 2972: 2971: 2933: 2932: 2904: 2903: 2878: 2877: 2847: 2842: 2841: 2822: 2821: 2793: 2783: 2778: 2777: 2747: 2742: 2741: 2688: 2683: 2682: 2636: 2635: 2594: 2588: 2584: 2583: 2574: 2526: 2522: 2521: 2491: 2487: 2449: 2448: 2392: 2384: 2378: 2377: 2354: 2346: 2340: 2339: 2338: 2334: 2268: 2260: 2254: 2253: 2230: 2222: 2216: 2215: 2206: 2202: 2164: 2159: 2158: 2127: 2126: 2099: 2068: 2029: 1966: 1961: 1960: 1911: 1910: 1885: 1880: 1879: 1854: 1853: 1832: 1827: 1826: 1807: 1806: 1800:surface tension 1775: 1770: 1769: 1744: 1739: 1738: 1683: 1678: 1677: 1631: 1630: 1611: 1603: 1602: 1580: 1579: 1544: 1539: 1538: 1519: 1518: 1487: 1486: 1463: 1462: 1413: 1412: 1393: 1392: 1373: 1372: 1365:surface tension 1354:Richard Feynman 1350: 1317: 1312: 1311: 1290: 1285: 1284: 1247: 1240: 1220: 1205: 1189: 1164: 1154: 1129: 1124: 1123: 1099: 1094: 1093: 1072: 1067: 1066: 1062: 1038: 1037: 1036:Shorter (large 1034: 981: 980: 977: 971: 940: 915: 901: 900: 878: 864: 863: 840: 835: 834: 815: 814: 791: 790: 758: 747: 740: 718: 711: 702: 695: 692: 688: 662: 657: 656: 646: 644: 642: 640: 588: 587: 552: 544: 543: 518: 513: 512: 505: 474: 442: 437: 436: 406: 393: 392: 365: 364: 345: 340: 339: 316: 315: 312:surface tension 292: 291: 268: 267: 238: 218: 211: 193: 188: 187: 181: 161: 96:surface tension 37: 26: 19: 17: 12: 11: 5: 5204: 5202: 5194: 5193: 5188: 5183: 5181:Fluid dynamics 5173: 5172: 5169: 5168: 5161: 5160:External links 5158: 5157: 5156: 5130:(4): 422–425. 5115: 5106: 5100: 5087: 5081: 5065: 5059: 5043: 5009:(1): 138–159. 4993: 4990: 4988: 4987: 4945: 4937: 4925:Whitham, G. B. 4913: 4904: 4895: 4883: 4865: 4856: 4847: 4828: 4821: 4803: 4792: 4777: 4775: 4772: 4771: 4770: 4767: 4760: 4758: 4755:water striders 4752: 4745: 4741: 4738: 4737: 4736: 4731: 4729:Two-phase flow 4726: 4721: 4716: 4711: 4706: 4699: 4696: 4693: 4692: 4679: 4676: 4673: 4656: 4655: 4644: 4639: 4635: 4629: 4623: 4619: 4615: 4612: 4609: 4605: 4601: 4598: 4594: 4591: 4588: 4584: 4577: 4574: 4569: 4563: 4560: 4534: 4530: 4526: 4523: 4520: 4517: 4514: 4500: 4499: 4488: 4484: 4478: 4474: 4465: 4462: 4458: 4455: 4451: 4446: 4443: 4435: 4432: 4428: 4425: 4419: 4416: 4412: 4409: 4402: 4397: 4393: 4389: 4385: 4380: 4376: 4352: 4349: 4346: 4343: 4340: 4337: 4328:. In our case 4317: 4314: 4311: 4308: 4305: 4302: 4299: 4296: 4276: 4254: 4250: 4246: 4243: 4240: 4237: 4234: 4231: 4228: 4225: 4210: 4209: 