Knowledge (XXG)

Capillary wave

Source 📝

4759: 4774: 51: 519: 74: 3950: 59: 3659: 1281: 3715: 1067:) waves (e.g. 2 mm for the water–air interface), which are proper capillary waves, do the opposite: an individual wave appears at the front of the group, grows when moving towards the group center and finally disappears at the back of the group. Phase velocity is two thirds of group velocity in this limit. 2131: 1075:
Between these two limits is a point at which the dispersion caused by gravity cancels out the dispersion due to the capillary effect. At a certain wavelength, the group velocity equals the phase velocity, and there is no dispersion. At precisely this same wavelength, the phase velocity of
3414: 4508: 795: 2439: 3945:{\displaystyle {\begin{aligned}V_{\text{g}}&={\frac {1}{4}}(\rho -\rho ')ga^{2}\lambda ,\\V_{\text{st}}&={\frac {1}{4}}\sigma k^{2}a^{2}\lambda ,\\T&={\frac {1}{4}}(\rho +\rho '){\frac {\omega ^{2}}{|k|}}a^{2}\lambda .\end{aligned}}} 1442:(waves are not high enough for gravitation to change appreciably). For surface tension, the deviations from planarity (as measured by derivatives of the surface) are supposed to be small. For common waves both approximations are good enough. 1136: 3372: 3307: 1468:) can be solved with the proper boundary conditions. On one hand, the velocity must vanish well below the surface (in the "deep water" case, which is the one we consider, otherwise a more involved result is obtained, see 3097: 648: 272: 3654:{\displaystyle {\begin{aligned}\Phi (x,y,z,t)&=+{\frac {1}{|k|}}{\text{e}}^{+|k|z}\,\omega a\,\sin \,\theta ,\\\Phi '(x,y,z,t)&=-{\frac {1}{|k|}}{\text{e}}^{-|k|z}\,\omega a\,\sin \,\theta .\end{aligned}}} 1527:
Consider two fluid domains, separated by an interface with surface tension. The mean interface position is horizontal. It separates the upper from the lower fluid, both having a different constant mass density,
1973: 3180: 508: 662:
When capillary waves are also affected substantially by gravity, they are called gravity–capillary waves. Their dispersion relation reads, for waves on the interface between two fluids of infinite depth:
4664: 970: 2640: 595: 4218: 3720: 3419: 4380: 1369:
that are easily seen by everyone and which are usually used as an example of waves in elementary courses are the worst possible example ; they have all the complications that waves can have.
669: 441: 2826: 3246:. The kinematic boundary condition at the interface, relating the potentials to the interface motion, is that the vertical velocity components must match the motion of the surface: 908: 186:
in waves. Distinction can be made between pure capillary waves – fully dominated by the effects of surface tension – and gravity–capillary waves which are also affected by gravity.
2742: 2171: 1737: 4276: 3244: 2785: 1638: 3699: 1025: 1453:
framework. Incompressibility is again involved (which is satisfied if the speed of the waves is much less than the speed of sound in the media), together with the flow being
4554: 4337: 2690: 1965: 1685: 1918: 1276:{\displaystyle \lambda _{m}=2\pi {\sqrt {\frac {\sigma }{(\rho -\rho ')g}}}\quad {\text{and}}\quad c_{m}={\sqrt {\frac {2{\sqrt {(\rho -\rho ')g\sigma }}}{\rho +\rho '}}}.} 551: 4372: 1610: 1319: 1101: 2874: 1571: 867: 372: 2937: 1887: 1420: 319: 295: 4065: 1807: 4035: 3988: 2849: 1861: 1773: 1546: 1346: 1128: 842: 343: 4699: 3398: 2911: 2160: 1039:: following a single wave's crest in a group one can see the wave appearing at the back of the group, growing and finally disappearing at the front of the group. 4296: 4008: 3312: 3203: 1834: 1514: 1490: 1440: 1400: 1065: 818: 392: 3252: 4758: 1076:
gravity–capillary waves as a function of wavelength (or wave number) has a minimum. Waves with wavelengths much smaller than this critical wavelength
4773: 2945: 600: 5069: 4831: 5201: 1351:
If one drops a small stone or droplet into liquid, the waves then propagate outside an expanding circle of fluid at rest; this circle is a
200: 2126:{\displaystyle V_{\mathrm {g} }=\iint dx\,dy\;\int _{0}^{\eta }dz\;(\rho -\rho ')gz={\frac {1}{2}}(\rho -\rho ')g\iint dx\,dy\;\eta ^{2},} 1472:.) On the other, its vertical component must match the motion of the surface. This contribution ends up being responsible for the extra 3116: 1382:. The first two are potential energies, and responsible for the two terms inside the parenthesis, as is clear from the appearance of 5110: 5091: 4947: 449: 154:
waves. Light breezes which stir up such small ripples are also sometimes referred to as cat's paws. On the open ocean, much larger
1103:
are dominated by surface tension, and much above by gravity. The value of this wavelength and the associated minimum phase speed
5130: 4851: 2645:
Use is made of the fluid being incompressible and its flow is irrotational (often, sensible approximations). As a result, both
4562: 4503:{\displaystyle \omega ^{2}=|k|\left({\frac {\rho -\rho '}{\rho +\rho '}}\,g+{\frac {\sigma }{\rho +\rho '}}\,k^{2}\right),} 2461: 556: 4073: 1422:. For gravity, an assumption is made of the density of the fluids being constant (i.e., incompressibility), and likewise 790:{\displaystyle \omega ^{2}=|k|\left({\frac {\rho -\rho '}{\rho +\rho '}}g+{\frac {\sigma }{\rho +\rho '}}k^{2}\right),} 5009: 913: 405: 5105:. Advanced Series on Ocean Engineering. Vol. 13. World Scientific, Singapore. pp. 2 Parts, 967 pages. 4719: 2434:{\displaystyle V_{\mathrm {st} }=\sigma \iint dx\,dy\;\left\approx {\frac {1}{2}}\sigma \iint dx\,dy\;\left,} 5191: 3405: 43: 4734: 2790: 63: 4230: 3211: 2448:'s) representation, and the second applies for small values of the derivatives (surfaces not too rough). 4671: 2754: 1522:
Dispersion relation for gravity–capillary waves on an interface between two semi–infinite fluid domains
876: 3667: 993: 522:
Dispersion of gravity–capillary waves on the surface of deep water (zero mass density of upper layer,
5196: 5142: 5079: 5021: 3956: 2695: 1690: 98: 4519: 4301: 2648: 2165:
An increase in area of the surface causes a proportional increase of energy due to surface tension:
1923: 1643: 4224: 2880: 1615: 175: 39: 4342: 1592: 1297: 1079: 5045: 4744: 4729: 2876:
must vanish well away from the surface (in the "deep water" case, which is the one we consider).
