Knowledge (XXG)

Caulobacter crescentus

Source đź“ť

221:. It is an interesting organism to study because it inhabits nutrient-poor aquatic environments. Their ability to thrive in low levels of nutrients is facilitated by its dimorphic developmental cycle. The swarmer cell has a flagellum that protrudes from a single pole and is unable to initiate DNA replication unless differentiated into a stalked cell. The differentiation process includes a morphological transition characterized by ejection of its flagellum and growth of a stalk at the same pole. Stalked cells can elongate and replicate their DNA while growing a flagellum at the opposite pole, giving rise to a pre-divisional cell. Although the precise function of stalks is still being investigated, it is likely that the stalks are involved in the uptake of nutrients in nutrient-limited conditions. Its use as a model originated with developmental biologist 564:
of intracellular asymmetry to establish and maintain the orientation of the polarity axis, which is crucial for polar morphogenesis and division. Recruitment of TipN to the nascent poles at the end of the division cycle redefines the identity of the poles and resets the correct polarity in both future daughter cells (with a polarity reversal in the swarmer cell). The cell cycle–regulated synthesis and removal of these polarly localized structures have provided a rich playground for the identification of landmark proteins important for their proper localization. TipN has two transmembrane regions in the
412:. Underlying all these operations are the mechanisms for production of protein and structural components and energy production. The “housekeeping” metabolic and catabolic subsystems provide the energy and the molecular raw materials for protein synthesis, cell wall construction and other operations of the cell. The housekeeping functions are coupled bidirectionally to the cell cycle control system. However, they can adapt, somewhat independently of the cell cycle control logic, to changing composition and levels of the available nutrient sources. 357:
chromosome, the actual reaction time for each reaction varies widely around the average rate. This leads to a significant and inevitable cell-to-cell variation time to complete replication of the chromosome. There is similar random variation in the rates of progression of all the other subsystem reaction cascades. The net effect is that the time to complete the cell cycle varies widely over the cells in a population even when they all are growing in identical environmental conditions. Cell cycle regulation includes
325:. These five proteins directly control the timing of expression of over 200 genes. The five master regulatory proteins are synthesized and then eliminated from the cell one after the other over the course of the cell cycle. Several additional cell signaling pathways are also essential to the proper functioning of this cell cycle engine. The principal role of these signaling pathways is to ensure reliable production and elimination of the CtrA protein from the cell at just the right times in the cell cycle. 581: 46: 264: 404:, this is accomplished by the genetic regulatory circuit composed of five master regulators and an associated phospho-signaling network. The phosphosignaling network monitors the state of progression of the cell cycle and plays an essential role in accomplishing asymmetric cell division. The cell cycle control system manages the time and place of the initiation of chromosome replication and 33: 207:. The other daughter, called the "stalked" cell, has a tubular stalk structure protruding from one pole that has an adhesive holdfast material on its end, with which the stalked cell can adhere to surfaces. Swarmer cells differentiate into stalked cells after a short period of motility. Chromosome replication and cell division only occurs in the stalked cell stage. 548:, cell polarity is readily apparent by the assembly of polar organelles and by the polarization of the division plane, which results in the generation of stalked progeny that are longer than swarmer progeny. The formation of new cell poles at division implies that cell polarity must be re-established in the stalked progeny and reversed in the swarmer progeny. 419:
cell cycle control system are widely co-conserved across the alphaproteobacteria, but the ultimate function of this regulatory system varies widely in different species. These evolutionary changes reflect enormous differences between the individual species in fitness strategies and ecological niches.