4198: 4195: 4190: 4186: 4181: 4175: 4171: 4167: 4164: 4161: 4158: 4154: 4151: 4147: 4144: 4141: 4138: 4131: 4127: 4123: 4116: 4112: 4106: 4102: 4099: 4095: 4092: 4089: 4085: 4079: 4076: 4071: 4068: 4043: 4040: 4036: 4013: 4009: 3988: 3968: 3965: 3962: 3959: 3956: 3942: 3941: 3926: 3923: 3918: 3914: 3906: 3902: 3898: 3891: 3887: 3881: 3877: 3874: 3870: 3867: 3864: 3859: 3856: 3851: 3848: 3846: 3844: 3841: 3840: 3837: 3834: 3829: 3825: 3819: 3815: 3811: 3806: 3803: 3798: 3795: 3793: 3785: 3781: 3780: 3777: 3774: 3769: 3765: 3761: 3758: 3754: 3751: 3747: 3744: 3741: 3736: 3733: 3728: 3725: 3723: 3715: 3711: 3710: 3679: 3675: 3671: 3668: 3665: 3662: 3651: 3650: 3635: 3632: 3628: 3624: 3621: 3615: 3611: 3607: 3603: 3599: 3585: 3581: 3577: 3572: 3567: 3564: 3561: 3559: 3557: 3554: 3551: 3548: 3545: 3542: 3539: 3536: 3533: 3529: 3526: 3522: 3521: 3518: 3515: 3511: 3507: 3504: 3498: 3494: 3490: 3486: 3482: 3468: 3464: 3460: 3455: 3450: 3447: 3444: 3442: 3440: 3437: 3434: 3431: 3428: 3425: 3422: 3419: 3416: 3413: 3410: 3409: 3391: 3390: 3378: 3375: 3372: 3349: 3346: 3341: 3338: 3332: 3326: 3323: 3317: 3314: 3310: 3284: 3281: 3276: 3273: 3267: 3261: 3258: 3253: 3250: 3224: 3221: 3218: 3215: 3212: 3209: 3206: 3183: 3172: 3171: 3160: 3157: 3153: 3149: 3146: 3143: 3140: 3137: 3134: 3131: 3128: 3125: 3121: 3117: 3114: 3111: 3089: 3088: 3077: 3072: 3069: 3066: 3056: 3049: 3046: 3040: 3037: 3033: 3025: 3022: 3016: 3013: 3008: 3001: 2998: 2993: 2990: 2983: 2979: 2975: 2969: 2966: 2962: 2959: 2956: 2951: 2948: 2943: 2940: 2917: 2914: 2911: 2891: 2888: 2885: 2853: 2850: 2829: 2818: 2817: 2806: 2803: 2799: 2796: 2790: 2786: 2765: 2762: 2759: 2754: 2750: 2722: 2719: 2716: 2713: 2710: 2707: 2704: 2701: 2698: 2694: 2691: 2670: 2667: 2664: 2661: 2658: 2655: 2652: 2649: 2646: 2643: 2632: 2631: 2620: 2616: 2610: 2605: 2600: 2597: 2592: 2587: 2580: 2577: 2572: 2569: 2564: 2561: 2556: 2552: 2548: 2543: 2538: 2534: 2530: 2525: 2519: 2515: 2512: 2507: 2502: 2499: 2495: 2490: 2485: 2482: 2478: 2475: 2472: 2467: 2464: 2459: 2456: 2444:of the fluid: 2442:kinetic energy 2431: 2430: 2419: 2415: 2409: 2404: 2398: 2395: 2390: 2387: 2381: 2376: 2371: 2366: 2360: 2357: 2352: 2349: 2343: 2337: 2332: 2329: 2325: 2322: 2319: 2316: 2311: 2308: 2303: 2299: 2295: 2292: 2285: 2280: 2274: 2271: 2266: 2263: 2257: 2252: 2247: 2242: 2236: 2233: 2228: 2225: 2219: 2214: 2211: 2205: 2200: 2197: 2193: 