Knowledge (XXG)

Carbon nanocone

Source 📝

253: 1315: 1290: 1327: 223: 139: 17: 199: 126: 1302: 236:
laboratory-made nanocones. The distribution of their apex angle also shows a strong feature at 60°, but other expected peaks, at 20° and 40°, are much weaker, and the distribution is somewhat broader for large angles. This difference is attributed to the different wall structure of the natural cones. Those walls are relatively irregular and contain numerous
357: 215:
its tip with a certain apex angle (e.g. 84°), but then abruptly changed the apex angle (e.g. to 39°) at a single point on its surface, thus producing a break in the observed cross-section of the cone. Another anomaly was a cone with the apex extended from a point to a line segment, as in the expanded
210:
patterns were recorded at different cone orientations. Their analysis suggests that the walls contain 10–30% ordered material covered with amorphous carbon. High-resolution electron microscopy reveals that the ordered phase consists of nearly-parallel layers of graphene. The amorphous fraction can be
214:
The remarkable feature of the open carbon nanocones produced by the CBH process is their almost ideal shape, with straight walls and circular bases. Non-ideal cones are also observed, but these are exceptions. One such deviation was a "double" cone, which appeared as if a cone started to grow from
190:
Electron microscopy observations confirm the model prediction of discrete cone angles, though two experimental artifacts must be considered: charging of the poorly-conducting carbon samples under electron beam, which blurs the images, and that electron microscopy observations at a fixed sample tilt
235:
Carbon cones have also been observed, since 1968 or even earlier, on the surface of naturally occurring graphite. Their bases are attached to the graphite and their height varies between less than 1 and 40 micrometers. Their walls are often curved and are less regular than those of the
195:. Combined with significant statistics on the number of cones, it yields semi-discrete apex angles. Their values deviate from prediction by about 10% due to the limited measurement accuracy and slight variation of the cone thickness along its length. 264:
owing to their high chemical stability and electrical conductivity, but their tips are prone to mechanical wear due to the high plasticity of gold. Adding a thin carbon cap mechanically stabilizes the tip without sacrificing its other properties.
571:
Cano-Marquez, Abraham G.; Schmidt, Wesller G.; Ribeiro-Soares, Jenaina; Gustavo Cançado, Luiz; Rodrigues, Wagner N.; Santos, Adelina P.; Furtado, Clascidia A.; Autreto, Pedro A.S.; Paupitz, Ricardo; Galvão, Douglas S.; Jorio, Ado (2015).
23:
images of a carbon disk (top left image) and free-standing hollow carbon nanocones produced by pyrolysis of heavy oil in the Kvaerner Carbon Black & Hydrogen Process. Maximum diameter is about 1 micrometer.
191:
only yield a two-dimensional projection whereas a 3D shape is required. The first obstacle is overcome by coating the cones with a metal layer a few nanometers thick. The second problem is solved through a
66:
sheets, where the geometrical requirement for seamless connection naturally accounted for the semi-discrete character and the absolute values of the cone angle. A related carbon nanoform is the
38:
and which have at least one dimension of the order one micrometer or smaller. Nanocones have height and base diameter of the same order of magnitude; this distinguishes them from tipped
62:) of the cones is not arbitrary, but has preferred values of approximately 20°, 40°, and 60°. This observation was explained by a model of the cone wall composed of wrapped 647: 107:. At certain well-optimized and patented conditions, the solid carbon output consists of approximately 20% carbon nanocones, 70% flat carbon discs, and 10% 206:
The cone wall thickness varies between 10 and 30 nm, but can be as large as 80 nm for some nanocones. To elucidate the structure of the cone walls,
1046: 355:, Lynum S, Hugdahl J, Hox K, Hildrum R and Nordvik M, "Production of micro domain particles by use of a plasma process", issued 2000-07-12 1076: 640: 1166: 150:
sheet. In order to have strain-free, seamless wrapping, a sector must be cut out of the sheet. That sector should have an angle of
1100: 1352: 1247: 1039: 633: 67: 1123: 20: 1219: 103:
Carbon Black & Hydrogen Process (CBH) and it is relatively "emission-free", i.e., produces rather small amount of
114:
Plasma-assisted decomposition of hydrocarbons has long been known and applied, for example, for production of carbon
1013: 256:
Sequential electron micrographs showing the process of capping a gold needle with a CBH carbon nanocone (top left)
244:). This breaks down the angular requirement for a seamless cone and therefore broadens the angular distribution. 1306: 1234: 1086: 1081: 1071: 1063: 261: 158: = 1, ..., 5. Therefore, the resulting cone angle should have only certain, discrete values 1257: 1201: 1186: 1096: 1032: 779: 118:. Even if not optimized, it yields small amounts of carbon nanocones, which had been directly observed with an 1294: 1242: 1191: 1178: 839: 666: 352: 1118: 970: 965: 717: 656: 585: 476: 380: 308: 207: 202:
Image of a coffee filter illustrating one of the anomalous structures in the carbon nanocone growth.
