Knowledge (XXG)

Black body

Source 📝

38: 925:, which states that on large scales the Universe is homogeneous and isotropic. According to theory, the Universe approximately a second after its formation was a near-ideal black body in thermal equilibrium at a temperature above 10 K. The temperature decreased as the Universe expanded and the matter and radiation in it cooled. The cosmic microwave background radiation observed today is "the most perfect black body ever measured in nature". It has a nearly ideal Planck spectrum at a temperature of about 2.7 K. It departs from the perfect isotropy of true black-body radiation by an observed anisotropy that varies with angle on the sky only to about one part in 100,000. 934: 720: 632:
photosphere, but such changes are slow on the time scale of interest here. Assuming these circumstances can be realized, the outer layer of the star is somewhat analogous to the example of an enclosure with a small hole in it, with the hole replaced by the limited transmission into space at the outside of the photosphere. With all these assumptions in place, the star emits black-body radiation at the temperature of the photosphere.
236: 584: 249:
black surface. The hole is not quite a perfect black surface—in particular, if the wavelength of the incident radiation is greater than the diameter of the hole, part will be reflected. Similarly, even in perfect thermal equilibrium, the radiation inside a finite-sized cavity will not have an ideal Planck spectrum for wavelengths comparable to or larger than the size of the cavity.
636: 766:. It is called "black" because it absorbs all the light that hits the horizon, reflecting nothing, making it almost an ideal black body (radiation with a wavelength equal to or larger than the diameter of the hole may not be absorbed, so black holes are not perfect black bodies). Physicists believe that to an outside observer, black holes have a non-zero temperature and emit 56: 522:
unavailable. They are also useful in telescopes and cameras as anti-reflection surfaces to reduce stray light, and to gather information about objects in high-contrast areas (for example, observation of planets in orbit around their stars), where blackbody-like materials absorb light that comes from the wrong sources.
466:
Kirchhoff in 1860 introduced the theoretical concept of a perfect black body with a completely absorbing surface layer of infinitely small thickness, but Planck noted some severe restrictions upon this idea. Planck noted three requirements upon a black body: the body must (i) allow radiation to enter
248:
A widely used model of a black surface is a small hole in a cavity with walls that are opaque to radiation. Radiation incident on the hole will pass into the cavity, and is very unlikely to be re-emitted if the cavity is large. Lack of any re-emission, means that the hole is behaving like a perfect
500:
published an account of their cavity radiation source. Their design has been used largely unchanged for radiation measurements to the present day. It was a hole in the wall of a platinum box, divided by diaphragms, with its interior blackened with iron oxide. It was an important ingredient for the
1120:
are known, this law can be used to estimate the dimensions of the emitting object, because the total emitted power is proportional to the area of the emitting surface. In this way it was found that X-ray bursts observed by astronomers originated in neutron stars with a radius of about 10 km,
631:
that is maintained over a long period of time. Some photons escape and are emitted into space, but the energy they carry away is replaced by energy from within the star, so that the temperature of the photosphere is nearly steady. Changes in the core lead to changes in the supply of energy to the
1108:
or restructuring of the body) that occur within the body while it cools, and assumes that at each moment in time the body is characterized by a single temperature. It also ignores other possible complications, such as changes in the emissivity with temperature, and the role of other accompanying
471:
to prevent radiation from entering and bouncing back out. As a consequence, Kirchhoff's perfect black bodies that absorb all the radiation that falls on them cannot be realized in an infinitely thin surface layer, and impose conditions upon scattering of the light within the black body that are
521:
for radar invisibility. They also have application as solar energy collectors, and infrared thermal detectors. As a perfect emitter of radiation, a hot material with black body behavior would create an efficient infrared heater, particularly in space or in a vacuum where convective heating is
308:
states that if left undisturbed it will eventually reach equilibrium, although the time it takes to do so may be very long. Typically, equilibrium is reached by continual absorption and emission of radiation by material in the cavity or its walls. Radiation entering the cavity will be
260:
with the enclosure. The hole in the enclosure will allow some radiation to escape. If the hole is small, radiation passing in and out of the hole has negligible effect upon the equilibrium of the radiation inside the cavity. This escaping radiation will approximate
352:
The boundary of a body forms an interface with its surroundings, and this interface may be rough or smooth. A nonreflecting interface separating regions with different refractive indices must be rough, because the laws of reflection and refraction governed by the
655:
of stars is estimated, defined as the temperature of a black body that yields the same surface flux of energy as the star. If a star were a black body, the same effective temperature would result from any region of the spectrum. For example, comparisons in the
687:
index is +0.12. The two indices for two types of most common star sequences are compared in the figure (diagram) with the effective surface temperature of the stars if they were perfect black bodies. There is a rough correlation. For example, for a given
3009: 2995: 537:
nearly that of vacuum, in one case obtaining average reflectance of 0.045%. In 2009, a team of Japanese scientists created a material called nanoblack which is close to an ideal black body, based on vertically aligned single-walled
3511:
Engineers now developing a blacker-than pitch material that will help scientists gather hard-to-obtain scientific measurements... nanotech-based material now being developed by a team of 10 technologists at the NASA
458:= 0. Planck offers a theoretical model for perfectly black bodies, which he noted do not exist in nature: besides their opaque interior, they have interfaces that are perfectly transmitting and non-reflective. 153:. A source with a lower emissivity, independent of frequency, is often referred to as a gray body. Constructing black bodies with an emissivity as close to 1 as possible remains a topic of current interest. 863: 501:
progressively improved measurements that led to the discovery of Planck's law. A version described in 1901 had its interior blackened with a mixture of chromium, nickel, and cobalt oxides. See also
627:
of the star, where the emitted light is generated, is idealized as a layer within which the photons of light interact with the material in the photosphere and achieve a common temperature
188:...the supposition that bodies can be imagined which, for infinitely small thicknesses, completely absorb all incident rays, and neither reflect nor transmit any. I shall call such bodies 2774:
For the first 10 years of its life, the cooling of a neutron star is governed by the balance between heat capacity and the loss of heat by neutrino emission. ... Both the specific heat
3213: 700:
index. It is perhaps surprising that they fit a black body curve as well as they do, considering that stars have greatly different temperatures at different depths. For example, the
357:
for a smooth interface require a reflected ray when the refractive indices of the material and its surroundings differ. A few idealized types of behavior are given particular names:
317:. The time taken for thermalization is much faster with condensed matter present than with rarefied matter such as a dilute gas. At temperatures below billions of Kelvin, direct 1030: 1495:
The approach to thermal equilibrium of the radiation in the cavity can be catalyzed by adding a small piece of matter capable of radiating and absorbing at all frequencies. See
1402:
Corrections to the spectrum do arise related to boundary conditions at the walls, curvature, and topology, particularly for wavelengths comparable to the cavity dimensions; see
1263: 782:
of particles is separated by the gravity of the hole, one member being sucked into the hole, and the other being emitted. The energy distribution of emission is described by
1121:
rather than black holes as originally conjectured. An accurate estimate of size requires some knowledge of the emissivity, particularly its spectral and angular dependence.
2804:, at which time the quark matter core will become inert and the further cooling history will be dominated by neutrino emission from the nuclear matter fraction of the star. 269:
and does not depend upon the properties of the cavity or the hole, at least for wavelengths smaller than the size of the hole. See the figure in the Introduction for the
1682:
to characterize the condition of a gas which a tendency to decrease with time as a result of collisions, unless the distribution of the molecules equilibrium. (p. 458)
2126:
A source in which photons are much more likely to interact with the material within the source than to escape is a condition for the formation of a black-body spectrum
220:
the incident radiation (no energy transmitted through the body). This is true for radiation of all wavelengths and for all angles of incidence. Hence the blackbody is
1587:
Because the interaction of the photons with each other is negligible, a small amount of matter is necessary to establish thermodynamic equilibrium of heat radiation.
59:
As the temperature of a black body decreases, its radiation intensity also decreases and its peak moves to longer wavelengths. Shown for comparison is the classical
1947: 3452: 2602: 2378: 587:
Diagram comparing the response curves of the red, green, and blue light receptors in human eyes against the approximate black body curves of a number of stars:
467:
but not reflect; (ii) possess a minimum thickness adequate to absorb the incident radiation and prevent its re-emission; (iii) satisfy severe limitations upon
1211:
is simply proportional to that of a black body at the same temperature, so its emissivity does not depend upon frequency (or, equivalently, wavelength). See
561: 692:
index measurement, the curves of both most common sequences of star (the main sequence and the supergiants) lie below the corresponding black-body
1130: 1207:
The emissivity of a surface in principle depends upon frequency, angle of view, and temperature. However, by definition, the radiation from a
1104:. This approach is a simplification that ignores details of the mechanisms behind heat redistribution (which may include changing composition, 84: 3435: 971:
over all frequencies provides the total energy per unit of time per unit of surface area radiated by a black body maintained at a temperature
696:
index that includes the ultraviolet spectrum, showing that both groupings of star emit less ultraviolet light than a black body with the same
3417: 3348: 3322: 3292: 3194: 3168: 3142: 3112: 2980: 2949: 2921: 2867: 2838: 2759: 2694: 2667: 2638: 2548: 2515: 2486: 2451: 2361: 2336: 2306: 2277: 2250: 2223: 2149: 2119: 1922: 1850: 1765: 1736: 1707: 1671: 1631: 1580: 1508: 1444: 1415: 1384: 1246: 1226: 1192: 916: 3490: 2540: 2443: 1215:"Figure 4.3(b): Behaviors of a gray (no wavelength dependence), diffuse (no directional dependence) and opaque (no transmission) surface" 1271: 131:
It is an ideal emitter: at every frequency, it emits as much or more thermal radiative energy as any other body at the same temperature.
3535: 1480: 796: 1076:
The cooling of a body due to thermal radiation is often approximated using the Stefan–Boltzmann law supplemented with a "gray body"
542:. This absorbs between 98% and 99% of the incoming light in the spectral range from the ultra-violet to the far-infrared regions. 683:
index, which becomes more negative the hotter the star and the more the UV radiation. Assuming the Sun is a type G2 V star, its
318: 2073:
Ghai, Viney; Singh, Harpreet; Agnihotri, Prabhat K. (2019). "Dandelion-Like Carbon Nanotubes for Near-Perfect Black Surfaces".
