Knowledge

Cartesian monoidal category

Source ๐Ÿ“

22: 363:
In each of these categories of modules equipped with a cocartesian monoidal structure, finite products and coproducts coincide (in the sense that the product and coproduct of finitely many objects are isomorphic). Or more formally, if
502: 559: 616: 39: 142:
with finite products (a "finite product category") can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the
86: 58: 105: 65: 72: 43: 444: 876: 507: 318: 273: 155: 143: 54: 564: 300: 314: 827: 304: 174: 147: 131: 871: 225: 263: 32: 185:
Cartesian monoidal categories have a number of special and important properties, such as the existence of
139: 79: 815: 356: 352: 337: 296: 292: 341: 186: 127: 846: 348: 277: 259: 232: 243:. In fact, any object in a cartesian monoidal category becomes a comonoid in a unique way. 793: 170: 162:, and any finite coproduct category can be thought of as a cocartesian monoidal category. 123: 414: 865: 322: 736: 425: 166: 150:, a monoidal finite coproduct category with the monoidal structure given by the 119: 21: 796:, where we interpret 0 and 1 as the 0 maps and identity maps of the objects 429: 151: 280:, where the category with one object and only its identity map is the unit. 299:, can be made cocartesian monoidal with the monoidal product given by the 240: 850: 15: 351:
or not) becomes a cocartesian monoidal category with the
497:{\displaystyle X=\bigoplus _{j\in {1,\ldots ,n}}X_{j}} 239:
as "deleting data". These maps make any object into a
567: 510: 447: 46:. Unsourced material may be challenged and removed. 735:. If, in addition, the category in question has a 610: 554:{\displaystyle \coprod _{j\in {1,\ldots ,n}}X_{j}} 553: 496: 611:{\displaystyle \prod _{j\in {1,\ldots ,n}}X_{j}} 130:where the monoidal ("tensor") product is the 8: 235:we can think of ฮ” as "duplicating data" and 675:}) is a coproduct diagram for the objects 602: 579: 572: 566: 545: 522: 515: 509: 488: 465: 458: 446: 106:Learn how and when to remove this message 697:}) is a product diagram for the objects 839: 165:Cartesian categories with an internal 122:, specifically in the field known as 7: 44:adding citations to reliable sources 284:Cocartesian monoidal categories: 14: 400:is the "canonical" map from the 251:Cartesian monoidal categories: 20: 31:needs additional citations for 274:bicategory of small categories 1: 391: ร— ... ร—  328:More generally, the category 160:cocartesian monoidal category 55:"Cartesian monoidal category" 420:, in the event that the map 321:as monoidal product and the 319:direct sum of abelian groups 847:Cartesian monoidal category 761: โ†’ 0 โ†’  301:direct sum of vector spaces 175:Cartesian closed categories 136:cartesian monoidal category 893: 739:, so that for any objects 404:-ary coproduct of objects 355:as tensor product and the 315:category of abelian groups 173:to the product are called 828:Cartesian closed category 765:, it often follows that 293:category of vector spaces 413:to their product, for a 747:there is a unique map 0 612: 555: 498: 146:is the monoidal unit. 816:pre-additive category 613: 556: 499: 353:direct sum of modules 231:. In applications to 814:, respectively. See 783: = :  662:such that the pair ( 565: 508: 445: 305:trivial vector space 266:serving as the unit. 40:improve this article 877:Monoidal categories 618:together with maps 132:categorical product 608: 597: 551: 540: 494: 483: 207:and augmentations 568: 511: 454: 128:monoidal category 116: 115: 108: 90: 884: 856: 844: 617: 615: 614: 609: 607: 606: 596: 595: 560: 558: 557: 552: 550: 549: 539: 538: 503: 501: 500: 495: 493: 492: 482: 481: 432:for the objects 428:, we say that a 278:product category 260:category of sets 233:computer science 111: 104: 100: 97: 91: 89: 48: 24: 16: 892: 891: 887: 886: 885: 883: 882: 881: 872:Category theory 862: 861: 860: 859: 845: 841: 836: 824: 813: 804: 794:Kronecker delta 791: 782: 773: 756: 734: 733: 724: = id 723: 714: 705: 696: 683: 674: 661: 648: 635: 626: 598: 563: 562: 541: 506: 505: 484: 443: 442: 440: 412: 399: 390: 383: 374: 249: 215: 194: 183: 171:adjoint functor 144:terminal object 124:category theory 112: 101: 95: 92: 49: 47: 37: 25: 12: 11: 5: 890: 888: 880: 879: 874: 864: 863: 858: 857: 838: 