1265: 1154: 119: 55: 252: 1196: 754: 736: 211:
converted into well-ordered graphite by annealing the cones at temperatures near 2700 °C.
170: = 1, ..., 5, respectively. The graphene sheet is composed solely of carbon 260:
Carbon nanocones have been used to cap ultrafine gold needles. Such needles are widely used in
1331: 611: 508: 334: 226:
Statistical distribution of the apex values measured over 554 cones grown on natural graphite.
463:
Krishnan, A.; Dujardin, E.; Treacy, M. M. J.; Hugdahl, J.; Lynum, S.; Ebbesen, T. W. (1997).
1275: 993: 923: 829: 601: 593: 550: 523: 484: 442: 415: 388: 324: 316: 96: 51: 1224: 1211: 1149: 878: 834: 800: 742: 59: 541:
Gillot, J; Bollmann, W; Lux, B (1968). "181. Cigar-shaped conical crystals of graphite".
589: 480: 384: 320: 312: 1319: 1113: 1055: 975: 784: 748: 606: 573: 329: 296: 192: 104: 42:, which are much longer than their diameter. Nanocones occur on the surface of natural 574:"Enhanced Mechanical Stability of Gold Nanotips through Carbon Nanocone Encapsulation" 527: 1346: 1133: 1008: 862: 761: 727: 554: 446: 392: 216: 122:
already in 1994, and their atomic structure was modeled theoretically the same year.
99:
having a plasma temperature above 2000 °C. This method is often referred to as
1314: 1270: 1161: 1108: 998: 406:
Terrones, Humberto (1994). "Curved graphite and its mathematical transformations".
295:
Naess, Stine Nalum; Elgsaeter, Arnljot; Helgesen, Geir; Knudsen, Kenneth D (2009).
241: 108: 222: 178:
must be added to form a curved cone tip, and their number is correspondingly 
960: 939: 682: 237: 142:
Statistical distribution of the apex values measured over 1700 hollow nanocones.
138: 84: 47: 16: 1326: 198: 125: 1141: 894: 712: 115: 615: 338: 166:/6) = 112.9°, 83.6°, 60.0°, 38.9°, and 19.2° for 1003: 844: 707: 701: 175: 147: 100: 92: 63: 43: 39: 955: 676: 625: 419: 171: 83:
Carbon nanocones are produced in an industrial process that decomposes
597: 371:
Ge, Maohui; Sattler, Klaus (1994). "Observation of fullerene cones".
88: 35: 489: 464: 251: 221: 197: 174:, which can not form a continuous cone cap. As in the fullerenes, 137: 124: 15: 1024: 31: 1028: 629: 465:"Graphitic cones and the nucleation of curved carbon surfaces" 46:. Hollow carbon nanocones can also be produced by decomposing 433:
Balaban, A; Klein, D; Liu, X (1994). "Graphitic cones".