2002:
Zu-Po Yang; et al. (2008). "Experimental observation of an extremely dark material made by a low-density nanotube array".
3530: 3079:(1882) . "Ueber das VerhĂ€ltniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper fĂŒr WĂ€rme und Licht". 1040: 2055: 933: 37: 3027: 1261:
Some authors describe sources of infrared radiation with emissivity greater than approximately 0.99 as a black body. See
1100:). The rate of decrease of the temperature of the emitting body can be estimated from the power radiated and the body's 112:(that is, at a constant temperature) emits electromagnetic black-body radiation. The radiation is emitted according to 3513: 3382: 92: 2417: 2720:
At The Frontier of Particle Physics: Handbook of QCD (On the occasion of the 75th birthday of Professor Boris Ioffe)
903:
is the mass of the black hole. These predictions have not yet been tested either observationally or experimentally.
3284: 3186: 3134: 2888: 938: 3023:"Ueber das VerhĂ€ltniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper fĂŒr WĂ€rme and Licht" 962: 604: 596: 88: 976: 518: 3363: 619:
A star or planet often is modeled as a black body, and electromagnetic radiation emitted from these bodies as
3340: 3160: 2913: 2896: 2555:... no results on black hole thermodynamics have been subject to any experimental or observational tests ... 877: 64: 2714:(2001). "6.2 Coling by Neutrino Emissions (pp. 2135-2136) – The Condensed Matter Physics of QCD". In 719: 60: 3540: 3063: 2737: 922: 896: 305: 105:
is one with a "rough surface that reflects all incident rays completely and uniformly in all directions."
985: 41:
A black body radiator used in CARLO laboratory in Poland. It is an approximation of a model described by
652: 383: 169: 3427: 134:
It is a diffuse emitter: measured per unit area perpendicular to the direction, the energy is radiated
2052:
See description of work by Richard Brown and his colleagues at the UK's National Physical Laboratory:
366:
is one that transmits none of the radiation that reaches it, although some may be reflected. That is,
321:
are usually negligible compared to interactions with matter. Photons are an example of an interacting
3409: 3248: 3104: 3036: 2393: 2178: 2011: 1956: 1647: 1559:
Robert Karplus* and Maurice Neuman, "The Scattering of Light by Light", Phys. Rev. 83, 776–784 (1951)
767: 671:, which increases the redder the star, with the Sun having an index of +0.648 ± 0.006. Combining the 620: 262: 97: 2742: 758:
from which nothing escapes. Around a black hole there is a mathematically defined surface called an
3358: 3059:"On the relation between the radiating and absorbing powers of different bodies for light and heat" 2931: 1336:"On the relation between the radiating and absorbing powers of different bodies for light and heat" 775: 732: 257: 146:—of black-body energy levels. By definition, a black body in thermal equilibrium has an emissivity 109: 46: 31: 3469: 3239: 3230: 3208: 2972: 2964: 2765: 2727: 2409: 2090: 2035: 888: 763: 708:(the region generating the light), which ranges from about 5000 K at its outer boundary with the 647:
of light nearly in thermal equilibrium, and some escape into space as near-black-body radiation.
577: 534: 497: 274: 270: 172:, the temperature of a black body that would emit the same total flux of electromagnetic energy. 135: 117: 2827: 2821: 1890: 3498: 2478: 2472: 1695: 1236: 313:" by this mechanism: the energy will be redistributed until the ensemble of photons achieves a 3545: 3413: 3344: 3318: 3306: 3288: 3190: 3164: 3138: 3108: 2976: 2945: 2917: 2863: 2834: 2817: 2755: 2690: 2684: 2663: 2634: 2626: 2544: 2511: 2503: 2482: 2447: 2357: 2332: 2302: 2294: 2273: 2246: 2219: 2145: 2115: 2027: 1984: 1918: 1846: 1832: 1761: 1753: 1732: 1724: 1703: 1667: 1627: 1576: 1570: 1504: 1498: 1476: 1440: 1411: 1405: 1380: 1242: 1222: 1214: 1188: 1180: 958: 779: 745: 354: 95:. The radiation emitted by a black body in thermal equilibrium with its environment is called 2855: 2656:"Figure 1.38: Some examples for temperature dependence of emissivity for different materials" 2655: 2532: 2468: 2324: 2267: 2240: 2207: 2139: 2109: 1912: 1836: 1503:(Reprint of Oxford University Press 1978 ed.). Courier Dover Publications. p. 209. 1432: 529:
coating will make a body nearly black. An improvement on lamp-black is found in manufactured
329:, under very general conditions any interacting boson gas will approach thermal equilibrium. 3461: 3256: 3076: 3058: 3044: 3022: 3018: 3004: 2990: 2747: 2723: 2435: 2401: 2186: 2082: 2019: 1974: 1964: 1621: 1603: 1470: 1464: 1374: 1335: 1305: 1112:
If a hot emitting body is assumed to follow the Stefan–Boltzmann law and its power emission
1105: 942: 539: 362: 181: 2568: 3443: 3386: 3332: 3314: 3088: 2715: 1460: 1141: 1063: 713: 530: 294: 80: 3376: 3211:(1898). "Der electrisch geglĂŒhte "absolut schwarze" Körper und seine Temperaturmessung". 968: 783: 314: 113: 42: 3252: 3040: 2397: 2182: 2015: 1960: 704:
has an effective temperature of 5780 K, which can be compared to the temperature of its
337:
A body's behavior with regard to thermal radiation is characterized by its transmission
101:. The name "black body" is given because it absorbs all colors of light. In contrast, a 3277: 3268: 3127: 3097: 3092: 3007:(1860b). "Über den Zusammenhang zwischen Emission und Absorption von Licht und WĂ€rme". 2792:
of the Fermi surface. ... The star will cool rapidly until its interior temperature is
1979: 1942: 873: 592: 235: 635: 3524: 3473: 3432:
Experimenting theory: the proofs of Kirchhoff's radiation law before and after Planck
3399: 3302: 3178: 2935: 2711: 2413: 2405: 2094: 1828: 1662:(Reprint of 1938 Oxford University Press ed.). Dover Publications. pp. 455 1101: 759: 612: 304:
At any given time the radiation in the cavity may not be in thermal equilibrium, but
2769: 2594: 2039: 709: 239:
An approximate realization of a black body as a tiny hole in an insulated enclosure
2354:
Gravity From the Group Up: An Introductory Guide to Gravity and General Relativity
431:
is one for which all incident radiation is reflected uniformly in all directions:
420:
are constant for all wavelengths; this term also is used to mean a body for which
277:
of the radiation, which is related to the energy of the radiation by the equation
3403: 1651: 3226: 3204: 3152: 3122: 2905: 1617: 950: 705: 668: 640: 624: 623:. The figure shows a highly schematic cross-section to illustrate the idea. The 583: 546: 493: 232:
This section describes some concepts developed in connection with black bodies.
216:
incident radiation to pass into it (no reflected energy) and internally absorbs
200:
A more modern definition drops the reference to "infinitely small thicknesses":
121: 17: 3010:
Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin
2996:
Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin
2751: 1340:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
3465: 3372: 1943:"A black body absorber from vertically aligned single-walled carbon nanotubes" 1135: 1077: 946: 771: 751: 565: 554: 526: 514: 468: 143: 3260: 3049: 1109:
forms of energy emission, for example, emission of particles like neutrinos.
484:
of a black body refers to a real world, physical embodiment. Here are a few.
3272: 2941: 1969: 1185:
Engineering thermofluids: thermodynamics, fluid mechanics, and heat transfer
755: 326: 310: 157: 3390: 2581: 2086: 2031: 1988: 27:
Idealized physical body that absorbs all incident electromagnetic radiation
1310: 1297: 2732: 2329:
Introduction to Stellar Astrophysics: Basic stellar observations and data
1611: 912: 502: 265:
that exhibits a distribution in energy characteristic of the temperature
953:
black bodies have 501 nm peak wavelength and 63.3 MW/m; radiant exitance
1469:
Michel Le Bellac; Fabrice Mortessagne; Ghassan George Batrouni (2004).
731:
color index of main sequence and super giant stars in what is called a
588: 568:) and flower carbon nanostructures; all absorb 99.9% of light or more. 55: 2023: 2167:"Comparing the sun with other stars along the temperature coordinate" 1599: 644: 600: 550: 165: 124:
alone (see figure at right), not by the body's shape or composition.
3447: 3234: 127:
An ideal black body in thermal equilibrium has two main properties:
2191: 2166: 2141:
Exploring Ancient Skies: A Survey of Ancient and Cultural Astronomy
1062:, the black body must absorb or internally generate this amount of 3129:
Quantum Generations: a History of Physics in the Twentieth Century
3099:
Modern Thermodynamics. From Heat Engines to Dissipative Structures
2138:
David H. Kelley; Eugene F. Milone; Anthony F. (FRW) Aveni (2011).
1607: 1467:, as stated by Adkins (1983) on page 10. For another example, see 1356:
The notion of an infinitely thin layer was dropped by Planck. See
932: 770:, radiation with a nearly perfect black-body spectrum, ultimately 718: 634: 608: 557: 387:
is one that transmits all the radiation that reaches it. That is,
322: 234: 54: 36: 2660:
Infrared Thermal Imaging: Fundamentals, Research and Applications
3494: 161: 2683:
Robert Osiander; M. Ann Garrison Darrin; John Champion (2006).
858:{\displaystyle T={\frac {\hbar c^{3}}{8\pi Gk_{\text{B}}M}}\ ,} 701: 2477:. Rosen Publishing Group, Scientific American (COR). p.  2295:"Figure 9.2: The temperature profile in the solar atmosphere" 1459:
In simple cases the approach to equilibrium is governed by a
1138:, a substance produced in 2014 and among the blackest known 2108:
Simon F. Green; Mark H. Jones; S. Jocelyn Burnell (2004).
1472:
Equilibrium and non-equilibrium statistical thermodynamics
2356:(1st ed.). Cambridge University Press. p. 304. 2293:
B. Bertotti; Paolo Farinella; David VokrouhlickĂœ (2003).
1725:"Figure 4.3(b) Radiation properties of an opaque surface" 1700:
Physics for Scientists and Engineers, Parts 1-35; Part 39
1569:
Ludwig Bergmann; Clemens Schaefer; Heinz Niedrig (1999).