2190: 2187: 2184: 2181: 2175: 2172: 2167: 2140: 2137: 2134: 2123: 2122: 2111: 2106: 2102: 2097: 2094: 2090: 2087: 2084: 2081: 2078: 2074: 2071: 2067: 2064: 2061: 2056: 2053: 2048: 2045: 2042: 2039: 2035: 2032: 2028: 2025: 2022: 2018: 2015: 2010: 2005: 2001: 1996: 1993: 1989: 1986: 1983: 1980: 1974: 1969: 1945: 1942: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1918: 1898: 1895: 1891: 1888: 1867: 1864: 1861: 1839: 1835: 1814: 1804:kinetic energy 1785: 1782: 1778: 1751: 1747: 1717: 1714: 1711: 1708: 1705: 1702: 1699: 1696: 1693: 1689: 1686: 1665: 1662: 1659: 1656: 1653: 1650: 1647: 1644: 1641: 1638: 1617: 1614: 1610: 1590: 1587: 1568:incompressible 1550: 1547: 1526: 1513: 1512: 1494: 1470: 1420: 1400: 1380: 1349: 1346: 1324: 1320: 1297: 1293: 1273: 1272: 1261: 1253: 1250: 1246: 1243: 1236: 1233: 1230: 1226: 1223: 1219: 1216: 1213: 1208: 1201: 1196: 1192: 1177: 1174: 1170: 1167: 1163: 1160: 1157: 1153: 1147: 1144: 1141: 1136: 1132: 1106: 1102: 1079: 1075: 1061: 1058: 1045: 1033: 1030: 1026:phase velocity 1022:group velocity 1005: 1001: 997: 994: 991: 988: 970: 967: 950: 946: 943: 939: 936: 933: 929: 925: 921: 918: 914: 911: 908: 888: 884: 881: 877: 874: 871: 846: 843: 822: 798: 787: 786: 775: 771: 765: 761: 753: 750: 746: 743: 739: 734: 731: 724: 721: 717: 714: 708: 705: 701: 698: 691: 686: 682: 678: 674: 669: 665: 625: 622: 619: 616: 612: 608: 601: 598: 571: 566: 562: 558: 555: 531: 528: 524: 521: 504: 501: 500: 499: 488: 483: 478: 473: 469: 462: 459: 454: 449: 445: 421: 416: 412: 409: 403: 400: 372: 351: 348: 323: 299: 275: 264: 263: 252: 247: 242: 237: 233: 224: 221: 217: 214: 210: 205: 200: 196: 180: 177: 160: 157: 92:phase velocity 84:phase boundary 76:capillary wave 15: 13: 10: 9: 6: 4: 3: 2: 5203: 5192: 5189: 5187: 5184: 5182: 5179: 5178: 5176: 5167: 5164: 5163: 5159: 5153: 5149: 5145: 5141: 5137: 5133: 5129: 5125: 5121: 5116: 5112: 5107: 5103: 5101:981-02-0427-2 5097: 5093: 5088: 5084: 5082:0-521-29801-6 5078: 5074: 5070: 5066: 5062: 5056: 5052: 5051:Hydrodynamics 5048: 5044: 5040: 5036: 5032: 5028: 5024: 5020: 5016: 5012: 5008: 5004: 5000: 4996: 4995: 4991: 4984: 4981: 4975: 4971: 4967: 4963: 4959: 4955: 4949: 4946: 4940: 4938:0-471-94090-9 4934: 4930: 4926: 4920: 4918: 4914: 4908: 4905: 4899: 4896: 4890: 4888: 4884: 4878: 4876: 4874: 4872: 4870: 4866: 4860: 4857: 4851: 4848: 4844: 4842: 4837: 4832: 4829: 4824: 4818: 4814: 4807: 