1256: 1233: 1210: 1177: 1132: 1095: 1062: 984: 914: 853: 820: 770: 691: 663: 70:which typically form aggregates 80–100 nm in size. 297:"Carbon nanocones: wall structure and morphology" 146:The open carbon cone can be modeled as a wrapped 129:Atomic model of a cone with the 38.9° apex angle. 1040: 641: 34:structures which are made predominantly from 8: 301:Science and Technology of Advanced Materials 1047: 1033: 1025: 648: 634: 626: 605: 488: 328: 162: = 2 arcsin(1 −  274: 502: 500: 290: 288: 286: 284: 282: 280: 278: 458: 456: 219:(flat form is shown in the picture). 7: 1301: 566: 564: 509:"Naturally occurring graphite cones" 182: = 1, ..., 5. 14: 408:Journal of Mathematical Chemistry 1325: 1313: 1300: 1289: 1288: 58:reveals that the opening angle ( 683:Lonsdaleite (hexagonal diamond) 1: 1248:Scanning tunneling microscope 528:10.1016/S0008-6223(03)00214-8 321:10.1088/1468-6996/10/6/065002 68:single-walled carbon nanohorn 555:10.1016/0008-6223(68)90485-5 447:10.1016/0008-6223(94)90203-8 393:10.1016/0009-2614(94)00167-7 1220:Molecular scale electronics 1369: 1014:Aggregated diamond nanorod 193:geometrical shape analysis 74:Free-standing hollow cones 1284: 1235:Scanning probe microscopy 812:(cyclo[18]carbon) 262:scanning probe microscopy 1258:Molecular nanotechnology 1202:Solid lipid nanoparticle 1187:Self-assembled monolayer 796:(cyclo[6]carbon) 780:Linear acetylenic carbon 373:Chemical Physics Letters 154: × 60°, where 1243:Atomic force microscope 1192:Supramolecular assembly 1179:Molecular self-assembly 840:Carbide-derived carbon 722:(buckminsterfullerene) 257: 248:Potential applications 227: 203: 143: 130: 24: 1332:Technology portal 255: 225: 201: 141: 128: 79:History and synthesis 19: 1353:Carbon nanoparticles 1119:Green nanotechnology 657:Allotropes of carbon 507:Jaszczak, J (2003). 208:electron diffraction 1266:Molecular assembler 590:2015NatSR...510408C 481:1997Natur.388..451K 385:1994CPL...220..192G 313:2009STAdM..10f5002N 120:electron microscope 56:Electron microscopy 1320:Science portal 1197:DNA nanotechnology 935:(cyclopropatriene) 916:hypothetical forms 737:Fullerene whiskers 578:Scientific Reports 420:10.1007/BF01277556 258: 228: 204: 144: 131: 25: 1340: 1339: 1022: 1021: 890:(diatomic carbon) 822:mixed sp/sp forms 598:10.1038/srep10408 1360: 1330: 1329: 1318: 1317: 1304: 1303: 1292: 1291: 1276:Mechanosynthesis 1167:characterization 1049: 1042: 1035: 1026: 994:Activated carbon 950: 949: 948: 934: 933: 932: 905: 904: 903: 889: 888: 887: 873: 872: 871: 830:Amorphous carbon 811: 810: 809: 795: 794: 793: 650: 643: 636: 627: 620: 619: 609: 568: 559: 558: 538: 532: 531: 513: 504: 495: 494: 492: 460: 451: 450: 430: 424: 423: 403: 397: 396: 368: 362: 361: 360: 356: 349: 343: 342: 332: 292: 240:(positive-wedge 28:Carbon nanocones 1368: 1367: 1363: 1362: 1361: 1359: 1358: 1357: 1343: 1342: 1341: 1336: 1324: 1312: 1280: 1252: 1229: 1225:Nanolithography 1212:Nanoelectronics 1206: 1173: 1128: 1091: 1082:Popular culture 1058: 1053: 1023: 1018: 980: 971:Metallic carbon 947: 944: 943: 942: 940: 931: 928: 927: 