1058:
To remain in thermal equilibrium at constant temperature
3436:
MĂŒnchner Zentrum fĂŒr Wissenschafts und Technikgeschichte
2245:(3rd ed.). Cambridge University Press. p. 61. 1754:"§10.3.4 Absorptivity, reflectivity, and transmissivity" 1439:(3rd ed.). Cambridge University Press. p. 50. 1144:, black body incandescence in a given chromaticity space 723:
Effective temperature of a black body compared with the
3214:
Verhandlungen der Deutschen Physikalischen Gesellschaft
2599:
The NIST Reference on Constants, Units, and Uncertainty
2171:
Publications of the Astronomical Society of the Pacific
1696:"Relative intensity of reflected and transmitted light" 1270:. Electro Optical Industries, Inc. 2008. Archived from 30:"Black bodies" redirects here. Not to be confused with 639:
An idealized view of the cross-section of a star. The
180:
The idea of a black body originally was introduced by
2631:
The Person Guide to Objective Physics for the IIT-JEE
988: 799: 545:
Other examples of nearly perfect black materials are
256:
and the radiation trapped inside the enclosure is at
3083:. Leipzig: Johann Ambrosius Barth. pp. 571–598. 2576:
Proceedings of the Los Angeles Meeting, DPF 99. UCLA
2533:"The thermodynamics of black holes (pp. 1–38)" 142:
Real materials emit energy at a fraction—called the
3276: 3126: 3096: 2686:MEMS and Microstructures in aerospace applications 2114:. Cambridge University Press. pp. 21–22, 53. 1024: 857: 513:There is interest in blackbody-like materials for 252:Suppose the cavity is held at a fixed temperature 1379:(4th ed.). Taylor & Francis. p. 7. 3448:"An account of some experiments on radiant heat" 2856:"Neutron star structure and fundamental physics" 774:. The mechanism for this emission is related to 3157:Black–Body Theory and the Quantum Discontinuity 2467:Bernard J Carr & Steven B Giddings (2008). 1948:Proceedings of the National Academy of Sciences 1826:An extensive historical discussion is found in 712:to about 9500 K at its inner boundary with the 202: 186: 3453:Transactions of the Royal Society of Edinburgh 2595:"2022 CODATA Value: Stefan–Boltzmann constant" 1877: 1815: 1404:Roger Dale Van Zee; J. Patrick Looney (2002). 716:approximately 500 km (310 mi) deep. 222:a perfect absorber for all incident radiation. 2993:(1860a). "Über die Fraunhofer'schen Linien". 2958:FrĂŒhgeschichte der Quantentheorie (1899–1913) 2535:. In AndrĂ©s Gomberoff; Donald Marolf (eds.). 2438:. In AndrĂ©s Gomberoff; Donald Marolf (eds.). 1264:"What is a Blackbody and Infrared Radiation?" 1238:Encyclopedia of optical engineering, Volume 3 8: 3311:The Historical Development of Quantum Theory 2474:Beyond Extreme Physics: Cutting-edge science 1838:The historical development of quantum theory 424:is temperature- and wavelength-independent. 3235:"Der elektrisch geglĂŒhte "schwarze" Körper" 2056:"Mini craters key to 'blackest ever black'" 1760:. PHI Learning Pvt. Ltd. pp. 385–386. 1463:. In others, the system may 'hang up' in a 2502:Valeri P. Frolov; Andrei Zelnikov (2011). 2331:. Cambridge University Press. p. 26. 1804: 1547: 168:is sometimes characterized in terms of an 3048: 2741: 2731: 2190: 1978: 1968: 1936: 1934: 1702:(4th ed.). Macmillan. p. 1044. 1626:. Cambridge University Press. p. 4. 1475:. Cambridge University Press. p. 8. 1376:Thermal Radiation Heat Transfer; Volume 1 1309: 1010: 992: 987: 949:temperature – red arrows show that 837: 816: 806: 798: 562:vertically aligned carbon nanotube arrays 2910:Atmospheric Radiation: Theoretical Basis 2633:. Pearson Education India. p. 610. 2510:. Oxford University Press. p. 321. 2272:(3rd ed.). BirkhĂ€user. p. 23. 1500:Thermodynamics and statistical mechanics 1373:Siegel, Robert; Howell, John R. (2002). 1368: 1366: 582: 576:For more about the UBV color index, see 333:Transmission, absorption, and reflection 3381:. Masius, M. (transl.) (2nd ed.). 3361:(1930). "Thermodynamics of the Stars". 