246:
strain throughout the world. Additional phenotypic differences between the two strains have subsequently accumulated due to selective pressures on the NA1000 strain in the laboratory environment. The genetic basis of the phenotypic differences between the two strains results from coding, regulatory,
237:
strain CB15 (the strain originally isolated from a freshwater lake) and NA1000 (the primary experimental strain). In strain NA1000, which was derived from CB15 in the 1970s, the stalked and predivisional cells can be physically separated in the laboratory from new swarmer cells, while cell types from
563:
data strongly suggest a model in which TipN regulates the orientation of the polarity axis by providing a positional cue from the preceding cell cycle. In this model TipN specifies the site of the most recent division by identifying the new pole. The cell uses this positional information as a source
296:
has the swarmer cell stage that results in slower population growth. The swarmer cell is thought to provide cell dispersal, so that the organism constantly seeks out new environments. This may be particularly useful in severely nutrient-limited environments when the scant resources available can be
858:
Nierman, WC; Feldblyum, TV; Laub, MT; Paulsen, IT; Nelson, KE; Eisen, JA; Heidelberg, JF; Alley, MR; Ohta, N; Maddock, JR; Potocka, I; Nelson, WC; Newton, A; Stephens, C; Phadke, ND; Ely, B; DeBoy, RT; Dodson, RJ; Durkin, AS; Gwinn, ML; Haft, DH; Kolonay, JF; Smit, J; Craven, MB; Khouri, H; Shetty,
399:
The bacterial cell's control system has a hierarchical organization. The signaling and the control subsystem interfaces with the environment by means of sensory modules largely located on the cell surface. The genetic network logic responds to signals received from the environment and from internal
361:
signals that pace progression of the cell cycle engine to match progress of events at the regulatory subsystem level in each particular cell. This control system organization, with a controller (the cell cycle engine) driving a complex system, with modulation by feedback signals from the controlled
446:
cell cycle control are also found in these species. The specific coupling between the protein components of the cell cycle control network and the downstream readout of the circuit differ from species to species. The pattern is that the internal functionality of the network circuitry is conserved,
316:
constructed using biochemical and genetic logic circuitry organizes the timing of initiation of each of these subsystems. The central feature of the cell cycle regulation is a cyclical genetic circuit—a cell cycle engine—that is centered around the successive interactions of five master regulatory
274:
CB15 genome has 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient-poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of
348:
to initiate the replication of the chromosome. The CtrA protein, in contrast, acts to block initiation of replication, so it must be removed from the cell before chromosome replication can begin. Multiple additional regulatory pathways integral to cell cycle regulation and involving both phospho
572:
coiled-coil domain. TipN homologues are present in other alpha-proteobacteria. TipN localizes to the new pole in both daughter cells after division and relocalizes to the cell division site in the late predivisional cell. Therefore, both daughter cells have TipN at the new pole after division.
482:
is a member of a group of bacteria that possess the stalk structure, a tubular extension from the cell body. However, the positioning of the stalk is not necessarily conserved at the pole of the cell body in different closely related species. Specifically, research has shown that not only the
356:
cells, replication of the chromosome involves about 2 million DNA synthesis reactions for each arm of the chromosome over 40 to 80 min depending on conditions. While the average time for each individual synthesis reaction can be estimated from the observed average total time to replicate the
291:
stalked cell stage provides a fitness advantage by anchoring the cell to surfaces to form biofilms and or to exploit nutrient sources. Generally, the bacterial species that divides fastest will be most effective at exploiting resources and effectively occupying ecological niches. Yet,
576:
The landmark protein TipN is essential for the proper placement of the flagellum. Mutants lacking TipN make serious mistakes in development. Instead of making a single flagellum at the correct cell pole , the cell makes multiple flagella at various locations, even on the stalk.
387:
cell cycle control system and its internal organization are co-conserved across many alphaproteobacteria species, but there are great differences in the regulatory apparatus' functionality and peripheral connectivity to other cellular subsystems from species to species. The
365:
The rate of progression of the cell cycle is further adjusted by additional signals arising from cellular sensors that monitor environmental conditions (for example, nutrient levels and the oxygen level) or the internal cell status (for example, presence of DNA damage).
238:
strain CB15 cannot be physically separated. The isolated swarmer cells can then be grown as a synchronized cell culture. Detailed study of the molecular development of these cells as they progress through the cell cycle has enabled researchers to understand
378:
cell cycle progression involves the entire cell operating as an integrated system. The control circuitry monitors the environment and the internal state of the cell, including the cell topology, as it orchestrates activation of cell cycle subsystems and
275:
aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. In 2010, the
460: 613:"Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundirnonas and Caulobacter" 297:
depleted very quickly. Many, perhaps most, of the swarmer daughter cells will not find a productive environment, but the obligate dispersal stage must increase the reproductive fitness of the species as a whole.
400:
cell status sensors to adapt the cell to current conditions. A major function of the top level control is to ensure that the operations involved in the cell cycle occur in the proper temporal order. In
611:
Abraham, Wolf-Rainer; Carsten Strömpl; Holger Meyer; Sabine Lindholst; Edward R. B. Moore; Ruprecht Christ; Marc Vancanneyt; B. J. Tindali; Antonio Bennasar; John Smit; Michael Tesar (1999).
1998: 532:, Ackermann et al. suggested that aging is probably a fundamental property of all cellular organisms. A similar phenomenon has since been described in the bacterium 1972: 1445: 447:
but the coupling at the “edges” of the regulatory apparatus to the proteins controlling specific cellular functions differs widely among the different species.
352:
Each process activated by the proteins of the cell cycle engine involve a cascade of many reactions. The longest subsystem cascade is DNA replication. In
859:
J; Berry, K; Utterback, T; Tran, K; Wolf, A; Vamathevan, J; Ermolaeva, M; White, O; Salzberg, SL; Venter, JC; Shapiro, L; Fraser, CM (Mar 27, 2001).
1959: 349:
signaling pathways and regulated control of protein proteolysis act to assure that DnaA and CtrA are present in the cell just exactly when needed.