1469: 4724: 5176: 658: • Dash-dotted lines: dispersion relation valid for deep-water capillary waves. 5158: 5106: 5087: 5065: 5037: 4943: 4935: 4827: 1892: 525: 298: 2916: 1866: 1405: 443:
For the boundary between fluid and vacuum (free surface), the dispersion relation reduces to
304: 280: 5150: 5029: 4980: 4714: 4040: 2854: 2745: 1782: 1776: 1746: 1551: 1465: 1352: 985: 847: 821: 352: 136: 4013: 3961: 2834: 1839: 1751: 1531: 1324: 1106: 827: 328: 4846: 3367:{\displaystyle {\frac {\partial \Phi '}{\partial z}}={\frac {\partial \eta }{\partial t}}} 1810: 1375: 1364: 322: 106: 50: 4678: 3377: 3302:{\displaystyle {\frac {\partial \Phi }{\partial z}}={\frac {\partial \eta }{\partial t}}} 2890: 2139: 1863:
due to gravity is the simplest: integrating the potential energy density due to gravity,
5146: 5025: 4739: 4281: 3993: 3664:
Then the contributions to the wave energy, horizontally integrated over one wavelength
3188: 2452: 1819: 1814: 1740: 1586: 1578: 1516:, and high ones (except around the one value at which the two dispersions cancel out.) 1499: 1475: 1458: 1446: 1425: 1385: 1050: 1036: 1032: 803: 377: 102: 94: 73: 5185: 5049: 4964: 4765: 3206: 2445: 1450: 1379: 973: 163: 17: 518: 4374:
is just the expression in the square brackets, so that the dispersion relation is:
1582: 1454: 1028: 870: 144: 32: 656: • Dashed lines: dispersion relation for deep-water gravity waves. 1371:" The derivation of the general dispersion relation is therefore quite involved. 652: • Blue lines (A): phase velocity, Red lines (B): group velocity. 5057: 654: • Drawn lines: dispersion relation for gravity–capillary waves. 125: 5154: 5033: 4669:
As usual for linear wave motions, the potential and kinetic energy are equal (
3103: 399: 395: 179: 121: 58: 5041: 4984: 3092:{\displaystyle T\approx {\frac {1}{2}}\iint dx\,dy\;\left_{{\text{at }}z=0}.} 124:
of capillary waves on water is typically less than a few centimeters, with a
643:{\displaystyle \scriptstyle {\frac {1}{\lambda }}{\sqrt {\sigma /(\rho g)}}} 183: 159: 155: 5162: 2883:, and assuming the deviations of the surface elevation to be small (so the 1574: 1573:
for the lower and upper domain respectively. The fluid is assumed to be
150:
When generated by light wind in open water, a nautical name for them is
346: 140: 78: 1461:. These are typically also good approximations for common situations. 1589:, and the velocity in the lower and upper layer can be obtained from 267:{\displaystyle \omega ^{2}={\frac {\sigma }{\rho +\rho '}}\,|k|^{3},} 113: 67: 5012:(1963). "The generation of capillary waves by steep gravity waves". 4968: 2831:
These equations can be solved with the proper boundary conditions:
166:) may result from coalescence of smaller wind-caused ripple-waves. 1291: 517: 72: 57: 49: 5122:
Statistical thermodynamics of surfaces, interfaces, and membranes
3175:{\displaystyle \eta =a\,\cos \,(kx-\omega t)=a\,\cos \,\theta ,} 3102:
To find the dispersion relation, it is sufficient to consider a
1374:
There are three contributions to the energy, due to gravity, to
135:
which are influenced by both the effects of surface tension and
90: 4516:
As a result, the average wave energy per unit horizontal area,
1287: 503:{\displaystyle \omega ^{2}={\frac {\sigma }{\rho }}\,|k|^{3}.} 4278:, so that variation with respect to the only free parameter, 3404:
To tackle the problem of finding the potentials, one may try
4826:. Cambridge University Press. Section 3.1 and Exercise 3.3. 27:
Wave on the surface of a fluid, dominated by surface tension
1920:) from a reference height to the position of the surface, 1449:
of the fluids. It is the most complicated and calls for a
5129:
Tufillaro, N. B.; Ramshankar, R.; Gollub, J. P. (1989).
4659:{\displaystyle {\bar {E}}={\frac {1}{2}}\,\left\,a^{2}.} 131:
A longer wavelength on a fluid interface will result in
31:"Rippled waves" redirects here. Not to be confused with 4865:
See e.g. Safran (1994) for a more detailed description.
2887:–integrations may be approximated by integrating up to 1518: 604: 560: 4681: 4565: 4522: 4383: 4345: 4304: 4284: 4233: 4076: 4043: 4016: 3996: 3964: 3955:
The dispersion relation can now be obtained from the
3718: 3670: 3417: 3380: 3315: 3255: 3214: 3191: 3119: 2948: 2919: 2893: 2857: 2837: 2793: 2757: 2698: 2651: 2464: 2174: 2142: 1976: 1926: 1895: 1869: 1842: 1822: 1785: 1754: 1693: 1646: 1618: 1595: 1554: 1534: 1502: 1478: 1428: 1408: 1388: 1327: 1300: 1139: 1109: 1082: 1053: 996: 916: 879: 850: 830: 806: 672: 603: 559: 528: 452: 408: 380: 355: 331: 307: 283: 203: 2635:{\displaystyle T={\frac {1}{2}}\iint dx\,dy\;\left.} 1745:
Three contributions to the energy are involved: the
590:{\displaystyle \scriptstyle {\sqrt{g\sigma /\rho }}} 4779:
Light breeze ripples in the surface water of a lake
4213:{\displaystyle L={\frac {1}{4}}\lefta^{2}\lambda .} 1464:The resulting equation for the potential (which is 4693: 4658: 4548: 4502: 4366: 4331: 4290: 4270: 4212: 4059: 4029: 4002: 3982: 3944: 3693: 3653: 3392: 3366: 3301: 3238: 3197: 3174: 3091: 2931: 2905: 2868: 2843: 2820: 2779: 2736: 2684: 2634: 2433: 2154: 2125: 1959: 1912: 1881: 1855: 1828: 1801: 1767: 1731: 1679: 1632: 1604: 1565: 1540: 1508: 1484: 1434: 1414: 1394: 1340: 1313: 1275: 1122: 1095: 1059: 1019: 964: 902: 861: 836: 812: 789: 642: 589: 545: 502: 435: 386: 366: 337: 313: 289: 266: 4223:For sinusoidal waves and linear wave theory, the 1355:which corresponds to the minimal group velocity. 