2969:Early History of Planck's Radiation Law 2816:Walter Lewin; Warren Goldstein (2011). 2216:Introduction to astronomical photometry 1660:The principles of statistical mechanics 1159: 809: 204:An ideal body is now defined, called a 3337:Foundations of Radiation Hydrodynamics 2144:(2nd ed.). Springer. p. 52. 1865: 1792: 1780: 1758:Fundamentals of heat and mass transfer 1535: 1523: 1357: 1291: 1289: 1166: 921:The Big Bang theory is based upon the 664:(visible) range lead to the so-called 2662:. John Wiley & Sons. p. 45. 2541:Springer Science & Business Media 2444:Springer Science & Business Media 1678:...we can define a suitable quantity 1433:"§4.1 The function of the second law" 1398: 1396: 917:Cosmic microwave background radiation 907:Cosmic microwave background radiation 7: 3489:Keesey, Lori J. (12 December 2010). 3279:Optical Coherence and Quantum Optics 2111:An introduction to the sun and stars 1656:with time as a result of collisions" 1131:Kirchhoff's law of thermal radiation 533:. Nano-porous materials can achieve 461: 3405:Radiative Processes in Astrophysics 2436:"The thermodynamics of black holes" 1025:{\displaystyle P/A=\sigma T^{4}\ ,} 549:, prepared by chemically etching a 2508:Introduction to Black Hole Physics 1575:. Walter de Gruyter. p. 595. 25: 1497:Peter Theodore Landsberg (1990). 2788:are dominated by physics within 2654:M Vollmer; K-P MĂ”llmann (2011). 2623:A simple example is provided by 2469:"Chapter 6: Quantum black holes" 2269:Astrophysical formulae, Volume 1 462:Kirchhoff's perfect black bodies 306:the second law of thermodynamics 2960:, Physik Verlag, Mosbach/Baden. 2826:. Simon and Schuster. pp.  2781:and the neutrino emission rate 2379:"Thermodynamics of black holes" 1941:K. Mizuno; et al. (2009). 1598:The fundamental bosons are the 1410:. Academic Press. p. 202. 2165:David F Gray (February 1995). 2054:Mick Hamer (6 February 2003). 1891:"Materials keep a low profile" 1407:Cavity-enhanced spectroscopies 1324:Translated by F. Guthrie from 525:It has long been known that a 1: 3335:; Weibel-Mihalas, B. (1984). 3055:Translated by Guthrie, F. as 3028:Annalen der Physik und Chemie 2937:The Genesis of Quantum Theory 2860:Astrophysics update, Volume 2 2299:New Views of the Solar System 1572:Optics of waves and particles 325:gas, and as described by the 91:, regardless of frequency or 3378:The Theory of Heat Radiation 2239:Lawrence Hugh Aller (1991). 1431:Clement John Adkins (1983). 3514:Goddard Space Flight Center 3383:P. Blakiston's Son & Co 3183:The Quantum Theory of Light 2537:Lectures on Quantum Gravity 2440:Lectures on quantum gravity 1731:. Wiley-IEEE. p. 381. 1729:Principles of heat transfer 1602:, the vector bosons of the 1241:. CRC Press. p. 2303. 1235:Ronald G. Driggers (2003). 1221:. Wiley-IEEE. p. 381. 1219:Principles of heat transfer 138:, independent of direction. 3562: 3285:Cambridge University Press 3187:Cambridge University Press 3135:Princeton University Press 2862:. BirkhĂ€user. p. 41. 2858:. In John W. Mason (ed.). 2752:10.1142/9789812810458_0043 2722:. Vol. 3. Singapore: 2689:. CRC Press. p. 187. 2406:10.1088/0034-4885/41/8/004 2075:ACS Applied Nano Materials 1878:Lummer & Kurlbaum 1901 1816:Lummer & Kurlbaum 1898 1623:Bose-Einstein condensation 1437:Equilibrium thermodynamics 1334:G. Kirchhoff (July 1860). 1181:"§2.1 Blackbody radiation" 956: 910: 743: 575: 319:photon–photon interactions 120:that is determined by the 29: 3536:Electromagnetic radiation 3466:10.1017/S0080456800031288 2625:Srivastava M. K. (2011). 2569:"Anisotropies in the CMB" 2301:. Springer. p. 248. 2242:Atoms, stars, and nebulae 1360:, p. 10, footnote 2. 1187:. Springer. p. 568. 1041:Stefan–Boltzmann constant 963:Radiosity (heat transfer) 519:radar-absorbent materials 89:electromagnetic radiation 3364:Handbuch der Astrophysik 3261:10.1002/andp.19013100809 3050:10.1002/andp.18601850205 2940:. Nash, C.W. (transl.). 2352:Schutz, Bernard (2004). 