4804: 4796: 4793: 4787: 4785: 4783: 4779: 4773: 4764: 4759: 4756: 4749: 4744: 4739: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4701: 4697: 4691: 4677: 4674: 4671: 4663: 4662: 4661:equipartition 4642: 4637: 4633: 4627: 4621: 4617: 4613: 4610: 4607: 4599: 4596: 4592: 4589: 4582: 4575: 4572: 4567: 4558: 4548: 4547: 4546: 4532: 4528: 4521: 4518: 4515: 4503: 4486: 4482: 4476: 4472: 4463: 4460: 4456: 4453: 4449: 4444: 4441: 4433: 4430: 4426: 4423: 4417: 4414: 4410: 4407: 4400: 4391: 4383: 4378: 4374: 4366: 4365: 4364: 4347: 4344: 4341: 4335: 4315: 4312: 4306: 4303: 4300: 4294: 4274: 4252: 4248: 4241: 4238: 4235: 4229: 4226: 4223: 4215: 4196: 4193: 4188: 4184: 4179: 4173: 4169: 4165: 4162: 4159: 4152: 4149: 4145: 4142: 4136: 4125: 4114: 4110: 4100: 4097: 4093: 4090: 4083: 4077: 4074: 4069: 4066: 4059: 4058: 4057: 4041: 4038: 4034: 4011: 4007: 3986: 3966: 3963: 3960: 3957: 3954: 3947: 3924: 3921: 3916: 3912: 3900: 3889: 3885: 3875: 3872: 3868: 3865: 3857: 3854: 3849: 3847: 3842: 3835: 3832: 3827: 3823: 3817: 3813: 3809: 3804: 3801: 3796: 3794: 3783: 3775: 3772: 3767: 3763: 3759: 3752: 3749: 3745: 3742: 3734: 3731: 3726: 3724: 3713: 3701: 3700: 3699: 3697: 3693: 3677: 3673: 3669: 3666: 3663: 3660: 3633: 3630: 3626: 3622: 3619: 3613: 3605: 3597: 3579: 3570: 3565: 3562: 3560: 3552: 3549: 3546: 3543: 3540: 3537: 3534: 3527: 3516: 3513: 3509: 3505: 3502: 3496: 3488: 3480: 3462: 3453: 3448: 3445: 3443: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3400: 3399: 3398: 3396: 3376: 3373: 3370: 3347: 3339: 3330: 3324: 3315: 3282: 3274: 3265: 3259: 3238: 3237: 3236: 3222: 3219: 3216: 3213: 3210: 3207: 3204: 3197: 3181: 3158: 3155: 3151: 3147: 3144: 3138: 3135: 3132: 3129: 3126: 3119: 3115: 3112: 3109: 3102: 3101: 3100: 3098: 3094: 3075: 3070: 3067: 3064: 3054: 3047: 3038: 3023: 3014: 3011: 3006: 2999: 2977: 2973: 2967: 2964: 2960: 2957: 2954: 2949: 2946: 2941: 2938: 2931: 2930: 2929: 2915: 2912: 2909: 2889: 2886: 2883: 2875: 2871: 2866: 2851: 2848: 2827: 2804: 2801: 2797: 2788: 2763: 2760: 2752: 2740: 2739: 2738: 2736: 2717: 2714: 2711: 2708: 2705: 2702: 2699: 2692: 2689: 2665: 2662: 2659: 2656: 2653: 2650: 2647: 2641: 2618: 2614: 2608: 2603: 2598: 2585: 2578: 2575: 2570: 2567: 2559: 2554: 2550: 2546: 2541: 2536: 2523: 2517: 2513: 2510: 2505: 2497: 2493: 2488: 2483: 2480: 2476: 2473: 2470: 2465: 2462: 2457: 2454: 2447: 2446: 2445: 2443: 2438: 2436: 2417: 