5131:"Order-disorder transition in capillary ripples" 1496:regimes to be dispersive, both at low values of 1321:is found to be 1.7 cm (0.67 in), and 1027:), only the first term is relevant and one has 194:The dispersion relation for capillary waves is 81:impacts on the interface between water and air. 4973:Proceedings of the London Mathematical Society 4824:Fluid Mechanics, a short course for physicists 2444:where the first equality is the area in this ( 4010:the sum of the potential energies by gravity 965:{\displaystyle (\rho -\rho ')/(\rho +\rho ')} 597:as a function of inverse relative wavelength 8: 5086:(2nd ed.). Cambridge University Press. 5064:(6th ed.). Cambridge University Press. 4810:Dingemans (1997), Section 2.1.1, p. 45. 436:{\displaystyle \lambda ={\frac {2\pi }{k}}.} 2136:assuming the mean interface position is at 5103:Water wave propagation over uneven bottoms 4930: 4928: 3106:wave on the interface, propagating in the 3020: 3016: 2981: 2584: 2527: 2497: 2344: 2212: 2109: 2030: 2008: 4900: 4898: 4888: 4886: 4884: 4882: 4880: 4812:Phillips (1977), Section 3.2, p. 37. 4680: 4647: 4642: 4631: 4617: 4591: 4581: 4567: 4566: 4564: 4538: 4521: 4486: 4481: 4458: 4451: 4415: 4405: 4397: 4388: 4382: 4344: 4303: 4283: 4262: 4232: 4198: 4183: 4139: 4131: 4124: 4118: 4083: 4075: 4048: 4042: 4021: 4015: 3995: 3963: 3926: 3914: 3906: 3899: 3893: 3863: 3837: 3827: 3810: 3797: 3777: 3740: 3727: 3719: 3717: 3705:–direction, and over a unit width in the 3683: 3669: 3640: 3636: 3629: 3619: 3611: 3607: 3602: 3593: 3585: 3579: 3523: 3519: 3512: 3502: 3494: 3490: 3485: 3476: 3468: 3462: 3418: 3416: 3379: 3344: 3316: 3314: 3279: 3256: 3254: 3213: 3190: 3165: 3161: 3133: 3129: 3118: 3070: 3069: 3039: 3038: 3029: 2996: 2995: 2991: 2974: 2955: 2947: 2939:), the kinetic energy can be written as: 2918: 2892: 2856: 2836: 2798: 2792: 2762: 2756: 2697: 2650: 2618: 2600: 2593: 2569: 2564: 2551: 2538: 2531: 2515: 2507: 2490: 2471: 2463: 2417: 2393: 2379: 2355: 2337: 2315: 2293: 2269: 2255: 2231: 2218: 2205: 2180: 2179: 2173: 2141: 2114: 2102: 2060: 2018: 2013: 2001: 1982: 1981: 1975: 1925: 1894: 1868: 1847: 1841: 1821: 1790: 1784: 1759: 1753: 1692: 1645: 1617: 1594: 1553: 1533: 1501: 1477: 1427: 1407: 1387: 1332: 1326: 1305: 1299: 1220: 1213: 1204: 1194: 1159: 1144: 1138: 1114: 1108: 1087: 1081: 1052: 1009: 995: 937: 915: 878: 849: 829: 805: 773: 746: 704: 694: 686: 677: 671: 620: 615: 605: 602: 579: 570: 561: 558: 527: 491: 486: 477: 476: 466: 457: 451: 415: 407: 379: 354: 330: 306: 282: 255: 250: 241: 240: 217: 208: 202: 3408:, when both fields can be expressed as: 4996:, MacMillan, 2nd revised edition, 1894. 4856:Addison-Wesley. Volume I, Chapter 51-4. 4789: 4754: 553:). Phase and group velocity divided by 4849:, R.B. Leighton, and M. Sands (1963). 4797: 4795: 4793: 1492:outside the parenthesis, which causes 374:the density of the lighter fluid and 7: 2821:{\displaystyle \nabla ^{2}\Phi '=0.} 1445:The third contribution involves the 4271:{\displaystyle L=D(\omega ,k)a^{2}} 3239:{\displaystyle \theta =kx-\omega t} 2451:The last contribution involves the 1348:is 0.23 m/s (0.75 ft/s). 178:describes the relationship between 128:in excess of 0.2–0.3 meter/second. 5177:Capillary waves entry at sklogwiki 3535: 3422: 3355: 3347: 3332: 3323: 3319: 3290: 3282: 3267: 3262: 3259: 3055: 3046: 3042: 3031: 3007: 3002: 2999: 2992: 2805: 2795: 2780:{\displaystyle \nabla ^{2}\Phi =0} 2768: 2759: 2606: 2601: 2573: 2543: 2539: 2511: 2404: 2396: 2366: 2358: 2280: 2272: 2242: 2234: 2184: 2181: 1983: 1619: 1596: 1031:. In this limit, the waves have a 54:Capillary waves (ripples) in water 25: 4298:, gives the dispersion relation 903:{\displaystyle (\rho >\rho ')} 4801:Lamb (1994), §267, page 458–460. 4772: 4757: 3694:{\displaystyle \lambda =2\pi /k} 1581:, and the flow is assumed to be 1020:{\displaystyle k=2\pi /\lambda } 147:have a still longer wavelength. 105:are dominated by the effects of 38:For ripples in electricity, see 5084:The dynamics of the upper ocean 4852:The Feynman Lectures on Physics 2737:{\displaystyle \phi '(x,y,z,t)} 1732:{\displaystyle \phi '(x,y,z,t)} 1199: 1193: 116:, and are often referred to as 4614: 4597: 4572: 4549:{\displaystyle (T+V)/\lambda } 4535: 4523: 4406: 4398: 4361: 4349: 4332:{\displaystyle D(\omega ,k)=0} 4320: 4308: 4255: 4243: 4167: 4150: 4140: 4132: 4115: 4098: 3915: 3907: 3890: 3873: 3767: 3750: 3620: 3612: 3594: 3586: 3566: 3542: 3503: 3495: 3477: 3469: 3449: 3425: 3152: 3134: 2731: 2707: 2685:{\displaystyle \phi (x,y,z,t)} 2679: 2655: 2087: 2070: 2048: 2031: 1960:{\displaystyle z=\eta (x,y,t)} 1954: 1936: 1726: 1702: 1680:{\displaystyle \phi (x,y,z,t)} 1674: 1650: 1239: 1222: 1183: 1166: 959: 942: 934: 917: 897: 880: 695: 687: 634: 625: 487: 478: 251: 242: 112:Capillary waves are common in 1: 1633:{\displaystyle \nabla \phi '} 990:For large wavelengths (small 4965:Lord Rayleigh (J. W. Strutt) 4764:Ripples on water created by 4367:{\displaystyle D(\omega ,k)} 1605:{\displaystyle \nabla \phi } 1314:{\displaystyle \lambda _{m}} 1096:{\displaystyle \lambda _{m}} 77:Capillary waves produced by 5202:Oceanographical terminology 4874:Lamb (1994), §174 and §230. 820:is the acceleration due to 5218: 5155:10.1103/PhysRevLett.62.422 5014:Journal of Fluid Mechanics 4989:Reprinted as Appendix in: 4940:Linear and nonlinear waves 983: 29: 5101:Dingemans, M. W. (1997). 5034:10.1017/S0022112063000641 4225:phase–averaged Lagrangian 972:in the first term is the 4720:Dispersion (water waves) 1913:{\displaystyle \rho 'gz} 546:{\displaystyle \rho '=0} 5135:Physical Review Letters 5120:Safran, Samuel (1994). 3406:separation of variables 2932:{\displaystyle z=\eta } 1882:{\displaystyle \rho gz} 1779:, the potential energy 1415:{\displaystyle \sigma } 514:Gravity–capillary waves 349:of the heavier fluid, 314:{\displaystyle \sigma } 290:{\displaystyle \omega } 190:Capillary waves, proper 133:gravity–capillary waves 44:Ripple (disambiguation) 5010:Longuet-Higgins, M. S. 4985:10.1112/plms/s1-9.1.21 4969:"On progressive waves" 4942:. Wiley-Interscience. 