2323:E. Böhm-Vitense (1989). 2266:Kenneth R. Lang (2006). 2218:. Springer. p. 82. 1841:. Springer. pp. 39 1723:Massoud Kaviany (2002). 1213:Massoud Kaviany (2002). 1179:Mahmoud Massoud (2005). 939:peak emission wavelength 605:white main-sequence star 116:, meaning that it has a 3341:Oxford University Press 3313:. Vol. 1, part 1. 3161:Oxford University Press 3081:Gessamelte Abhandlungen 2914:Oxford University Press 2897:Oxford University Press 2823:For the love of physics 1970:10.1073/pnas.0900155106 1694:Paul A. Tipler (1999). 1620:; S. Stringari (1996). 1268:Education/Reference tab 878:reduced Planck constant 65:ultraviolet catastrophe 3064:Philosophical Magazine 3057:Kirchhoff, G. (1860). 2854:TE Strohmayer (2006). 2726:. pp. 2061–2151. 2627:"Cooling by radiation" 2531:Robert M Wald (2005). 2434:Robert M Wald (2005). 2087:10.1021/acsanm.9b01950 1911:Bradley Quinn (2010). 1889:CF Lewis (June 1988). 1548:Mandel & Wolf 1995 1026: 975:, and is known as the 954: 923:cosmological principle 897:gravitational constant 859: 736: 675:(ultraviolet) and the 648: 616: 472:difficult to satisfy. 240: 225: 198: 68: 50: 3531:Astrophysics concepts 3410:John Wiley & Sons 3105:John Wiley & Sons 2321:Figure modeled after 1311:10.1038/nnano.2008.29 1302:Nature Nanotechnology 1296:Chun, Ai Lin (2008). 1027: 936: 860: 722: 679:indices leads to the 653:effective temperature 651:Using this model the 638: 586: 273:as a function of the 238: 170:effective temperature 160:, the radiation from 58: 40: 3491:"Blacker than black" 3367:. 3, part 1: 63–255. 1917:. Berg. p. 68. 1795:, pp. 9–10, §10 1752:BA Venkanna (2010). 1648:Richard Chace Tolman 1298:"Blacker than black" 1069:over the given area 986: 977:Stefan–Boltzmann law 797: 768:black-body radiation 621:black-body radiation 509:Near-black materials 263:black-body radiation 192:, or, more briefly, 184:in 1860 as follows: 98:black-body radiation 3253:1901AnP...310..829L 3041:1860AnP...185..275K 2710:Krishna Rajagopal; 2398:1978RPPh...41.1313D 2377:PCW Davies (1978). 2183:1995PASP..107..120G 2016:2008NanoL...8..446Y 1961:2009PNAS..106.6044M 967:The integration of 786:with a temperature 776:vacuum fluctuations 733:color-color diagram 611:(a blue star), and 315:Planck distribution 258:thermal equilibrium 110:thermal equilibrium 47:spectral irradiance 32:Black Bodies (film) 3240:Annalen der Physik 3185:(third ed.). 2973:Taylor and Francis 2893:Radiative Transfer 2716:Mikhail A. Shifman 2567:White, M. (1999). 1833:Rechenberg, Helmut 1332:, 275-301 (1860): 1326:Annalen der Physik 1022: 955: 937:Log-log graphs of 889:Boltzmann constant 855: 764:point of no return 737: 649: 617: 578:Photometric system 572:Stars and planets 535:refractive indices 498:Ferdinand Kurlbaum 488:Cavity with a hole 446:For a black body, 244:Cavity with a hole 241: 93:angle of incidence 69: 61:Rayleigh–Jeans law 51: 3419:978-0-471-82759-7 3350:978-0-19-503437-0 3324:978-0-387-90642-3 3294:978-0-521-41711-2 3196:978-0-19-850177-0 3170:978-0-19-502383-1 3144:978-0-691-01206-3 3114:978-0-471-97393-5 2982:978-0-85066-063-0 2956:a translation of 2951:978-0-262-08047-7 2923:978-0-19-510291-8 2889:Chandrasekhar, S. 2869:978-3-540-30312-1 2840:978-1-4391-0827-7 2818:"X-ray bursters!" 2761:978-981-02-4969-4 2696:978-0-8247-2637-9 2669:978-3-527-63087-5 2640:978-81-317-5513-6 2550:978-0-387-23995-8 2517:978-0-19-969229-3 2488:978-1-4042-1402-6 2453:978-0-387-23995-8 2446:. pp. 1–38. 2363:978-0-521-45506-0 2338:978-0-521-34869-0 2308:978-1-4020-1428-4 2279:978-3-540-29692-8 2252:978-0-521-31040-6 2225:978-90-277-0428-3 2151:978-1-4419-7623-9 2121:978-0-521-54622-5 2081:(12): 7951–7956. 2024:10.1021/nl072369t 1955:(15): 6044–6077. 