2413: 2407: 2402: 2396: 2388: 2379: 2374: 2369: 2364: 2358: 2350: 2341: 2335: 2330: 2327: 2323: 2320: 2317: 2314: 2309: 2306: 2301: 2297: 2293: 2290: 2283: 2278: 2272: 2264: 2255: 2250: 2245: 2240: 2234: 2226: 2217: 2212: 2209: 2203: 2198: 2195: 2191: 2188: 2185: 2182: 2179: 2165: 2157: 2156: 2155: 2152: 2138: 2135: 2132: 2109: 2104: 2100: 2095: 2092: 2088: 2085: 2082: 2079: 2072: 2069: 2065: 2062: 2054: 2051: 2046: 2043: 2040: 2033: 2030: 2026: 2023: 2016: 2013: 2008: 2003: 1999: 1994: 1991: 1987: 1984: 1981: 1978: 1967: 1959: 1958: 1957: 1940: 1937: 1934: 1931: 1928: 1922: 1919: 1916: 1896: 1893: 1889: 1886: 1865: 1862: 1859: 1837: 1833: 1812: 1805: 1801: 1783: 1780: 1776: 1767: 1749: 1745: 1737: 1731: 1712: 1709: 1706: 1703: 1700: 1697: 1694: 1687: 1684: 1660: 1657: 1654: 1651: 1648: 1645: 1642: 1636: 1615: 1612: 1588: 1577: 1573: 1569: 1565: 1548: 1545: 1524: 1515: 1514: 1510: 1509: 1506: 1492: 1484: 1468: 1460: 1456: 1451: 1449: 1445: 1441: 1437: 1432: 1418: 1398: 1378: 1370: 1369:hydrodynamics 1366: 1361: 1359: 1355: 1347: 1345: 1343: 1338: 1322: 1318: 1295: 1291: 1282: 1278: 1259: 1251: 1248: 1244: 1241: 1234: 1231: 1224: 1221: 1217: 1214: 1206: 1199: 1194: 1190: 1175: 1168: 1165: 1161: 1158: 1151: 1145: 1142: 1139: 1134: 1130: 1122: 1121: 1120: 1104: 1100: 1077: 1073: 1059: 1057: 1043: 1031: 1029: 1027: 1023: 1019: 1018:gravity waves 1003: 999: 995: 992: 989: 986: 976: 968: 966: 964: 963:Atwood number 944: 941: 937: 934: 927: 919: 916: 912: 909: 899:. The factor 882: 879: 875: 872: 861: 844: 841: 820: 812: 796: 773: 769: 763: 759: 751: 748: 744: 741: 737: 732: 729: 722: 719: 715: 712: 706: 703: 699: 696: 689: 680: 672: 667: 663: 655: 654: 653: 620: 617: 610: 606: 599: 596: 569: 564: 560: 556: 553: 529: 526: 522: 519: 509: 502: 486: 481: 471: 460: 457: 452: 447: 443: 435: 434: 433: 419: 414: 410: 407: 401: 398: 390: 386: 370: 349: 346: 337: 321: 313: 297: 289: 273: 250: 245: 235: 222: 219: 215: 212: 208: 203: 198: 194: 186: 185: 184: 178: 176: 174: 170: 166: 158: 156: 154: 150: 146: 142: 137: 135: 134:gravity waves 131: 127: 123: 118: 116: 112: 108: 104: 99: 97: 93: 89: 85: 81: 77: 69: 64: 58: 54: 49: 41: 34: 30: 23: 5127: 5123: 5110: 5091: 5072: 5050: 5006: 5002: 4982: 4979: 4965: 4961: 4948: 4928: 4907: 4898: 4859: 4850: 4839: 4836:R.P. Feynman 4831: 4812: 4806: 4795: 4659: 4657: 4504: 4501: 4211: 3943: 3695: 3691: 3652: 3392: 3173: 