4822:Falkovich, G. (2011). 4735:Thermal capillary wave 4695: 4660: 4550: 4504: 4368: 4333: 4292: 4272: 4227:is always of the form 4214: 4061: 4060:{\displaystyle V_{st}} 4031: 4004: 3984: 3946: 3695: 3655: 3394: 3368: 3303: 3240: 3199: 3176: 3093: 2933: 2907: 2870: 2869:{\displaystyle \phi '} 2845: 2822: 2781: 2738: 2686: 2636: 2435: 2156: 2127: 1961: 1914: 1883: 1857: 1836:of the flow. The part 1830: 1803: 1802:{\displaystyle V_{st}} 1769: 1733: 1681: 1634: 1606: 1567: 1566:{\displaystyle \rho '} 1542: 1510: 1486: 1436: 1416: 1396: 1342: 1315: 1277: 1124: 1097: 1071:Phase velocity minimum 1061: 1021: 966: 904: 863: 862:{\displaystyle \rho '} 838: 814: 791: 659: 644: 591: 547: 504: 437: 388: 368: 367:{\displaystyle \rho '} 339: 315: 291: 268: 139:, as well as by fluid 82: 70: 62:Ripples on Lifjord in 55: 42:. For other uses, see 4696: 4661: 4551: 4505: 4369: 4334: 4293: 4273: 4215: 4062: 4032: 4030:{\displaystyle V_{g}} 4005: 3985: 3983:{\displaystyle L=T-V} 3947: 3696: 3656: 3395: 3369: 3304: 3241: 3200: 3177: 3094: 2934: 2908: 2871: 2846: 2844:{\displaystyle \phi } 2823: 2782: 2739: 2687: 2637: 2436: 2157: 2128: 1962: 1915: 1884: 1858: 1856:{\displaystyle V_{g}} 1831: 1804: 1770: 1768:{\displaystyle V_{g}} 1734: 1682: 1640:, respectively. Here 1635: 1607: 1585:. Then the flows are 1568: 1543: 1541:{\displaystyle \rho } 1511: 1487: 1437: 1417: 1397: 1343: 1341:{\displaystyle c_{m}} 1316: 1278: 1125: 1123:{\displaystyle c_{m}} 1098: 1062: 1043:Capillary wave regime 1022: 984:Further information: 967: 905: 864: 839: 837:{\displaystyle \rho } 815: 792: 645: 592: 548: 521: 505: 438: 389: 369: 340: 338:{\displaystyle \rho } 316: 292: 269: 76: 61: 53: 18:Cat's paw (wave) 4679: 4563: 4520: 4381: 4343: 4302: 4282: 4231: 4074: 4041: 4037:and surface tension 4014: 3994: 3962: 3716: 3709:–direction, become: 3668: 3415: 3378: 3313: 3253: 3212: 3189: 3117: 2946: 2917: 2891: 2855: 2835: 2791: 2755: 2696: 2649: 2462: 2172: 2140: 1974: 1924: 1893: 1867: 1840: 1820: 1783: 1752: 1691: 1644: 1616: 1593: 1552: 1532: 1500: 1476: 1426: 1406: 1386: 1325: 1298: 1137: 1107: 1080: 1051: 994: 914: 877: 848: 828: 804: 670: 601: 557: 526: 450: 406: 378: 353: 329: 305: 281: 201: 93:traveling along the 5147:1989PhRvL..62..422T 5026:1963JFM....16..138L 4694:{\displaystyle T=V} 4513:the same as above. 3393:{\displaystyle z=0} 2906:{\displaystyle z=0} 2577: 2520: 2155:{\displaystyle z=0} 2023: 1741:velocity potentials 1470:Ocean surface waves 1457:– the flow is then 980:Gravity wave regime 176:dispersion relation 170:Dispersion relation 156:ocean surface waves 64:Øksnes Municipality 40:Ripple (electrical) 4922:Lamb (1994), §230. 4892:Lamb (1994), §266. 4745:Wave-formed ripple 4730:Ocean surface wave 4691: 4656: 4546: 4500: 4364: 4329: 4288: 4268: 4210: 4057: 4027: 4000: 3980: 3942: 3940: 3691: 3651: 3649: 3390: 3364: 3309:  and   3299: 3236: 3195: 3172: 3089: 2929: 2903: 2866: 2841: 2818: 2787:  and   2777: 2734: 2682: 2632: 2560: 2503: 2431: 2152: 2123: 2009: 1957: 1910: 1879: 1853: 1826: 1799: 1765: 1729: 1677: 1630: 1602: 1563: 1538: 1506: 1482: 1432: 1412: 1392: 1338: 1311: 1273: 1120: 1093: 1057: 1017: 962: 900: 873:of the two fluids 859: 834: 810: 787: 660: 640: 639: 587: 586: 543: 500: 433: 384: 364: 335: 311: 287: 264: 97:of a fluid, whose 83: 71: 56: 5124:. Addison-Wesley. 5071:978-0-521-45868-9 4954:See section 11.7. 4904:Lamb (1994), §61. 4833:978-1-107-00575-4 4706: 4705: 4589: 4575: 4479: 4449: 4291:{\displaystyle a} 4145: 4091: 4003:{\displaystyle V} 3920: 3871: 3818: 3800: 3748: 3730: 3605: 3599: 3488: 3482: 3362: 3339: 3297: 3274: 3198:{\displaystyle a} 3073: 3062: 3014: 2963: 2744:must satisfy the 2479: 2411: 2373: 2323: 2299: 2287: 2249: 2068: 1829:{\displaystyle T} 1509:{\displaystyle k} 1485:{\displaystyle k} 1435:{\displaystyle g} 1395:{\displaystyle g} 1268: 1267: 1248: 1197: 1191: 1190: 1060:{\displaystyle k} 813:{\displaystyle g} 767: 738: 637: 613: 584: 474: 428: 387:{\displaystyle k} 299:angular frequency 238: 16:(Redirected from 5209: 5166: 5125: 5116: 5097: 5075: 5053: 4997: 4988: 4961: 4955: 4953: 4932: 4923: 4920: 4914: 4913:Lamb (1994), §20 4911: 4905: 4902: 4893: 4890: 4875: 4872: 4866: 4863: 4857: 4844: 4838: 4837: 4819: 4813: 4808: 4802: 4799: 4776: 4761: 4715:Capillary action 4700: 4698: 4697: 4692: 4665: 4663: 4662: 4657: 4652: 4651: 4641: 4637: 4636: 4635: 4613: 4590: 4582: 4577: 4576: 4568: 4555: 4553: 4552: 4547: 4542: 4509: 4507: 4506: 4501: 4496: 4492: 4491: 4490: 4480: 4478: 4477: 4459: 4450: 4448: 4447: 4432: 4431: 4416: 4409: 4401: 4393: 4392: 4373: 4371: 4370: 4365: 4338: 4336: 4335: 4330: 4297: 4295: 4294: 4289: 4277: 4275: 4274: 4269: 4267: 4266: 4219: 4217: 4216: 4211: 4203: 4202: 4193: 4189: 4188: 4187: 4166: 4146: 4144: 4143: 4135: 4129: 4128: 4119: 4114: 4092: 4084: 4066: 4064: 4063: 4058: 4056: 4055: 4036: 4034: 4033: 4028: 4026: 4025: 4009: 4007: 4006: 4001: 3989: 3987: 3986: 3981: 3951: 3949: 3948: 3943: 3941: 3931: 3930: 3921: 3919: 3918: 3910: 3904: 3903: 3894: 3889: 3872: 3864: 3842: 3841: 3832: 3831: 3819: 3811: 3802: 3801: 3798: 3782: 3781: 3766: 3749: 3741: 3732: 3731: 3728: 3700: 3698: 3697: 3692: 3687: 3660: 3658: 3657: 3652: 3650: 3628: 3627: 3623: 3615: 3606: 3603: 3600: 3598: 3597: 3589: 3580: 3541: 3511: 3510: 3506: 3498: 3489: 3486: 3483: 3481: 3480: 3472: 3463: 3399: 3397: 3396: 3391: 3373: 3371: 3370: 3365: 3363: 3361: 3353: 3345: 3340: 3338: 3330: 3329: 3317: 3308: 3306: 3305: 3300: 3298: 3296: 3288: 3280: 3275: 3273: 3265: 3257: 3245: 3243: 3242: 3237: 3204: 3202: 3201: 3196: 3181: 3179: 3178: 3173: 3098: 3096: 3095: 3090: 3085: 3084: 3074: 3071: 