926: 924: 910: 902: 899: 898: 897: 895: 886: 883: 882: 881: 879: 874:(atomic carbon) 870: 867: 866: 865: 863: 849: 835:Carbon nanofoam 816: 808: 805: 804: 803: 801: 792: 789: 788: 787: 785: 766: 731: 721: 687: 677:Diamond (cubic) 659: 654: 624: 623: 570: 569: 562: 540: 539: 535: 511: 506: 505: 498: 462: 461: 454: 432: 431: 427: 405: 404: 400: 370: 369: 365: 358: 351: 350: 346: 294: 293: 276: 271: 250: 233: 188: 136: 81: 76: 12: 11: 5: 1366: 1364: 1356: 1355: 1345: 1344: 1338: 1337: 1335: 1334: 1322: 1310: 1298: 1285: 1282: 1281: 1279: 1278: 1273: 1268: 1262: 1260: 1254: 1253: 1251: 1250: 1245: 1239: 1237: 1231: 1230: 1228: 1227: 1222: 1216: 1214: 1208: 1207: 1205: 1204: 1199: 1194: 1189: 1183: 1181: 1175: 1174: 1172: 1171: 1170: 1169: 1159: 1158: 1157: 1152: 1144: 1138: 1136: 1130: 1129: 1127: 1126: 1121: 1116: 1114:Nanotoxicology 1111: 1105: 1103: 1093: 1092: 1090: 1089: 1084: 1079: 1074: 1068: 1066: 1060: 1059: 1056:Nanotechnology 1054: 1052: 1051: 1044: 1037: 1029: 1020: 1019: 1017: 1016: 1011: 1006: 1001: 996: 990: 988: 982: 981: 979: 978: 976:Penta-graphene 973: 968: 963: 958: 953: 945: 937: 929: 920: 918: 912: 911: 909: 908: 900: 892: 884: 876: 868: 859: 857: 851: 850: 848: 847: 842: 837: 832: 826: 824: 818: 817: 815: 814: 806: 798: 790: 782: 776: 774: 768: 767: 765: 764: 759: 729: 719: 710: 705: 697: 695: 689: 688: 686: 685: 680: 672: 670: 661: 660: 655: 653: 652: 645: 638: 630: 622: 621: 560: 533: 496: 452: 425: 398: 363: 344: 273: 272: 270: 267: 249: 246: 232: 229: 187: 184: 135: 132: 105:air pollutants 80: 77: 75: 72: 13: 10: 9: 6: 4: 3: 2: 1365: 1354: 1351: 1350: 1348: 1333: 1328: 1323: 1321: 1316: 1311: 1309: 1308: 1299: 1297: 1296: 1287: 1286: 1283: 1277: 1274: 1272: 1269: 1267: 1264: 1263: 1261: 1259: 1255: 1249: 1246: 1244: 1241: 1240: 1238: 1236: 1232: 1226: 1223: 1221: 1218: 1217: 1215: 1213: 1209: 1203: 1200: 1198: 1195: 1193: 1190: 1188: 1185: 1184: 1182: 1180: 1176: 1168: 1165: 1164: 1163: 1162:Nanoparticles 1160: 1156: 1153: 1151: 1148: 1147: 1145: 1143: 1140: 1139: 1137: 1135: 1134:Nanomaterials 1131: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1106: 1104: 1102: 1098: 1094: 1088: 1085: 1083: 1080: 1078: 1077:Organizations 1075: 1073: 1070: 1069: 1067: 1065: 1061: 1057: 1050: 1045: 1043: 1038: 1036: 1031: 1030: 1027: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 991: 989: 987: 983: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 952: 951:(prismane C8) 938: 936: 922: 921: 919: 917: 913: 907: 893: 891: 877: 875: 861: 860: 858: 856: 852: 846: 843: 841: 838: 836: 833: 831: 828: 827: 825: 823: 819: 813: 799: 797: 783: 781: 778: 777: 775: 773: 769: 763: 762:Glassy carbon 760: 757: 756: 751: 750: 745: 744: 739: 738: 733: 732: 724: 723: 714: 711: 709: 706: 704: 703: 699: 698: 696: 694: 690: 684: 681: 679: 678: 674: 673: 671: 669: 668: 662: 658: 651: 646: 644: 639: 637: 632: 631: 628: 617: 613: 608: 603: 599: 595: 591: 587: 583: 579: 575: 567: 565: 561: 556: 552: 548: 544: 537: 534: 529: 525: 521: 517: 510: 503: 501: 497: 491: 490:10.1038/41284 486: 482: 478: 475:(6641): 451. 