3099:–direction: 3096: 3090: 2873: 2867: 2819: 2633: 2439: 2432: 2153: 2124: 1733: 1572:irrotational 1482: 1452: 1444:irrotational 1440:hydrodynamic 1433: 1362: 1357: 1351: 1339: 1274: 1063: 1035: 978: 860:mass density 788: 650: 265: 182: 162: 140: 138: 121: 119: 106: 100: 75: 73: 22:Rippled wave 5186:Water waves 2902:instead of 1798:due to the 1283:interface, 132:. Ordinary 115:phase speed 5175:Categories 4992:References 4714:Fluid pipe 3946:Lagrangian 3363:  at 3093:sinusoidal 1348:Derivation 389:wavelength 385:wavenumber 169:wavelength 111:wavelength 5039:119740891 5031:1469-7645 4968:: 21–26. 4614:σ 4597:ρ 4593:− 4590:ρ 4562:¯ 4533:λ 4461:ρ 4454:ρ 4450:σ 4431:ρ 4424:ρ 4415:ρ 4411:− 4408:ρ 4375:ω 4342:ω 4301:ω 4236:ω 4194:λ 4166:σ 4163:− 4150:ρ 4146:− 4143:ρ 4137:− 4111:ω 4098:ρ 4091:ρ 3964:− 3922:λ 3886:ω 3873:ρ 3866:ρ 3833:λ 3810:σ 3773:λ 3750:ρ 3746:− 3743:ρ 3670:π 3661:λ 3631:θ 3620:ω 3598:− 3566:− 3525:Φ 3514:θ 3503:ω 3412:Φ 3345:∂ 3340:η 3337:∂ 3322:∂ 3313:Φ 3309:∂ 3280:∂ 3275:η 3272:∂ 3257:∂ 3252:Φ 3249:∂ 3220:ω 3217:− 3205:θ 3194:and wave 3156:θ 3136:ω 3133:− 3110:η 3045:∂ 3036:Φ 3032:∂ 3021:Φ 3012:ρ 3007:− 2997:∂ 2992:Φ 2989:∂ 2982:Φ 2978:ρ 2955:∬ 2942:≈ 2916:η 2849:ϕ 2828:ϕ 2795:Φ 2785:∇ 2758:Φ 2749:∇ 2690:ϕ 2642:ϕ 2596:Φ 2591:∇ 2576:ρ 2563:∞ 2555:η 2551:∫ 2533:Φ 2529:∇ 2518:ρ 2506:η 2501:∞ 2498:− 2494:∫ 2471:∬ 2394:∂ 2389:η 2386:∂ 2356:∂ 2351:η 2348:∂ 2318:∬ 2315:σ 2302:≈ 2291:− 2270:∂ 2265:η 2262:∂ 2232:∂ 2227:η 2224:∂ 2186:∬ 2183:σ 2101:η 2083:∬ 2070:ρ 2066:− 2063:ρ 2031:ρ 2027:− 2024:ρ 2009:η 2000:∫ 1982:∬ 1923:η 1887:ρ 1860:ρ 1685:ϕ 1637:ϕ 1613:ϕ 1609:∇ 1589:ϕ 1586:∇ 1576:potential 1546:ρ 1525:ρ 1448:potential 1399:σ 1367:, and to 1356:put it, " 1292:λ 1249:ρ 1242:ρ 1235:σ 1222:ρ 1218:− 1215:ρ 1166:ρ 1162:− 1159:ρ 1152:σ 1146:π 1131:λ 1074:λ 1024:half the 1004:λ 996:π 942:ρ 935:ρ 917:ρ 913:− 910:ρ 880:ρ 873:ρ 842:ρ 821:ρ 749:ρ 742:ρ 738:σ 720:ρ 713:ρ 704:ρ 700:− 697:ρ 664:ω 618:ρ 607:σ 600:λ 565:ρ 557:σ 520:ρ 461:ρ 458:σ 444:ω 411:π 399:λ 347:ρ 322:ρ 298:σ 274:ω 220:ρ 213:ρ 209:σ 195:ω 173:frequency 141:cat's paw 5152:10040229 5071:(1977). 5049:(1994). 5047:Lamb, H. 4956:(1877). 4927:(1974). 