3068: 3064: 3063: 3061: 3053: 3052: 3040: 3037: 3028: 3015: 3013: 3005: 2997: 2964: 2956: 2938: 2936: 2935: 2930: 2912: 2910: 2909: 2904: 2881:Green's identity 2875: 2873: 2872: 2867: 2865: 2850: 2848: 2847: 2842: 2827: 2825: 2824: 2819: 2811: 2803: 2802: 2786: 2784: 2783: 2778: 2767: 2766: 2746:Laplace equation 2743: 2741: 2740: 2735: 2706: 2691: 2689: 2688: 2683: 2641: 2639: 2638: 2633: 2628: 2624: 2623: 2622: 2617: 2613: 2612: 2604: 2592: 2576: 2568: 2556: 2555: 2550: 2546: 2542: 2519: 2514: 2480: 2472: 2440: 2438: 2437: 2432: 2427: 2423: 2422: 2421: 2416: 2412: 2410: 2402: 2394: 2384: 2383: 2378: 2374: 2372: 2364: 2356: 2324: 2316: 2311: 2307: 2300: 2298: 2297: 2292: 2288: 2286: 2278: 2270: 2260: 2259: 2254: 2250: 2248: 2240: 2232: 2219: 2189: 2188: 2187: 2161: 2159: 2158: 2153: 2132: 2130: 2129: 2124: 2119: 2118: 2086: 2069: 2061: 2047: 2022: 2017: 1988: 1987: 1986: 1966: 1964: 1963: 1958: 1919: 1917: 1916: 1911: 1903: 1888: 1886: 1885: 1880: 1862: 1860: 1859: 1854: 1852: 1851: 1835: 1833: 1832: 1827: 1808: 1806: 1805: 1800: 1798: 1797: 1774: 1772: 1771: 1766: 1764: 1763: 1747:potential energy 1738: 1736: 1735: 1730: 1701: 1686: 1684: 1683: 1678: 1639: 1637: 1636: 1631: 1629: 1611: 1609: 1608: 1603: 1572: 1570: 1569: 1564: 1562: 1547: 1545: 1544: 1539: 1519: 1515: 1513: 1512: 1507: 1491: 1489: 1488: 1483: 1466:Laplace equation 1447:kinetic energies 1441: 1439: 1438: 1433: 1421: 1419: 1418: 1413: 1401: 1399: 1398: 1393: 1347: 1345: 1344: 1339: 1337: 1336: 1320: 1318: 1317: 1312: 1310: 1309: 1282: 1280: 1279: 1274: 1269: 1266: 1265: 1250: 1249: 1238: 1221: 1215: 1214: 1209: 1208: 1198: 1195: 1192: 1189: 1182: 1161: 1160: 1149: 1148: 1129: 1127: 1126: 1121: 1119: 1118: 1102: 1100: 1099: 1094: 1092: 1091: 1066: 1064: 1063: 1058: 1026: 1024: 1023: 1018: 1013: 986:Airy wave theory 971: 969: 968: 963: 958: 941: 933: 909: 907: 906: 901: 896: 868: 866: 865: 860: 858: 843: 841: 840: 835: 819: 817: 816: 811: 796: 794: 793: 788: 783: 779: 778: 777: 768: 766: 765: 747: 739: 737: 736: 721: 720: 705: 698: 690: 682: 681: 649: 647: 646: 641: 638: 624: 616: 614: 606: 596: 594: 593: 588: 585: 583: 578: 574: 562: 552: 550: 549: 544: 536: 509: 507: 506: 501: 496: 495: 490: 481: 475: 467: 462: 461: 442: 440: 439: 434: 429: 424: 416: 393: 391: 390: 385: 373: 371: 370: 365: 363: 344: 342: 341: 336: 320: 318: 317: 312: 296: 294: 293: 288: 273: 271: 270: 265: 260: 259: 254: 245: 239: 237: 236: 218: 213: 212: 47: 36: 21: 5217: 5216: 5212: 5211: 5210: 5208: 5207: 5206: 5182: 5181: 5173: 5128: 5119: 5113: 5100: 5094: 5080:Phillips, O. M. 5078: 5072: 5056: 5008: 5005: 5000: 4991:Theory of Sound 4963: 4962: 4958: 4950: 4934: 4933: 4926: 4921: 4917: 4912: 4908: 4903: 4896: 4891: 4878: 4873: 4869: 4864: 4860: 4845: 4841: 4834: 4821: 4820: 4816: 4811: 4809: 4805: 4800: 4791: 4787: 4780: 4777: 4768: 4762: 4753: 4711: 4677: 4676: 4643: 4627: 4606: 4596: 4592: 4561: 4560: 4518: 4517: 4482: 4470: 4463: 4440: 4433: 4424: 4417: 4414: 4410: 4384: 4379: 4378: 4341: 4340: 4300: 4299: 4280: 4279: 4258: 4229: 4228: 4194: 4179: 4159: 4130: 4120: 4107: 4097: 4093: 4072: 4071: 4044: 4039: 4038: 4017: 4012: 4011: 3992: 3991: 3960: 3959: 3939: 3938: 3922: 3905: 3895: 3882: 3856: 3850: 3849: 3833: 3823: 3803: 3793: 3790: 3789: 3773: 3759: 3733: 3723: 3714: 3713: 3666: 3665: 3648: 3647: 3601: 3584: 3569: 3534: 3531: 3530: 3484: 3467: 3452: 3413: 3412: 3376: 3375: 3354: 3346: 3331: 3322: 3318: 3311: 3310: 3289: 3281: 3266: 3258: 3251: 3250: 3210: 3209: 3187: 3186: 3185:with amplitude 3115: 3114: 3054: 3045: 3041: 3030: 3021: 3006: 2998: 2987: 2983: 2982: 2944: 2943: 2915: 2914: 2889: 2888: 2858: 2853: 2852: 2833: 2832: 2804: 2794: 2789: 2788: 2758: 2753: 2752: 2699: 2694: 2693: 2647: 2646: 2605: 2599: 2595: 2594: 2585: 2537: 2533: 2532: 2502: 2498: 2460: 2459: 2403: 2395: 2389: 2388: 2365: 2357: 2351: 2350: 2349: 2345: 2279: 2271: 2265: 2264: 2241: 2233: 2227: 2226: 2217: 2213: 2175: 2170: 2169: 2138: 2137: 2110: 2079: 2040: 1977: 1972: 1971: 1922: 1921: 1896: 1891: 1890: 1865: 1864: 1843: 1838: 1837: 1818: 1817: 1811:surface tension 1786: 1781: 1780: 1755: 1750: 1749: 1694: 1689: 1688: 1642: 1641: 1622: 1614: 1613: 1591: 1590: 1555: 1550: 1549: 1530: 1529: 1498: 1497: 1474: 1473: 1424: 1423: 1404: 1403: 1384: 1383: 1376:surface tension 1365:Richard Feynman 1361: 1328: 1323: 1322: 1301: 1296: 1295: 1258: 1251: 1231: 1216: 1200: 1175: 1165: 1140: 1135: 1134: 1110: 1105: 1104: 1083: 1078: 1077: 1073: 1049: 1048: 1047:Shorter (large 1045: 992: 991: 988: 982: 951: 926: 912: 911: 889: 875: 874: 851: 846: 845: 826: 825: 802: 801: 769: 758: 751: 729: 722: 713: 706: 703: 699: 673: 668: 667: 657: 655: 653: 651: 599: 598: 563: 555: 554: 529: 524: 523: 516: 485: 453: 448: 447: 417: 404: 403: 376: 375: 356: 351: 350: 327: 326: 323:surface tension 303: 302: 279: 278: 249: 229: 222: 204: 199: 198: 192: 172: 107:surface tension 48: 37: 30: 28: 23: 22: 15: 12: 11: 5: 5215: 5213: 5205: 5204: 5199: 5194: 5192:Fluid dynamics 5184: 5183: 5180: 5179: 5172: 5171:External links 5169: 5168: 5167: 5141:(4): 422–425. 5126: 5117: 5111: 5098: 5092: 5076: 5070: 5054: 5020:(1): 138–159. 