837: 835: 832: 831: 830: 823: 820: 809: 800: 787: 778: 769: 748: 729: 725: 719: 710: 701: 692: 684:and the pair ( 679: 670: 657: 653: โ†’   644: 631: 622: 605: 601: 594: 591: 588: 585: 582: 578: 575: 571: 548: 544: 537: 534: 531: 528: 525: 521: 518: 514: 504:isomorphic to 491: 487: 480: 477: 474: 471: 468: 464: 461: 457: 453: 450: 436: 415:natural number 408: 395: 388: 379: 372: 361: 360: 357:trivial module 326: 308: 282: 281: 267: 248: 245: 211: 190: 182: 179: 156:initial object 114: 113: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 889: 878: 875: 873: 870: 869: 867: 855: 853: 848: 843: 840: 833: 829: 826: 825: 821: 819: 817: 812: 808: 803: 799: 795: 790: 786: 781: 777: 774: โˆ˜  772: 768: 764: 760: 757: :  755: 751: 746: 742: 738: 732: 728: 722: 718: 715: โˆ˜  713: 709: 704: 700: 695: 691: 687: 682: 678: 673: 669: 665: 660: 656: 652: 649: :  647: 643: 639: 636: โ†’  634: 630: 627: :  625: 621: 603: 599: 592: 589: 586: 583: 580: 576: 573: 569: 546: 542: 535: 532: 529: 526: 523: 519: 516: 512: 489: 485: 478: 475: 472: 469: 466: 462: 459: 455: 451: 448: 441:is an object 439: 435: 431: 427: 423: 419: 416: 411: 407: 403: 398: 394: 387: 382: 378: 371: 368: :  367: 358: 354: 350: 346: 343: 339: 335: 331: 327: 324: 323:trivial group 320: 316: 312: 309: 306: 302: 298: 295:over a given 294: 290: 287: 286: 285: 279: 275: 271: 268: 265: 264:singleton set 261: 257: 254: 253: 252: 246: 244: 242: 238: 234: 230: 227: 223: 220: โ†’  219: 216: :  214: 210: 206: 203: โŠ—  202: 199: โ†’  198: 195: :  193: 188: 187:diagonal maps 180: 178: 176: 172: 168: 163: 161: 157: 154:and unit the 153: 149: 145: 141: 137: 133: 129: 125: 121: 110: 107: 99: 88: 85: 81: 78: 74: 71: 67: 64: 60: 57: โ€“  56: 52: 51:Find sources: 45: 41: 35: 34: 29:This article 27: 23: 18: 17: 851: 842: 810: 806: 801: 797: 788: 784: 779: 775: 770: 766: 762: 758: 753: 749: 744: 740: 730: 726: 720: 716: 711: 707: 706:, and where 702: 698: 693: 689: 685: 680: 676: 671: 667: 663: 658: 654: 650: 645: 641: 637: 632: 628: 623: 619: 437: 433: 421: 417: 409: 405: 401: 396: 392: 385: 380: 376: 369: 365: 362: 344: 333: 329: 310: 288: 283: 269: 255: 250: 236: 228: 221: 217: 212: 208: 204: 200: 196: 191: 184: 164: 159: 158:is called a 135: 134:is called a 117: 102: 96:January 2017 93: 83: 76: 69: 62: 50: 38:Please help 33:verification 30: 737:zero object 426:isomorphism 349:commutative 317:, with the 169:that is an 167:Hom functor 120:mathematics 866:Categories 834:References 818:for more. 336:of (left) 181:Properties 66:newspapers 587:… 577:∈ 570:∏ 530:… 520:∈ 513:∐ 473:… 463:∈ 456:⨁ 430:biproduct 276:with the 262:with the 152:coproduct 822:See also 688:, { 666:, { 375:โˆ ... โˆ 359:as unit. 325:as unit. 307:as unit. 303:and the 247:Examples 241:comonoid 224:for any 140:category 849:at the 384:โ†’  340:over a 338:modules 80:scholar 792:, the 785:δ 424:is an 313:, the 291:, the 272:, the 258:, the 226:object 148:Dually 138:. Any 82:  75:  68:  61:  53:  297:field 87:JSTOR 73:books 805:and 743:and 640:and 561:and 342:ring 289:Vect 126:, a 59:news 854:Lab 334:Mod 270:Cat 256:Set 118:In 42:by 868:: 789:ij 311:Ab 177:. 852:n 811:k 807:X 802:j 798:X 780:j 776:i 771:k 767:p 763:B 759:A 754:B 752:, 750:A 745:B 741:A 731:j 727:X 721:j 717:i 712:j 708:p 703:j 699:X 694:j 690:p 686:X 681:j 677:X 672:j 668:i 664:X 659:j 655:X 651:X 646:j 642:p 638:X 633:j 629:X 624:j 620:i 604:j 600:X 593:n 590:, 584:, 581:1 574:j 547:j 543:X 536:n 533:, 527:, 524:1 517:j 490:j 486:X 479:n 476:, 470:, 467:1 460:j 452:= 449:X 438:j 434:X 422:f 418:n 410:j 406:X 402:n 397:n 393:X 389:1 386:X 381:n 377:X 373:1 370:X 366:f 347:( 345:R 332:- 330:R 237:e 229:x 222:I 218:x 213:x 209:e 205:x 201:x 197:x 192:x 189:ฮ” 109:) 103:( 98:) 94:( 84:ยท 77:ยท 70:ยท 63:ยท 36:.

Index


verification
improve this article
adding citations to reliable sources
"Cartesian monoidal category"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
mathematics
category theory
monoidal category
categorical product
category
terminal object
Dually
coproduct
initial object
Hom functor
adjoint functor
Cartesian closed categories
diagonal maps
object
computer science
comonoid
category of sets
singleton set
bicategory of small categories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