4698:See also 4664:holds): 4600:′ 4464:′ 4434:′ 4418:′ 4153:′ 4101:′ 3876:′ 3753:′ 3528:′ 3316:′ 3061:at  3039:′ 3024:′ 3015:′ 2852:′ 2798:′ 2693:′ 2599:′ 2579:′ 2073:′ 2034:′ 1890:′ 1802:and the 1688:′ 1616:′ 1564:inviscid 1549:′ 1275:For the 1252:′ 1225:′ 1169:′ 945:′ 920:′ 883:′ 858:are the 845:′ 752:′ 723:′ 707:′ 523:′ 350:′ 223:′ 88:dynamics 5132:Bibcode 5011:Bibcode 4740:Gallery 3979:, with 3690:in the 1766:gravity 1764:due to 1342:caustic 811:gravity 336:density 286:is the 130:inertia 126:gravity 109:. The 107:ripples 68:droplet 5150:  5098:  5079:  5057:  5037:  5029:  4935:  4819:  4545:, is: 2868:Using 789:where 387:. The 266:where 153:swells 103:nature 57:Norway 5035:S2CID 4774:Notes 3196:phase 2435:Monge 1281:water 1119:are: 78:is a 5148:PMID 5096:ISBN 5077:ISBN 5055:ISBN 5027:ISSN 4933:ISBN 4817:ISBN 2840:and 2681:and 1878:(or 1728:are 1676:and 1601:and 1566:and 1537:and 1391:and 876:> 833:and 391:is 383:the 334:the 310:the 171:and 163:The 151:and 149:seas 90:and 80:wave 5140:doi 5019:doi 4970:doi 3627:sin 3510:sin 3152:cos 3120:cos 1483:all 1352:As 1277:air 1185:and 5177:: 5146:. 5138:. 5128:62 5126:. 5122:. 5033:. 5025:. 5017:. 5007:16 5005:. 4964:. 4960:. 4916:^ 4886:^ 4868:^ 4781:^ 4690:. 4056:: 3788:st 2805:0. 2737:: 2151:. 1956:: 1732:. 965:. 813:, 314:, 290:, 98:. 74:A 55:, 5154:. 5142:: 5134:: 5104:. 5085:. 5063:. 5041:. 5021:: 5013:: 4983:1 4976:. 4972:: 4966:9 4941:. 4843:. 4825:. 4678:V 4675:= 4672:T 4643:. 4638:2 4634:a 4628:] 4622:2 4618:k 4611:+ 4608:g 4604:) 4587:( 4583:[ 4576:2 4573:1 4568:= 4559:E 4529:/ 4525:) 4522:V 4519:+ 4516:T 4513:( 4487:, 4483:) 4477:2 4473:k 4457:+ 4445:+ 4442:g 4427:+ 4401:( 4396:| 4392:k 4388:| 4384:= 4379:2 4351:) 4348:k 4345:, 4339:( 4336:D 4316:0 4313:= 4310:) 4307:k 4304:, 4298:( 4295:D 4275:a 4253:2 4249:a 4245:) 4242:k 4239:, 4233:( 4230:D 4227:= 4224:L 4197:. 4189:2 4185:a 4180:] 4174:2 4170:k 4160:g 4157:) 4140:( 4130:| 4126:k 4122:| 4115:2 4105:) 4094:+ 4088:( 4084:[ 4078:4 4075:1 4070:= 4067:L 4042:t 4039:s 4035:V 4012:g 4008:V 3987:V 3967:V 3961:T 3958:= 3955:L 3925:. 3917:2 3913:a 3905:| 3901:k 3897:| 3890:2 3880:) 3869:+ 3863:( 3858:4 3855:1 3850:= 3843:T 3836:, 3828:2 3824:a 3818:2 3814:k 3805:4 3802:1 3797:= 3784:V 3776:, 3768:2 3764:a 3760:g 3757:) 3740:( 3735:4 3732:1 3727:= 3718:g 3714:V 3696:y 3692:x 3678:k 3674:/ 3667:2 3664:= 3634:. 3623:a 3614:z 3610:| 3606:k 3602:| 3593:e 3584:| 3580:k 3576:| 3571:1 3563:= 3556:) 3553:t 3550:, 3547:z 3544:, 3541:y 3538:, 3535:x 3532:( 3517:, 3506:a 3497:z 3493:| 3489:k 3485:| 3481:+ 3476:e 3467:| 3463:k 3459:| 3454:1 3449:+ 3446:= 3439:) 3436:t 3433:, 3430:z 3427:, 3424:y 3421:, 3418:x 3415:( 3389:. 