5004: 5001: 4999: 4998: 4956: 4948: 4936:Whitham, G. B. 4924: 4915: 4906: 4894: 4876: 4867: 4858: 4839: 4832: 4814: 4803: 4788: 4786: 4783: 4782: 4781: 4778: 4771: 4769: 4766:water striders 4763: 4756: 4752: 4749: 4748: 4747: 4742: 4740:Two-phase flow 4737: 4732: 4727: 4722: 4717: 4710: 4707: 4704: 4703: 4690: 4687: 4684: 4667: 4666: 4655: 4650: 4646: 4640: 4634: 4630: 4626: 4623: 4620: 4616: 4612: 4609: 4605: 4602: 4599: 4595: 4588: 4585: 4580: 4574: 4571: 4545: 4541: 4537: 4534: 4531: 4528: 4525: 4511: 4510: 4499: 4495: 4489: 4485: 4476: 4473: 4469: 4466: 4462: 4457: 4454: 4446: 4443: 4439: 4436: 4430: 4427: 4423: 4420: 4413: 4408: 4404: 4400: 4396: 4391: 4387: 4363: 4360: 4357: 4354: 4351: 4348: 4339:. In our case 4328: 4325: 4322: 4319: 4316: 4313: 4310: 4307: 4287: 4265: 4261: 4257: 4254: 4251: 4248: 4245: 4242: 4239: 4236: 4221: 4220: 4209: 4206: 4201: 4197: 4192: 4186: 4182: 4178: 4175: 4172: 4169: 4165: 4162: 4158: 4155: 4152: 4149: 4142: 4138: 4134: 4127: 4123: 4117: 4113: 4110: 4106: 4103: 4100: 4096: 4090: 4087: 4082: 4079: 4054: 4051: 4047: 4024: 4020: 3999: 3979: 3976: 3973: 3970: 3967: 3953: 3952: 3937: 3934: 3929: 3925: 3917: 3913: 3909: 3902: 3898: 3892: 3888: 3885: 3881: 3878: 3875: 3870: 3867: 3862: 3859: 3857: 3855: 3852: 3851: 3848: 3845: 3840: 3836: 3830: 3826: 3822: 3817: 3814: 3809: 3806: 3804: 3796: 3792: 3791: 3788: 3785: 3780: 3776: 3772: 3769: 3765: 3762: 3758: 3755: 3752: 3747: 3744: 3739: 3736: 3734: 3726: 3722: 3721: 3690: 3686: 3682: 3679: 3676: 3673: 3662: 3661: 3646: 3643: 3639: 3635: 3632: 3626: 3622: 3618: 3614: 3610: 3596: 3592: 3588: 3583: 3578: 3575: 3572: 3570: 3568: 3565: 3562: 3559: 3556: 3553: 3550: 3547: 3544: 3540: 3537: 3533: 3532: 3529: 3526: 3522: 3518: 3515: 3509: 3505: 3501: 3497: 3493: 3479: 3475: 3471: 3466: 3461: 3458: 3455: 3453: 3451: 3448: 3445: 3442: 3439: 3436: 3433: 3430: 3427: 3424: 3421: 3420: 3402: 3401: 3389: 3386: 3383: 3360: 3357: 3352: 3349: 3343: 3337: 3334: 3328: 3325: 3321: 3295: 3292: 3287: 3284: 3278: 3272: 3269: 3264: 3261: 3235: 3232: 3229: 3226: 3223: 3220: 3217: 3194: 3183: 3182: 3171: 3168: 3164: 3160: 3157: 3154: 3151: 3148: 3145: 3142: 3139: 3136: 3132: 3128: 3125: 3122: 3100: 3099: 3088: 3083: 3080: 3077: 3067: 3060: 3057: 3051: 3048: 3044: 3036: 3033: 3027: 3024: 3019: 3012: 3009: 3004: 3001: 2994: 2990: 2986: 2980: 2977: 2973: 2970: 2967: 2962: 2959: 2954: 2951: 2928: 2925: 2922: 2902: 2899: 2896: 2864: 2861: 2840: 2829: 2828: 2817: 2814: 2810: 2807: 2801: 2797: 2776: 2773: 2770: 2765: 2761: 2733: 2730: 2727: 2724: 2721: 2718: 2715: 2712: 2709: 2705: 2702: 2681: 2678: 2675: 2672: 2669: 2666: 2663: 2660: 2657: 2654: 2643: 2642: 2631: 2627: 2621: 2616: 2611: 2608: 2603: 2598: 2591: 2588: 2583: 2580: 2575: 2572: 2567: 2563: 2559: 2554: 2549: 2545: 2541: 2536: 2530: 2526: 2523: 2518: 2513: 2510: 2506: 2501: 2496: 2493: 2489: 2486: 2483: 2478: 2475: 2470: 2467: 2455:of the fluid: 2453:kinetic energy 2442: 2441: 2430: 2426: 2420: 2415: 2409: 2406: 2401: 2398: 2392: 2387: 2382: 2377: 2371: 2368: 2363: 2360: 2354: 2348: 2343: 2340: 2336: 2333: 2330: 2327: 2322: 2319: 2314: 2310: 2306: 2303: 2296: 2291: 2285: 2282: 2277: 2274: 2268: 2263: 2258: 2253: 2247: 2244: 2239: 2236: 2230: 2225: 2222: 2216: 2211: 2208: 2204: 2201: 2198: 2195: 2192: 2186: 2183: 2178: 2151: 2148: 2145: 2134: 2133: 2122: 2117: 2113: 2108: 2105: 2101: 2098: 2095: 2092: 2089: 2085: 2082: 2078: 2075: 2072: 2067: 2064: 2059: 2056: 2053: 2050: 2046: 2043: 2039: 2036: 2033: 2029: 2026: 2021: 2016: 2012: 2007: 2004: 2000: 1997: 1994: 1991: 1985: 1980: 1956: 1953: 1950: 1947: 1944: 1941: 1938: 1935: 1932: 1929: 1909: 1906: 1902: 1899: 1878: 1875: 1872: 1850: 1846: 1825: 1815:kinetic energy 1796: 1793: 1789: 1762: 1758: 1728: 1725: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1700: 1697: 1676: 1673: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1628: 1625: 1621: 1601: 1598: 1579:incompressible 1561: 1558: 1537: 1524: 1523: 1505: 1481: 1431: 1411: 1391: 1360: 1357: 1335: 1331: 1308: 1304: 1284: 1283: 1272: 1264: 1261: 1257: 1254: 1247: 1244: 1241: 1237: 1234: 1230: 1227: 1224: 1219: 1212: 1207: 1203: 1188: 1185: 1181: 1178: 1174: 1171: 1168: 1164: 1158: 1155: 1152: 1147: 1143: 1117: 1113: 1090: 1086: 1072: 1069: 1056: 1044: 1041: 1037:phase velocity 1033:group velocity 1016: 1012: 1008: 1005: 1002: 999: 981: 978: 961: 957: 954: 950: 947: 944: 940: 936: 932: 929: 925: 922: 919: 899: 895: 892: 888: 885: 882: 857: 854: 833: 809: 798: 797: 786: 782: 776: 772: 764: 761: 757: 754: 750: 745: 742: 735: 732: 728: 725: 719: 716: 712: 709: 702: 697: 693: 689: 685: 680: 676: 636: 633: 630: 627: 623: 619: 612: 609: 582: 577: 573: 569: 566: 542: 539: 535: 532: 515: 512: 511: 510: 499: 494: 489: 484: 480: 473: 470: 465: 460: 456: 432: 427: 423: 420: 414: 411: 383: 362: 359: 334: 310: 286: 275: 274: 263: 258: 253: 248: 244: 235: 232: 228: 225: 221: 216: 211: 207: 191: 188: 171: 168: 103:phase velocity 95:phase boundary 87:capillary wave 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5214: 5203: 5200: 5198: 5195: 5193: 5190: 5189: 5187: 5178: 5175: 5174: 5170: 5164: 5160: 5156: 5152: 5148: 5144: 5140: 5136: 5132: 5127: 5123: 5118: 5114: 5112:981-02-0427-2 5108: 5104: 5099: 5095: 5093:0-521-29801-6 5089: 5085: 5081: 5077: 5073: 5067: 5063: 5062:Hydrodynamics 5059: 5055: 5051: 5047: 5043: 5039: 5035: 5031: 5027: 5023: 5019: 5015: 5011: 5007: 5006: 5002: 4995: 4992: 4986: 4982: 4978: 4974: 4970: 4966: 4960: 4957: 4951: 4949:0-471-94090-9 4945: 4941: 4937: 4931: 4929: 4925: 4919: 4916: 4910: 4907: 4901: 4899: 4895: 4889: 4887: 4885: 4883: 4881: 4877: 4871: 4868: 4862: 4859: 4855: 4853: 4848: 4843: 4840: 4835: 4829: 4825: 4818: 4815: 4807: 4804: 4798: 4796: 4794: 4790: 4784: 4775: 4770: 4767: 4760: 4755: 4750: 4746: 4743: 4741: 4738: 4736: 4733: 4731: 4728: 4726: 4723: 4721: 4718: 4716: 4713: 4712: 4708: 4702: 4688: 4685: 4682: 4674: 4673: 4672:equipartition 4653: 4648: 4644: 4638: 4632: 4628: 4624: 4621: 4618: 4610: 4607: 4603: 4600: 4593: 4586: 4583: 4578: 4569: 4559: 4558: 4557: 4543: 4539: 4532: 4529: 4526: 4514: 4497: 4493: 4487: 4483: 4474: 4471: 4467: 4464: 4460: 4455: 4452: 4444: 4441: 4437: 4434: 4428: 4425: 4421: 4418: 4411: 4402: 4394: 4389: 4385: 4377: 4376: 4375: 4358: 4355: 4352: 4346: 4326: 4323: 4317: 4314: 