474: 470: 466: 459: 457: 453: 448: 444: 440: 436: 429: 426: 421: 417: 413: 409: 402: 399: 394: 390: 386: 382: 378: 374: 367: 364: 354: 348: 345: 340: 336: 331: 326: 322: 318: 314: 310: 307:(6): 065002. 306: 302: 298: 291: 289: 287: 285: 283: 281: 279: 275: 268: 266: 263: 254: 247: 245: 243: 242:disclinations 239: 230: 224: 220: 218: 217:coffee filter 212: 209: 200: 196: 194: 185: 183: 181: 177: 173: 169: 165: 161: 157: 153: 149: 140: 133: 127: 123: 121: 117: 112: 110: 106: 102: 98: 94: 90: 86: 78: 73: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 22: 18: 1305: 1293: 1271:Nanorobotics 1109:Nanomedicine 1101:applications 1009:Carbon fiber 999:Carbon black 985: 966:Cubic carbon 915: 854: 821: 771: 753: 747: 741: 735: 726: 716: 715:, including 700: 692: 675: 664: 581: 577: 546: 542: 536: 522:(11): 2085. 519: 515: 472: 468: 438: 434: 428: 411: 407: 401: 379:(3–5): 192. 376: 372: 366: 347: 304: 300: 259: 238:line defects 234: 213: 205: 189: 179: 167: 163: 159: 155: 151: 145: 113: 109:carbon black 97:plasma torch 85:hydrocarbons 82: 48:hydrocarbons 27: 26: 961:Haeckelites 906:(tricarbon) 855:other forms 755:Nanoscrolls 231:Other cones 186:Observation 1155:Non-carbon 1146:Nanotubes 1142:Fullerenes 1124:Regulation 713:Fullerenes 549:(2): 237. 441:(2): 357. 353:EP 1017622 269:References 116:fullerenes 743:Nanotubes 584:: 10408. 176:pentagons 40:nanowires 1347:Category 1295:Category 1064:Overview 1004:Charcoal 845:Q-carbon 772:sp forms 749:Nanobuds 708:Graphene 702:Graphite 693:sp forms 616:26083864 339:27877312 172:hexagons 148:graphene 134:Modeling 101:Kvaerner 93:hydrogen 64:graphene 44:graphite 1307:Commons 1087:Outline 1072:History 986:related 956:Chaoite 607:4470435 586:Bibcode 477:Bibcode 414:: 143. 381:Bibcode 330:5074450 309:Bibcode 95:with a 54:torch. 50:with a 32:conical 1150:Carbon 1097:Impact 614:  604:  543:Carbon 516:Carbon 469:Nature 435:Carbon 359:  337:  327:  89:carbon 52:plasma 36:carbon 667:forms 512:(PDF) 87:into 1099:and 612:PMID 335:PMID 91:and 60:apex 30:are 665:sp 602:PMC 594:doi 551:doi 524:doi 485:doi 473:388 443:doi 416:doi 389:doi 377:220 325:PMC 317:doi 111:. 21:SEM 1349:: 807:18 752:, 746:, 740:, 734:, 730:70 725:, 720:60 610:. 600:. 592:. 580:. 576:. 563:^ 545:. 520:41 518:. 514:. 499:^ 483:. 471:. 467:. 455:^ 439:32 437:. 412:15 410:. 387:. 375:. 333:. 323:. 315:. 305:10 303:. 299:. 277:^ 1048:e 1041:t 1034:v 946:6 941:C 930:3 925:C 901:3 896:C 885:2 880:C 869:1 864:C 802:C 791:6 786:C 758:) 728:C 718:C 649:e 642:t 635:v 618:. 596:: 588:: 582:5 557:. 553:: 547:6 530:. 526:: 493:. 487:: 479:: 449:. 445:: 422:. 418:: 395:. 391:: 383:: 341:. 319:: 311:: 180:n 168:n 164:n 160:α 156:n 152:n

Index


SEM
conical
carbon
nanowires
graphite
hydrocarbons
plasma
Electron microscopy
apex
graphene
single-walled carbon nanohorn
hydrocarbons
carbon
hydrogen
plasma torch
Kvaerner
air pollutants
carbon black
fullerenes
electron microscope


graphene
hexagons
pentagons
geometrical shape analysis

electron diffraction
coffee filter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.