1985: 392:
cell cycle control system has been exquisitely optimized by evolutionary selection as a total system for robust operation in the face of internal
242:
cell cycle regulation in great detail. Due to this capacity to be physically synchronized, strain NA1000 has become the predominant experimental
702: 2031: 727: 1277:
Brilli, Matteo; Fondi, Marco; Fani, Renato; Mengoni, Alessio; Ferri, Lorenzo; Bazzicalupo, Marco; Biondi, Emanuele G. (2010).
336:
cell cycle where there can be overlapping rounds of chromosome replication simultaneously underway. The opposing roles of the
1990: 528:
was measured as the decline in the number of progeny produced over time. On the basis of experimental evolution studies in
592:
shows how TipN interact with two other polar proteins : the flagellar marker PodJ , and the stalk marker DivJ.
45: 312:
regulatory system controls many modular subsystems that organize the progression of cell growth and reproduction. A
1950: 505: 1788:
Huitema, Edgar; Pritchard, Sean; Matteson, David; Radhakrishnan, Sunish Kumar; Viollier, Patrick H. (2006-03-10).
422: 2026: 192: 188: 1279:"The diversity and evolution of cell cycle regulation in alpha-proteobacteria: A comparative genomic analysis" 332:
cell cycle is that the chromosome is replicated once and only once per cell cycle. This is in contrast to the
525: 499:
species. Presumably, It does so by a gain of function after protein expansion from around 400 amino acids in
703:"Top Canadian Prize Goes to Stanford Scientist Lucy Shapiro for Bringing Cell Biology into Three Dimensions" 1912: 434: 199:
daughter cells have two very different forms. One daughter is a mobile "swarmer" cell that has a single
1439: 345: 130: 1393: 1182: 1029: 872: 521: 1018:"An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation" 77: 1461:"Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights" 279:
NA1000 strain was sequenced and all differences with the CB15 "wild type" strain were identified.
1896: 1827: 1708: 1679:"A Landmark Protein Essential for Establishing and Perpetuating the Polarity of a Bacterial Cell" 1567: 1548: 1520: 683: 40: 1977: 483:
position of the stalk can change, but the number can vary as well in the closely related genus
1876: 1868: 1819: 1811: 1770: 1752: 1700: 1654: 1603: 1540: 1498: 1480: 1427: 1409: 1359: 1310: 1259: 1210: 1151: 1106: 1057: 998: 949: 900: 840: 788: 675: 634: 317:
proteins: DnaA, GcrA, CtrA, SciP, and CcrM whose roles were worked out by the laboratories of
1901: 1858: 1801: 1760: 1742: 1690: 1644: 1634: 1593: 1583: 1532: 1488: 1472: 1417: 1401: 1349: 1341: 1300: 1290: 1249: 1241: 1200: 1190: 1141: 1096: 1088: 1047: 1037: 988: 980: 939: 931: 890: 880: 830: 822: 778: 770: 665: 624: 428: 97: 580: 560: 409: 87: 169:
widely distributed in fresh water lakes and streams. The taxon is more properly known as
1397: 1382:"Sequential evolution of bacterial morphology by co-option of a developmental regulator" 1186: 1033: 876: 1765: 1730: 1598: 1571: 1493: 1460: 1422: 1381: 1354: 1329: 1305: 1278: 1254: 1229: 1205: 1170: 1101: 1076: 1052: 1017: 993: 968: 944: 919: 835: 810: 322: 313: 180: 67: 32: 2003: 1649: 1623:"Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division" 1622: 783: 758: 670: 653: 2020: 1077:"DnaA couples DNA replication and the expression of two cell cycle master regulators" 895: 860: 495: 485: 159: 1831: 1712: 1552: 687: 1169:
Shen, X; Collier, J; Dill, D; Shapiro, L; Horowitz, M; McAdams, HH (Aug 12, 2008).
774: 735: 318: 263: 222: 935: 654:"The bacterial cytoskeleton: an intermediate filament-like function in cell shape" 1639: 1146: 1125: 984: 1944: 405: 107: 1935: 1863: 1846: 1806: 1789: 1695: 1678: 1175:
Proceedings of the National Academy of Sciences of the United States of America
1171:"Architecture and inherent robustness of a bacterial cell-cycle control system" 865:
Proceedings of the National Academy of Sciences of the United States of America
629: 612: 1380:
Jiang, Chao; Brown, Pamela J.B.; Ducret, Adrien; Brun1, Yves V. (2014-02-27).
1345: 1245: 569: 565: 393: 309: 218: 204: 184: 163: 1872: 1815: 1756: 1484: 1413: 1092: 1588: 1536: 1195: 1042: 200: 166: 1880: 1823: 1774: 1704: 1658: 1607: 1544: 1502: 1476: 1431: 1363: 1330:"The architecture and conservation pattern of whole-cell control circuitry" 1314: 1295: 1263: 1230:"The Architecture and Conservation Pattern of Whole-Cell Control Circuitry" 1214: 1155: 1110: 1061: 1002: 953: 904: 885: 844: 792: 679: 652:
Ausmees, Nora; Kuhn, Jeffrey R.; Jacobs-Wagner, Christine (December 2003).