4311: 4305: 4285: 4263: 4259: 4252: 4249: 4246: 4240: 4237: 4234: 4226: 4207: 4204: 4199: 4195: 4190: 4184: 4180: 4176: 4173: 4170: 4163: 4160: 4156: 4153: 4147: 4136: 4125: 4121: 4111: 4108: 4104: 4101: 4094: 4088: 4085: 4080: 4077: 4070: 4069: 4068: 4052: 4049: 4045: 4022: 4018: 3997: 3977: 3974: 3971: 3968: 3965: 3958: 3935: 3932: 3927: 3923: 3911: 3900: 3896: 3886: 3883: 3879: 3876: 3868: 3865: 3860: 3858: 3853: 3846: 3843: 3838: 3834: 3828: 3824: 3820: 3815: 3812: 3807: 3805: 3794: 3786: 3783: 3778: 3774: 3770: 3763: 3760: 3756: 3753: 3745: 3742: 3737: 3735: 3724: 3712: 3711: 3710: 3708: 3704: 3688: 3684: 3680: 3677: 3674: 3671: 3644: 3641: 3637: 3633: 3630: 3624: 3616: 3608: 3590: 3581: 3576: 3573: 3571: 3563: 3560: 3557: 3554: 3551: 3548: 3545: 3538: 3527: 3524: 3520: 3516: 3513: 3507: 3499: 3491: 3473: 3464: 3459: 3456: 3454: 3446: 3443: 3440: 3437: 3434: 3431: 3428: 3411: 3410: 3409: 3407: 3387: 3384: 3381: 3358: 3350: 3341: 3335: 3326: 3293: 3285: 3276: 3270: 3249: 3248: 3247: 3233: 3230: 3227: 3224: 3221: 3218: 3215: 3208: 3192: 3169: 3166: 3162: 3158: 3155: 3149: 3146: 3143: 3140: 3137: 3130: 3126: 3123: 3120: 3113: 3112: 3111: 3109: 3105: 3086: 3081: 3078: 3075: 3065: 3058: 3049: 3034: 3025: 3022: 3017: 3010: 2988: 2984: 2978: 2975: 2971: 2968: 2965: 2960: 2957: 2952: 2949: 2942: 2941: 2940: 2926: 2923: 2920: 2900: 2897: 2894: 2886: 2882: 2877: 2862: 2859: 2838: 2815: 2812: 2808: 2799: 2774: 2771: 2763: 2751: 2750: 2749: 2747: 2728: 2725: 2722: 2719: 2716: 2713: 2710: 2703: 2700: 2676: 2673: 2670: 2667: 2664: 2661: 2658: 2652: 2629: 2625: 2619: 2614: 2609: 2596: 2589: 2586: 2581: 2578: 2570: 2565: 2561: 2557: 2552: 2547: 2534: 2528: 2524: 2521: 2516: 2508: 2504: 2499: 2494: 2491: 2487: 2484: 2481: 2476: 2473: 2468: 2465: 2458: 2457: 2456: 2454: 2449: 2447: 2428: 2424: 2418: 2413: 2407: 2399: 2390: 2385: 2380: 2375: 2369: 2361: 2352: 2346: 2341: 2338: 2334: 2331: 2328: 2325: 2320: 2317: 2312: 2308: 2304: 2301: 2294: 2289: 2283: 2275: 2266: 2261: 2256: 2251: 2245: 2237: 2228: 2223: 2220: 2214: 2209: 2206: 2202: 2199: 2196: 2193: 2190: 2176: 2168: 2167: 2166: 2163: 2149: 2146: 2143: 2120: 2115: 2111: 2106: 2103: 2099: 2096: 2093: 2090: 2083: 2080: 2076: 2073: 2065: 2062: 2057: 2054: 2051: 2044: 2041: 2037: 2034: 2027: 2024: 2019: 2014: 2010: 2005: 2002: 1998: 1995: 1992: 1989: 1978: 1970: 1969: 1968: 1951: 1948: 1945: 1942: 1939: 1933: 1930: 1927: 1907: 1904: 1900: 1897: 1876: 1873: 1870: 1848: 1844: 1823: 1816: 1812: 1794: 1791: 1787: 1778: 1760: 1756: 1748: 1742: 1723: 1720: 1717: 1714: 1711: 1708: 1705: 1698: 1695: 1671: 1668: 1665: 1662: 1659: 1656: 1653: 1647: 1626: 1623: 1599: 1588: 1584: 1580: 1576: 1559: 1556: 1535: 1526: 1525: 1521: 1520: 1517: 1503: 1495: 1479: 1471: 1467: 1462: 1460: 1456: 1452: 1448: 1443: 1429: 1409: 1389: 1381: 1380:hydrodynamics 1377: 1372: 1370: 1366: 1358: 1356: 1354: 1349: 1333: 1329: 1306: 1302: 1293: 1289: 1270: 1262: 1259: 1255: 1252: 1245: 1242: 1235: 1232: 1228: 1225: 1217: 1210: 1205: 1201: 1186: 1179: 1176: 1172: 1169: 1162: 1156: 1153: 1150: 1145: 1141: 1133: 1132: 1131: 1115: 1111: 1088: 1084: 1070: 1068: 1054: 1042: 1040: 1038: 1034: 1030: 1029:gravity waves 1014: 1010: 1006: 1003: 1000: 997: 987: 979: 977: 975: 974:Atwood number 955: 952: 948: 945: 938: 930: 927: 923: 920: 910:. The factor 893: 890: 886: 883: 872: 855: 852: 831: 823: 807: 784: 780: 774: 770: 762: 759: 755: 752: 748: 743: 740: 733: 730: 726: 723: 717: 714: 710: 707: 700: 691: 683: 678: 674: 666: 665: 664: 631: 628: 621: 617: 610: 607: 580: 575: 571: 567: 564: 540: 537: 533: 530: 520: 513: 497: 492: 482: 471: 468: 463: 458: 454: 446: 445: 444: 430: 425: 421: 418: 412: 409: 401: 397: 381: 360: 357: 348: 332: 324: 308: 300: 284: 261: 256: 246: 233: 230: 226: 223: 219: 214: 209: 205: 197: 196: 195: 189: 187: 185: 181: 177: 169: 167: 165: 161: 157: 153: 148: 146: 145:gravity waves 142: 138: 134: 129: 127: 123: 119: 115: 110: 108: 104: 100: 96: 92: 88: 80: 75: 69: 65: 60: 52: 45: 41: 34: 19: 5138: 5134: 5121: 5102: 5083: 5061: 5017: 5013: 4993: 4990: 4976: 4972: 4959: 4939: 4918: 4909: 4870: 4861: 4850: 4847:R.P. Feynman 4842: 4823: 4817: 4806: 4670: 4668: 4515: 4512: 4222: 3954: 3706: 3702: 3663: 3403: 3184: 3110:–direction: 3107: 3101: 2884: 2878: 2830: 2644: 2450: 2443: 2164: 2135: 1744: 1583:irrotational 1493: 1463: 1455:irrotational 1451:hydrodynamic 1444: 1373: 1368: 1362: 1350: 1285: 1074: 1046: 989: 871:mass density 799: 661: 276: 193: 173: 151: 149: 132: 130: 117: 111: 86: 84: 33:Rippled wave 5197:Water waves 2913:instead of 1809:due to the 1294:interface, 143:. Ordinary 126:phase speed 5186:Categories 5003:References 4725:Fluid pipe 3957:Lagrangian 3374:  at 3104:sinusoidal 1359:Derivation 400:wavelength 396:wavenumber 180:wavelength 122:wavelength 5050:119740891 5042:1469-7645 4979:: 21–26. 4625:σ 4608:ρ 4604:− 4601:ρ 4573:¯ 4544:λ 4472:ρ 4465:ρ 4461:σ 4442:ρ 4435:ρ 4426:ρ 4422:− 4419:ρ 4386:ω 4353:ω 4312:ω 4247:ω 4205:λ 4177:σ 4174:− 4161:ρ 4157:− 4154:ρ 4148:− 4122:ω 4109:ρ 4102:ρ 3975:− 3933:λ 3897:ω 3884:ρ 3877:ρ 3844:λ 3821:σ 3784:λ 3761:ρ 3757:− 3754:ρ 3681:π 3672:λ 3642:θ 3631:ω 3609:− 3577:− 3536:Φ 3525:θ 3514:ω 3423:Φ 3356:∂ 3351:η 3348:∂ 3333:∂ 3324:Φ 3320:∂ 3291:∂ 3286:η 3283:∂ 3268:∂ 3263:Φ 3260:∂ 3231:ω 3228:− 3216:θ 3205:and wave 3167:θ 3147:ω 3144:− 3121:η 3056:∂ 3047:Φ 3043:∂ 3032:Φ 3023:ρ 3018:− 3008:∂ 3003:Φ 3000:∂ 2993:Φ 2989:ρ 2966:∬ 2953:≈ 2927:η 2860:ϕ 2839:ϕ 2806:Φ 2796:∇ 2769:Φ 2760:∇ 2701:ϕ 2653:ϕ 2607:Φ 2602:∇ 2587:ρ 2574:∞ 2566:η 2562:∫ 2544:Φ 2540:∇ 2529:ρ 2517:η 2512:∞ 2509:− 2505:∫ 2482:∬ 2405:∂ 2400:η 2397:∂ 2367:∂ 2362:η 2359:∂ 2329:∬ 2326:σ 2313:≈ 2302:− 2281:∂ 2276:η 2273:∂ 2243:∂ 2238:η 2235:∂ 2197:∬ 2194:σ 2112:η 2094:∬ 2081:ρ 2077:− 2074:ρ 2042:ρ 2038:− 2035:ρ 2020:η 2011:∫ 1993:∬ 1934:η 1898:ρ 1871:ρ 1696:ϕ 1648:ϕ 1624:ϕ 1620:∇ 1600:ϕ 1597:∇ 1587:potential 1557:ρ 1536:ρ 1459:potential 1410:σ 1378:, and to 1367:put it, " 1303:λ 1260:ρ 1253:ρ 1246:σ 1233:ρ 1229:− 1226:ρ 1177:ρ 1173:− 1170:ρ 1163:σ 1157:π 1142:λ 1085:λ 1035:half the 1015:λ 1007:π 953:ρ 946:ρ 928:ρ 924:− 921:ρ 891:ρ 884:ρ 853:ρ 832:ρ 760:ρ 753:ρ 749:σ 731:ρ 724:ρ 715:ρ 711:− 708:ρ 675:ω 629:ρ 618:σ 611:λ 576:ρ 568:σ 531:ρ 472:ρ 469:σ 455:ω 422:π 410:λ 358:ρ 333:ρ 309:σ 285:ω 231:ρ 224:ρ 220:σ 206:ω 184:frequency 152:cat's paw 5163:10040229 5082:(1977). 