3377:0 3374:= 3371:z 3348:t 3331:= 3325:z 3283:t 3266:= 3260:z 3223:t 3214:x 3211:k 3208:= 3182:a 3159:, 3148:a 3145:= 3142:) 3139:t 3130:x 3127:k 3124:( 3116:a 3113:= 3097:x 3076:. 3071:0 3068:= 3065:z 3055:] 3048:z 3000:z 2974:[ 2968:y 2965:d 2961:x 2958:d 2950:2 2947:1 2939:T 2913:= 2910:z 2890:0 2887:= 2884:z 2874:z 2802:= 2789:2 2764:0 2761:= 2753:2 2721:) 2718:t 2715:, 2712:z 2709:, 2706:y 2703:, 2700:x 2697:( 2669:) 2666:t 2663:, 2660:z 2657:, 2654:y 2651:, 2648:x 2645:( 2619:. 2615:] 2609:2 2604:| 2586:| 2571:z 2568:d 2560:+ 2547:+ 2542:2 2537:| 2524:| 2514:z 2511:d 2489:[ 2484:y 2481:d 2477:x 2474:d 2466:2 2463:1 2458:= 2455:T 2418:, 2414:] 2408:2 2403:) 2397:y 2380:( 2375:+ 2370:2 2365:) 2359:x 2342:( 2336:[ 2331:y 2328:d 2324:x 2321:d 2310:2 2307:1 2298:] 2294:1 2284:2 2279:) 2273:y 2256:( 2251:+ 2246:2 2241:) 2235:x 2218:( 2213:+ 2210:1 2204:[ 2199:y 2196:d 2192:x 2189:d 2180:= 2174:t 2171:s 2166:V 2139:0 2136:= 2133:z 2110:, 2105:2 2096:y 2093:d 2089:x 2086:d 2080:g 2077:) 2060:( 2055:2 2052:1 2047:= 2044:z 2041:g 2038:) 2021:( 2017:z 2014:d 2004:0 1995:y 1992:d 1988:x 1985:d 1979:= 1973:g 1968:V 1944:) 1941:t 1938:, 1935:y 1932:, 1929:x 1926:( 1920:= 1917:z 1897:z 1894:g 1866:z 1863:g 1838:g 1834:V 1813:T 1784:t 1781:s 1777:V 1750:g 1746:V 1716:) 1713:t 1710:, 1707:z 1704:, 1701:y 1698:, 1695:x 1692:( 1664:) 1661:t 1658:, 1655:z 1652:, 1649:y 1646:, 1643:x 1640:( 1493:k 1469:k 1419:g 1379:g 1323:m 1319:c 1296:m 1279:– 1260:. 1245:+ 1232:g 1229:) 1212:( 1207:2 1200:= 1195:m 1191:c 1176:g 1173:) 1156:( 1143:2 1140:= 1135:m 1105:m 1101:c 1078:m 1044:k 1000:/ 993:2 990:= 987:k 949:) 938:+ 932:( 928:/ 924:) 907:( 887:) 870:( 797:g 774:, 770:) 764:2 760:k 745:+ 733:+ 730:g 716:+ 690:( 685:| 681:k 677:| 673:= 668:2 639:. 624:) 621:g 615:( 611:/ 597:1 570:4 561:/ 554:g 530:0 527:= 487:. 482:3 477:| 472:k 468:| 453:= 448:2 420:. 415:k 408:2 402:= 371:k 251:, 246:3 241:| 236:k 232:| 216:+ 204:= 199:2 147:( 35:. 24:.

Index

Rippled wave
Ripple (electrical)
Ripple (disambiguation)


Øksnes Municipality
Norway

droplet
wave
phase boundary
dynamics
phase velocity
surface tension
nature
wavelength
phase speed
gravity
inertia
gravity waves
ocean surface waves
seas
swells
dispersion relation
wavelength
frequency
angular frequency
surface tension
density
wavenumber

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