638: 1747: 1523:; Urs Jenal (2003). "Senescence in a bacterium with asymmetric division". 1929: 1016:
Tan, M. H.; Kozdon, J. B.; Shen, X.; Shapiro, L.; McAdams, H. H. (2010).
442:
in, plant root nodules that fix nitrogen yet most of the proteins of the
439: 358: 214: 57: 1621:
Stewart, Eric J.; Richard Madden; Gregory Paul; Francois Taddei (2005).
1405: 826: 459: 1964: 811:"The Genetic Basis of Laboratory Adaptation in Caulobacter crescentus" 1906: 1790:"Bacterial Birth Scar Proteins Mark Future Flagellum Assembly Site" 759:"Biological Properties and Classification of the Caulobacter Group" 579: 458: 262: 1910: 809:
Marks ME; Castro-Rojas CM; Teiling C; et al. (July 2010).
588:
Cell development involves many such proteins working together.
247:
and insertion/deletion polymorphisms at five chromosomal loci.
536:, which gives rise to morphologically similar daughter cells. 340:
DnaA and CtrA proteins are essential to the tight control of
1729:
Treuner-Lange, Anke; Søgaard-Andersen, Lotte (2014-07-07).
1459:
Jiang, Chao; Caccamo, Paul D.; Brun, Yves V. (April 2015).
969:"Spatial complexity and control of a bacterial cell cycle" 370:
Evolutionary conservation of the cell cycle control system
493:
has been shown to manipulate stalk positioning in these
1677:
H, Lam; Wb, Schofield; C, Jacobs-Wagner (2006-03-10).
344:
chromosome replication. The DnaA protein acts at the
1847:"A Molecular Beacon Defines Bacterial Cell Asymmetry" 920:"System-level design of bacterial cell cycle control" 203:
at one cell pole that provides swimming motility for
861:"Complete genome sequence of Caulobacter crescentus" 1919: 1075:Collier, J; Murray, SR; Shapiro, L (Jan 25, 2006). 233:In the laboratory, researchers distinguish between 1845:Lawler, Melanie L.; Brun, Yves V. (2006-03-10). 1572:"Experimental evolution of aging in a bacterium" 617:International Journal of Systematic Bacteriology 438:is a soil bacterium that invades, and becomes a 1022:Proceedings of the National Academy of Sciences 383:asymmetric cell division. The proteins of the 555:life cycle is governed by regulators such as 374:The control circuitry that directs and paces 362:system creates a closed loop control system. 8: 606: 604: 1514: 1512: 1444:: CS1 maint: numeric names: authors list ( 1907: 1228:McAdams, Harley H.; Shapiro, Lucy (2011). 451:The evolution of stalk positioning in the 31: 20: 1862: 1805: 1764: 1746: 1731:"Regulation of cell polarity in bacteria" 1694: 1648: 1638: 1597: 1587: 1492: 1421: 1353: 1304: 1294: 1253: 1204: 1194: 1145: 1100: 1051: 1041: 992: 943: 894: 884: 834: 804: 802: 782: 669: 628: 1566:Ackermann, Martin; Alexandra Schauerte; 918:McAdams, HH; Shapiro, L (Dec 17, 2009). 1902:Bacterium makes nature's strongest glue 600: 489:. SpmX, a polarly localized protein in 1437: 217:shape, which is caused by the protein 1724: 1722: 1672: 1670: 1668: 1375: 1373: 1328:McAdams, HH; Shapiro, L. (May 2011). 396:noise and environmental uncertainty. 7: 967:Collier, J; Shapiro, L (Aug 2007). 463:Diverse positioning of the stalks. 183:for studying the regulation of the 14: 701:Conger, Krista (March 31, 2009). 1126:"The role of proteolysis in the 973:Current Opinion in Biotechnology 503:to more than 800 amino acids in 44: 775:10.1128/mmbr.28.3.231-295.1964 408:as well as the development of 283:Role of the swarmer cell stage 1: 936:10.1016/j.febslet.2009.09.030 671:10.1016/S0092-8674(03)00935-8 1640:10.1371/journal.pbio.0030045 1234:Journal of Molecular Biology 1147:10.1016/j.resmic.2009.09.006 985:10.1016/j.copbio.2007.07.007 328:An essential feature of the 173:(Henrici and Johnson 1935). 