5060:(1994). 5058:Lamb, H. 4967:(1877). 4938:(1974). 4709:See also 4675:holds): 4611:′ 4475:′ 4445:′ 4429:′ 4164:′ 4112:′ 3887:′ 3764:′ 3539:′ 3327:′ 3072:at  3050:′ 3035:′ 3026:′ 2863:′ 2809:′ 2704:′ 2610:′ 2590:′ 2084:′ 2045:′ 1901:′ 1813:and the 1699:′ 1627:′ 1575:inviscid 1560:′ 1286:For the 1263:′ 1236:′ 1180:′ 956:′ 931:′ 894:′ 869:are the 856:′ 763:′ 734:′ 718:′ 534:′ 361:′ 234:′ 99:dynamics 5143:Bibcode 5022:Bibcode 4751:Gallery 3990:, with 3701:in the 1777:gravity 1775:due to 1353:caustic 822:gravity 347:density 297:is the 141:inertia 137:gravity 120:. The 118:ripples 79:droplet 5161:  5109:  5090:  5068:  5048:  5040:  4946:  4830:  4556:, is: 2879:Using 800:where 398:. The 277:where 164:swells 114:nature 68:Norway 5046:S2CID 4785:Notes 3207:phase 2446:Monge 1292:water 1130:are: 89:is a 5159:PMID 5107:ISBN 5088:ISBN 5066:ISBN 5038:ISSN 4944:ISBN 4828:ISBN 2851:and 2692:and 1889:(or 1739:are 1687:and 1612:and 1577:and 1548:and 1402:and 887:> 844:and 402:is 394:the 345:the 321:the 182:and 174:The 162:and 160:seas 101:and 91:wave 5151:doi 5030:doi 4981:doi 3638:sin 3521:sin 3163:cos 3131:cos 1494:all 1363:As 1288:air 1196:and 5188:: 5157:. 5149:. 5139:62 5137:. 5133:. 5044:. 5036:. 5028:. 5018:16 5016:. 4975:. 4971:. 4927:^ 4897:^ 4879:^ 4792:^ 4701:. 4067:: 3799:st 2816:0. 2748:: 2162:. 1967:: 1743:. 976:. 824:, 325:, 301:, 109:. 85:A 66:, 5165:. 5153:: 5145:: 5115:. 5096:. 5074:. 5052:. 5032:: 5024:: 4994:1 4987:. 4983:: 4977:9 4952:. 4854:. 4836:. 4689:V 4686:= 4683:T 4654:. 4649:2 4645:a 4639:] 4633:2 4629:k 4622:+ 4619:g 4615:) 4598:( 4594:[ 4587:2 4584:1 4579:= 4570:E 4540:/ 4536:) 4533:V 4530:+ 4527:T 4524:( 4498:, 4494:) 4488:2 4484:k 4468:+ 4456:+ 4453:g 4438:+ 4412:( 4407:| 4403:k 4399:| 4395:= 4390:2 4362:) 4359:k 4356:, 4350:( 4347:D 4327:0 4324:= 4321:) 4318:k 4315:, 4309:( 4306:D 4286:a 4264:2 4260:a 4256:) 4253:k 4250:, 4244:( 4241:D 4238:= 4235:L 4208:. 4200:2 4196:a 4191:] 4185:2 4181:k 4171:g 4168:) 4151:( 4141:| 4137:k 4133:| 4126:2 4116:) 4105:+ 4099:( 4095:[ 4089:4 4086:1 4081:= 4078:L 4053:t 4050:s 4046:V 4023:g 4019:V 3998:V 3978:V 3972:T 3969:= 3966:L 3936:. 3928:2 3924:a 3916:| 3912:k 3908:| 3901:2 3891:) 3880:+ 3874:( 3869:4 3866:1 3861:= 3854:T 3847:, 3839:2 3835:a 3829:2 3825:k 3816:4 3813:1 3808:= 3795:V 3787:, 3779:2 3775:a 3771:g 3768:) 3751:( 3746:4 3743:1 3738:= 3729:g 3725:V 3707:y 3703:x 3689:k 3685:/ 3678:2 3675:= 3645:. 3634:a 3625:z 3621:| 3617:k 3613:| 3604:e 3595:| 3591:k 3587:| 3582:1 3574:= 3567:) 3564:t 3561:, 3558:z 3555:, 3552:y 3549:, 3546:x 3543:( 3528:, 3517:a 3508:z 3504:| 3500:k 3496:| 3492:+ 3487:e 3478:| 3474:k 3470:| 3465:1 3460:+ 3457:= 3450:) 3447:t 3444:, 3441:z 3438:, 3435:y 3432:, 3429:x 3426:( 3400:. 3388:0 3385:= 3382:z 3359:t 3342:= 3336:z 3294:t 3277:= 3271:z 3234:t 3225:x 3222:k 3219:= 3193:a 3170:, 3159:a 3156:= 3153:) 3150:t 3141:x 3138:k 3135:( 3127:a 3124:= 3108:x 3087:. 3082:0 3079:= 3076:z 3066:] 3059:z 3011:z 2985:[ 2979:y 2976:d 2972:x 2969:d 2961:2 2958:1 2950:T 2924:= 2921:z 2901:0 2898:= 2895:z 2885:z 2813:= 2800:2 2775:0 2772:= 2764:2 2732:) 2729:t 2726:, 2723:z 2720:, 2717:y 2714:, 2711:x 2708:( 2680:) 2677:t 2674:, 2671:z 2668:, 2665:y 2662:, 2659:x 2656:( 2630:. 2626:] 2620:2 2615:| 2597:| 2582:z 2579:d 2571:+ 2558:+ 2553:2 2548:| 2535:| 2525:z 2522:d 2500:[ 2495:y 2492:d 2488:x 2485:d 2477:2 2474:1 2469:= 2466:T 2429:, 2425:] 2419:2 2414:) 2408:y 2391:( 2386:+ 2381:2 2376:) 2370:x 2353:( 2347:[ 2342:y 2339:d 2335:x 2332:d 2321:2 2318:1 2309:] 2305:1 2295:2 2290:) 2284:y 2267:( 2262:+ 2257:2 2252:) 2246:x 2229:( 2224:+ 2221:1 2215:[ 2210:y 2207:d 2203:x 2200:d 2191:= 2185:t 2182:s 2177:V 2150:0 2147:= 2144:z 2121:, 2116:2 2107:y 2104:d 2100:x 2097:d 2091:g 2088:) 2071:( 2066:2 2063:1 2058:= 2055:z 2052:g 2049:) 2032:( 2028:z 2025:d 2015:0 2006:y 2003:d 1999:x 1996:d 1990:= 1984:g 1979:V 1955:) 1952:t 1949:, 1946:y 1943:, 1940:x 1937:( 1931:= 1928:z 1908:z 1905:g 1877:z 1874:g 1849:g 1845:V 1824:T 1795:t 1792:s 1788:V 1761:g 1757:V 1727:) 1724:t 1721:, 1718:z 1715:, 1712:y 1709:, 1706:x 1703:( 1675:) 1672:t 1669:, 1666:z 1663:, 1660:y 1657:, 1654:x 1651:( 1504:k 1480:k 1430:g 1390:g 1334:m 1330:c 1307:m 1290:– 1271:. 1256:+ 1243:g 1240:) 1223:( 1218:2 1211:= 1206:m 1202:c 1187:g 1184:) 1167:( 1154:2 1151:= 1146:m 1116:m 1112:c 1089:m 1055:k 1011:/ 1004:2 1001:= 998:k 960:) 949:+ 943:( 939:/ 935:) 918:( 898:) 881:( 808:g 785:, 781:) 775:2 771:k 756:+ 744:+ 741:g 727:+ 701:( 696:| 692:k 688:| 684:= 679:2 650:. 635:) 632:g 626:( 622:/ 608:1 581:4 572:/ 565:g 541:0 538:= 498:. 493:3 488:| 483:k 479:| 464:= 459:2 431:. 426:k 419:2 413:= 382:k 262:, 257:3 252:| 247:k 243:| 227:+ 215:= 210:2 158:( 46:. 35:. 20:)

Index

Cat's paw (wave)
Rippled wave
Ripple (electrical)
Ripple (disambiguation)


Øksnes Municipality
Norway

droplet
wave
phase boundary
dynamics
phase velocity
surface tension
nature
wavelength
phase speed
gravity
inertia
gravity waves
ocean surface waves
seas
swells
dispersion relation
wavelength
frequency
angular frequency
surface tension
density

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