1130:cell cycle and development" 757:Poindexter, JS (Sep 1964). 432:is an animal pathogen, and 2048: 2032:Bacteria described in 1964 1864:10.1016/j.cell.2006.02.027 1807:10.1016/j.cell.2006.01.019 1696:10.1016/j.cell.2005.12.040 630:10.1099/00207713-49-3-1053 473:Asticcacaulis biprosthecum 213:derives its name from its 1346:10.1016/j.jmb.2011.02.041 1246:10.1016/j.jmb.2011.02.041 763:Microbiol. Mol. Biol. Rev 471:(middle, sub-polar), and 469:Asticcacaulis excentricus 423:Agrobacterium tumefaciens 136: 129: 41:Scientific classification 39: 30: 23: 1576:BMC Evolutionary Biology 1134:Research in Microbiology 1093:10.1038/sj.emboj.7600927 559:, a cell cycle protein. 540:Cell polarity regulation 193:cellular differentiation 189:asymmetric cell division 1735:Journal of Cell Biology 1589:10.1186/1471-2148-7-126 1537:10.1126/science.1083532 1196:10.1073/pnas.0805258105 1043:10.1073/pnas.1014395107 526:Reproductive senescence 491:Caulobacter crescentus, 2004:caulobacter-crescentus 1951:Caulobacter crescentus 1921:Caulobacter crescentus 1897:Caulobacter crescentus 1477:10.1002/bies.201400098 1296:10.1186/1752-0509-4-52 1128:Caulobacter crescentus 886:10.1073/pnas.061029298 734:. 2014. Archived from 585: 501:Caulobacter crescentus 480:Caulobacter crescentus 476: 465:Caulobacter crescentus 435:Sinorhizobium meliloti 381:Caulobacter crescentus 267: 253:Caulobacter vibrioides 171:Caulobacter vibrioides 155:Caulobacter crescentus 140:Caulobacter crescentus 25:Caulobacter crescentus 1748:10.1083/jcb.201403136 1124:Jenal, U (Nov 2009). 583: 462: 426:is a plant pathogen, 346:origin of replication 266: 1570:; Urs Jenal (2007). 522:asymmetric bacterium 475:(right, bi-lateral). 415:The proteins of the 16:Species of bacterium 1519:Ackermann, Martin; 1406:10.1038/nature12900 1398:2014Natur.506..489J 1283:BMC Systems Biology 1187:2008PNAS..10511340S 1034:2010PNAS..10718985T 877:2001PNAS...98.4136N 827:10.1128/JB.00255-10 728:"2014 Lucy Shapiro" 251:is synonymous with 78:Alphaproteobacteria 1568:Stephen C. Stearns 1521:Stephen C. Stearns 586: 477: 268: 122:C. crescentus 2014: 2013: 1913:Taxon identifiers 1028:(44): 18985–990. 738:on 12 August 2017 566:N-terminal region 561:Yale University's 513:Caulobacter aging 151: 150: 2039: 2007: 2006: 1994: 1993: 1981: 1980: 1968: 1967: 1955: 1954: 1953: 1940: 1939: 1938: 1908: 1885: 1884: 1866: 1842: 1836: 1835: 1809: 1785: 1779: 1778: 1768: 1750: 1726: 1717: 1716: 1698: 1674: 1663: 1662: 1652: 1642: 1618: 1612: 1611: 1601: 1591: 1563: 1557: 1556: 1516: 1507: 1506: 1496: 1456: 1450: 1449: 1443: 1435: 1425: 1392:(7489): 489–93. 1377: 1368: 1367: 1357: 1325: 1319: 1318: 1308: 1298: 1274: 1268: 1267: 1257: 1225: 1219: 1218: 1208: 1198: 1181:(32): 11340–45. 1166: 1160: 1159: 1149: 1121: 1115: 1114: 1104: 1081:The EMBO Journal 1072: 1066: 1065: 1055: 1045: 1013: 1007: 1006: 996: 964: 958: 957: 947: 915: 909: 908: 898: 888: 855: 849: 848: 838: 806: 797: 796: 786: 754: 748: 747: 745: 743: 724: 718: 717: 715: 713: 698: 692: 691: 673: 649: 643: 642: 632: 608: 534:Escherichia coli 429:Brucella abortus 410:polar organelles 179:is an important 142: 98:Caulobacteraceae 49: 48: 35: 21: 2047: 2046: 2042: 2041: 2040: 2038: 2037: 2036: 2027:Caulobacterales 2017: 2016: 2015: 2010: 2002: 1997: 1989: 1984: 1976: 1971: 1963: 1958: 1949: 1948: 1943: 1934: 1933: 1928: 1915: 1893: 1888: 1844: 1843: 1839: 1787: 1786: 1782: 1728: 1727: 1720: 1676: 1675: 1666: 1620: 1619: 1615: 1565: 1564: 1560: 1518: 1517: 1510: 1458: 1457: 1453: 1436: 1379: 1378: 1371: 1327: 1326: 1322: 1276: 1275: 1271: 1227: 1226: 1222: 1168: 1167: 1163: 1123: 1122: 1118: 1074: 1073: 1069: 1015: 1014: 1010: 966: 965: 961: 930:(24): 3984–91. 917: 916: 912: 857: 856: 852: 821:(14): 3678–88. 808: 807: 800: 756: 755: 751: 741: 739: 732:Greengard Prize 726: 725: 721: 711: 709: 700: 699: 695: 651: 650: 646: 610: 609: 602: 598: 542: 524:shown to age. 515: 467:(left, polar), 457: 372: 303: 285: 261: 231: 147: 146:Poindexter 1964 144: 138: 125: 88:Caulobacterales 43: 17: 12: 11: 5: 2045: 2043: 2035: 2034: 2029: 2019: 2018: 2012: 2011: 2009: 2008: 1995: 1982: 1969: 1956: 1941: 1925: 1923: 1917: 1916: 1911: 1905: 1904: 1899: 1892: 1891:External links 1889: 1887: 1886: 1837: 1800:(5): 1025–37. 1780: 1718: 1689:(5): 1011–23. 1664: 1613: 1558: 1531:(5627): 1920. 1508: 1451: 1369: 1320: 1269: 1220: 1161: 1116: 1067: 1008: 959: 910: 871:(7): 4136–41. 850: 798: 749: 719: 693: 644: 623:(3): 1053–73. 599: 597: 594: 541: 538: 520:was the first 514: 511: 456: 449: 371: 368: 323:Harley McAdams 314:control system 302: 299: 284: 281: 260: 257: 230: 227: 181:model organism 149: 148: 145: 134: 133: 127: 126: 119: 117: 113: 112: 105: 101: 100: 95: 91: 90: 85: 81: 80: 75: 71: 70: 68:Pseudomonadota 65: 61: 60: 55: 51: 50: 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 2044: 2033: 2030: 2028: 2025: 2024: 2022: 2005: 2000: 1996: 1992: 1987: 1983: 1979: 1974: 1970: 1966: 1961: 1957: 1952: 1946: 1942: 1937: 1931: 1927: 1926: 1924: 1922: 1918: 1914: 1909: 1903: 1900: 1898: 1895: 1894: 1890: 1882: 1878: 1874: 1870: 1865: 1860: 1857:(5): 891–93. 1856: 1852: 1848: 1841: 1838: 1833: 1829: 1825: 1821: 1817: 1813: 1808: 1803: 1799: 1795: 1791: 1784: 1781: 1776: 1772: 1767: 1762: 1758: 1754: 1749: 1744: 1740: 1736: 1732: 1725: 1723: 1719: 1714: 1710: 1706: 1702: 1697: 1692: 1688: 1684: 1680: 1673: 1671: 1669: 1665: 1660: 1656: 1651: 1646: 1641: 1636: 1632: 1628: 1624: 1617: 1614: 1609: 1605: 1600: 1595: 1590: 1585: 1581: 1577: 1573: 1569: 1562: 1559: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1515: 1513: 1509: 1504: 1500: 1495: 1490: 1486: 1482: 1478: 1474: 1471:(4): 413–25. 1470: 1466: 1462: 1455: 1452: 1447: 1441: 1433: 1429: 1424: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1376: 1374: 1370: 1365: 1361: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1324: 1321: 1316: 1312: 1307: 1302: 1297: 1292: 1288: 1284: 1280: 1273: 1270: 1265: 1261: 1256: 1251: 1247: 1243: 1239: 1235: 1231: 1224: 1221: 1216: 1212: 1207: 1202: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1165: 1162: 1157: 1153: 1148: 1143: 1140:(9): 687–95. 1139: 1135: 1131: 1129: 1120: 1117: 1112: 1108: 1103: 1098: 1094: 1090: 1087:(2): 346–56. 1086: 1082: 1078: 1071: 1068: 1063: 1059: 1054: 1049: 1044: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1009: 1004: 1000: 995: 990: 986: 982: 979:(4): 333–40. 978: 974: 970: 963: 960: 955: 951: 946: 941: 937: 933: 929: 925: 921: 914: 911: 906: 902: 897: 892: 887: 882: 878: 874: 870: 866: 862: 854: 851: 846: 842: 837: 832: 828: 824: 820: 816: 812: 805: 803: 799: 794: 790: 785: 780: 776: 772: 769:(3): 231–95. 768: 764: 760: 753: 750: 737: 733: 729: 723: 720: 708: 707:Business Wire 704: 697: 694: 689: 685: 681: 677: 672: 667: 664:(6): 705–13. 663: 659: 655: 648: 645: 640: 636: 631: 626: 622: 618: 614: 607: 605: 601: 595: 593: 591: 582: 578: 574: 571: 567: 562: 558: 554: 553:C. crescentus 549: 547: 546:C. crescentus 539: 537: 535: 531: 530:C. crescentus 527: 523: 519: 512: 510: 508: 507: 506:Asticcacaulis 502: 498: 497: 496:Asticcacaulis 492: 488: 487: 486:Asticcacaulis 481: 474: 470: 466: 461: 454: 450: 448: 445: 441: 437: 436: 431: 430: 425: 424: 420:For example, 418: 413: 411: 407: 403: 397: 395: 391: 386: 382: 377: 369: 367: 363: 360: 355: 350: 347: 343: 339: 335: 331: 326: 324: 320: 315: 311: 308: 300: 298: 295: 290: 282: 280: 278: 273: 265: 258: 256: 254: 250: 249:C. crescentus 245: 241: 236: 235:C. crescentus 228: 226: 224: 220: 216: 212: 211:C. crescentus 208: 206: 202: 198: 194: 190: 186: 182: 178: 177:C. crescentus 174: 172: 168: 165: 161: 160:Gram-negative 157: 156: 143: 141: 135: 132: 131:Binomial name 128: 124: 123: 118: 115: 114: 111: 110: 106: 103: 102: 99: 96: 93: 92: 89: 86: 83: 82: 79: 76: 73: 72: 69: 66: 63: 62: 59: 56: 53: 52: 47: 42: 38: 34: 29: 26: 22: 19: 1920: 1854: 1850: 1840: 1797: 1793: 1783: 1738: 1734: 1686: 1682: 1630: 1627:PLOS Biology 1626: 1616: 1579: 1575: 1561: 1528: 1524: 1468: 1464: 1454: 1440:cite journal 1389: 1385: 1340:(1): 28–35. 1337: 1333: 1323: 1286: 1282: 1272: 1240:(1): 28–35. 1237: 1233: 1223: 1178: 1174: 1164: 1137: 1133: 1127: 1119: 1084: 1080: 1070: 1025: 1021: 1011: 976: 972: 962: 927: 924:FEBS Letters 923: 913: 868: 864: 853: 818: 815:J. Bacteriol 814: 766: 762: 752: 740:. Retrieved 736:the original 731: 722: 710:. Retrieved 706: 696: 661: 657: 647: 620: 616: 589: 587: 575: 568:and a large 556: 552: 550: 545: 543: 533: 529: 517: 516: 504: 500: 494: 490: 484: 479: 478: 472: 468: 464: 452: 443: 433: 427: 421: 416: 414: 401: 398: 389: 384: 380: 375: 373: 364: 353: 351: 341: 337: 333: 329: 327: 319:Lucy Shapiro 306: 304: 293: 288: 286: 276: 271: 269: 252: 248: 243: 239: 234: 232: 223:Lucy Shapiro 210: 209: 196: 176: 175: 170: 164:oligotrophic 154: 153: 152: 139: 137: 121: 120: 108: 24: 18: 1945:Wikispecies 1741:(1): 7–17. 518:Caulobacter 453:Caulobacter 444:Caulobacter 417:Caulobacter 406:cytokinesis 402:Caulobacter 390:Caulobacter 385:Caulobacter 376:Caulobacter 354:Caulobacter 342:Caulobacter 338:Caulobacter 330:Caulobacter 307:Caulobacter 294:Caulobacter 289:Caulobacter 277:Caulobacter 272:Caulobacter 244:Caulobacter 240:Caulobacter 197:Caulobacter 109:Caulobacter 2021:Categories 1633:(2): e45. 1334:J Mol Biol 596:References 570:C-terminal 394:stochastic 310:cell cycle 301:Cell cycle 219:crescentin 205:chemotaxis 185:cell cycle 1873:0092-8674 1816:0092-8674 1757:0021-9525 1485:1521-1878 1465:BioEssays 1414:0028-0836 509:species. 201:flagellum 167:bacterium 116:Species: 1978:10530223 1936:Q2943106 1930:Wikidata 1881:16530036 1832:15574493 1824:16530048 1775:25002676 1713:14200442 1705:16530047 1659:15685293 1608:17662151 1553:34770745 1545:12817142 1503:25664446 1432:24463524 1364:21371478 1315:20426835 1264:21371478 1215:18685108 1156:19781638 1111:16395331 1062:20956288 1003:17709236 954:19766635 905:11259647 845:20472802 793:14220656 688:14459851 680:14675535 639:10425763 440:symbiont 359:feedback 259:Genomics 215:crescent 94:Family: 64:Phylum: 58:Bacteria 54:Domain: 1965:3221693 1766:4085708 1599:2174458 1582:: 126. 1525:Science 1494:4368449 1423:4035126 1394:Bibcode 1355:3108490 1306:2877005 1255:3108490 1206:2516238 1183:Bibcode 1102:1383511 1053:2973855 1030:Bibcode 994:2716793 945:2795017 873:Bibcode 836:2897358 334:E. coli 229:Strains 104:Genus: 84:Order: 74:Class: 1991:968235 1879:  1871:  1830:  1822:  1814:  1773:  1763:  1755:  1711:  1703:  1657:  1650:546039 1647:  1606:  1596:  1551:  1543:  1501:  1491:  1483:  1430:  1420:  1412:  1386:Nature 1362:  1352:  1313:  1303:  1289:: 52. 1262:  1252:  1213:  1203:  1154:  1109:  1099:  1060:  1050:  1001:  991:  952:  942:  903:  893:  843:  833:  791:  784:441226 781:  742:14 May 712:14 May 686:  678:  637:  191:, and 1973:IRMNG 1828:S2CID 1709:S2CID 1549:S2CID 896:31192 684:S2CID 590:Fig#1 584:Fig#1 455:clade 158:is a 1999:LPSN 1986:ITIS 1960:GBIF 1877:PMID 1869:ISSN 1851:Cell 1820:PMID 1812:ISSN 1794:Cell 1771:PMID 1753:ISSN 1701:PMID 1683:Cell 1655:PMID 1604:PMID 1541:PMID 1499:PMID 1481:ISSN 1446:link 1428:PMID 1410:ISSN 1360:PMID 1311:PMID 1260:PMID 1211:PMID 1152:PMID 1107:PMID 1058:PMID 999:PMID 950:PMID 901:PMID 841:PMID 789:PMID 744:2015 714:2015 676:PMID 658:Cell 635:PMID 557:TipN 551:The 321:and 305:The 287:The 270:The 1859:doi 1855:124 1802:doi 1798:124 1761:PMC 1743:doi 1739:206 1691:doi 1687:124 1645:PMC 1635:doi 1594:PMC 1584:doi 1533:doi 1529:300 1489:PMC 1473:doi 1418:PMC 1402:doi 1390:506 1350:PMC 1342:doi 1338:409 1301:PMC 1291:doi 1250:PMC 1242:doi 1238:409 1201:PMC 1191:doi 1179:105 1142:doi 1138:160 1097:PMC 1089:doi 1048:PMC 1038:doi 1026:107 989:PMC 981:doi 940:PMC 932:doi 928:583 891:PMC 881:doi 831:PMC 823:doi 819:192 779:PMC 771:doi 666:doi 662:115 625:doi 544:In 195:. 2023:: 2001:: 1988:: 1975:: 1962:: 1947:: 1932:: 1875:. 1867:. 1853:. 1849:. 1826:. 1818:. 1810:. 1796:. 1792:. 1769:. 1759:. 1751:. 1737:. 1733:. 1721:^ 1707:. 1699:. 1685:. 1681:. 1667:^ 1653:. 1643:. 1629:. 1625:. 1602:. 1592:. 1578:. 1574:. 1547:. 1539:. 1527:. 1511:^ 1497:. 1487:. 1479:. 1469:37 1467:. 1463:. 1442:}} 1438:{{ 1426:. 1416:. 1408:. 1400:. 1388:. 1384:. 1372:^ 1358:. 1348:. 1336:. 1332:. 1309:. 1299:. 1285:. 1281:. 1258:. 1248:. 1236:. 1232:. 1209:. 1199:. 1189:. 1177:. 1173:. 1150:. 1136:. 1132:. 1105:. 1095:. 1085:25 1083:. 1079:. 1056:. 1046:. 1036:. 1024:. 1020:. 997:. 987:. 977:18 975:. 971:. 948:. 938:. 926:. 922:. 899:. 889:. 879:. 869:98 867:. 863:. 839:. 829:. 817:. 813:. 801:^ 787:. 777:. 767:28 765:. 761:. 730:. 705:. 682:. 674:. 660:. 656:. 633:. 621:49 619:. 615:. 603:^ 255:. 225:. 187:, 162:, 1883:. 1861:: 1834:. 1804:: 1777:. 1745:: 1715:. 1693:: 1661:. 1637:: 1631:3 1610:. 1586:: 1580:7 1555:. 1535:: 1505:. 1475:: 1448:) 1434:. 1404:: 1396:: 1366:. 1344:: 1317:. 1293:: 1287:4 1266:. 1244:: 1217:. 1193:: 1185:: 1158:. 1144:: 1113:. 1091:: 1064:. 1040:: 1032:: 1005:. 983:: 956:. 934:: 907:. 883:: 875:: 847:. 825:: 795:. 773:: 746:. 716:. 690:. 668:: 641:. 627::

Index


Scientific classification
Edit this classification
Bacteria
Pseudomonadota
Alphaproteobacteria
Caulobacterales
Caulobacteraceae
Caulobacter
Binomial name
Gram-negative
oligotrophic
bacterium
model organism
cell cycle
asymmetric cell division
cellular differentiation
flagellum
chemotaxis
crescent
crescentin
Lucy Shapiro

cell cycle
control system
Lucy Shapiro
Harley McAdams
origin of replication
feedback
stochastic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