1924:978-1-84520-807-3 1852:978-0-387-95174-4 1767:978-81-203-4031-2 1738:978-0-471-43463-4 1709:978-0-7167-3821-3 1673:978-0-486-63896-6 1652:"§103: Change of 1633:978-0-521-58990-1 1582:978-3-11-014318-8 1526:, p. 44, §52 1510:978-0-486-66493-4 1446:978-0-521-27456-2 1417:978-0-12-475987-9 1386:978-1-56032-839-1 1248:978-0-8247-4252-2 1228:978-0-471-43463-4 1194:978-3-540-22292-7 1106:phase transitions 1018: 959:Radiative cooling 929:Radiative cooling 851: 847: 840: 746:Hawking radiation 355:Fresnel equations 345:, and reflection 16:(Redirected from 3553: 3517: 3508: 3506: 3497:. Archived from 3477: 3439: 3428:Schirrmacher, A. 3423: 3398:Rybicki, G. B.; 3394: 3368: 3354: 3328: 3298: 3282: 3264: 3222: 3200: 3174: 3148: 3132: 3118: 3102: 3084: 3072: 3054: 3052: 3014: 3000: 2986: 2955: 2927: 2912:(2nd ed.). 2900: 2874: 2873: 2851: 2845: 2844: 2813: 2807: 2806: 2796: <  2745: 2735: 2733:hep-ph/0011333v2 2724:World Scientific 2707: 2701: 2700: 2680: 2674: 2673: 2651: 2645: 2644: 2621: 2615: 2614: 2612: 2610: 2591: 2585: 2579: 2573: 2564: 2558: 2557: 2528: 2522: 2521: 2504:"Equation 9.7.1" 2499: 2493: 2492: 2464: 2458: 2457: 2431: 2425: 2424: 2422: 2416:. Archived from 2392:(8): 1313–1355. 2383: 2374: 2368: 2367: 2349: 2343: 2342: 2319: 2313: 2312: 2290: 2284: 2283: 2263: 2257: 2256: 2236: 2230: 2229: 2206:M Golay (1974). 2203: 2197: 2196: 2194: 2162: 2156: 2155: 2135: 2129: 2128: 2105: 2099: 2098: 2070: 2064: 2063: 2050: 2044: 2043: 1999: 1993: 1992: 1982: 1972: 1938: 1929: 1928: 1908: 1902: 1901: 1895: 1886: 1880: 1875: 1869: 1863: 1857: 1856: 1824: 1818: 1813: 1807: 1802: 1796: 1790: 1784: 1778: 1772: 1771: 1749: 1743: 1742: 1720: 1714: 1713: 1691: 1685: 1684: 1644: 1638: 1637: 1604:weak interaction 1596: 1590: 1589: 1566: 1560: 1557: 1551: 1545: 1539: 1533: 1527: 1521: 1515: 1514: 1493: 1487: 1486: 1465:metastable state 1457: 1451: 1450: 1428: 1422: 1421: 1400: 1391: 1390: 1370: 1361: 1354: 1348: 1347: 1322: 1316: 1315: 1313: 1293: 1284: 1283: 1281: 1279: 1259: 1253: 1252: 1232: 1205: 1199: 1198: 1176: 1170: 1164: 1116:and temperature 1099: 1085: 1057: 1054: 1052: 1031: 1029: 1028: 1023: 1016: 1015: 1014: 996: 943:radiant exitance 864: 862: 861: 856: 849: 848: 846: 842: 841: 838: 822: 821: 820: 807: 540:carbon nanotubes 531:carbon nanotubes 384:transparent body 182:Gustav Kirchhoff 152: 108:A black body in 79:is an idealized 21: 18:Cavity radiation 3561: 3560: 3556: 3555: 3554: 3552: 3551: 3550: 3521: 3520: 3504: 3502: 3501:on 14 June 2020 3488: 3485: 3480: 3442: 3426: 3420: 3400:Lightman, A. P. 3397: 3371: 3357: 3351: 3331: 3325: 3315:Springer-Verlag 3301: 3295: 3267: 3225: 3203: 3197: 3177: 3171: 3151: 3145: 3121: 3115: 3087: 3075: 3056: 3017: 3003: 2989: 2983: 2963: 2952: 2930: 2924: 2903: 2887: 2883: 2878: 2877: 2870: 2853: 2852: 2848: 2841: 2815: 2814: 2810: 2801: 2786: 2779: 2762: 2743:10.1.1.344.2269 2709: 2708: 2704: 2697: 2682: 2681: 2677: 2670: 2653: 2652: 2648: 2641: 2624: 2622: 2618: 2608: 2606: 2593: 2592: 2588: 2571: 2566: 2565: 2561: 2551: 2530: 2529: 2525: 2518: 2501: 2500: 2496: 2489: 2466: 2465: 2461: 2454: 2433: 2432: 2428: 2423:on 10 May 2013. 2420: 2381: 2376: 2375: 2371: 2364: 2351: 2350: 2346: 2339: 2322: 2320: 2316: 2309: 2292: 2291: 2287: 2280: 2265: 2264: 2260: 2253: 2238: 2237: 2233: 2226: 2205: 2204: 2200: 2164: 2163: 2159: 2152: 2137: 2136: 2132: 2122: 2107: 2106: 2102: 2072: 2071: 2067: 2053: 2051: 2047: 2001: 2000: 1996: 1940: 1939: 1932: 1925: 1914:Textile Futures 1910: 1909: 1905: 1893: 1888: 1887: 1883: 1876: 1872: 1864: 1860: 1853: 1827: 1825: 1821: 1814: 1810: 1805:Kirchhoff 1860c 1803: 1799: 1791: 1787: 1779: 1775: 1768: 1751: 1750: 1746: 1739: 1722: 1721: 1717: 1710: 1693: 1692: 1688: 1674: 1646: 1645: 1641: 1634: 1616:Allan Griffin; 1615: 1597: 1593: 1583: 1568: 1567: 1563: 1558: 1554: 1546: 1542: 1534: 1530: 1522: 1518: 1511: 1496: 1494: 1490: 1483: 1468: 1461:relaxation time 1458: 1454: 1447: 1430: 1429: 1425: 1418: 1403: 1401: 1394: 1387: 1372: 1371: 1364: 1355: 1351: 1333: 1323: 1319: 1295: 1294: 1287: 1277: 1275: 1274:on 7 March 2016 1262: 1260: 1256: 1249: 1234: 1229: 1212: 1206: 1202: 1195: 1178: 1177: 1173: 1169:, pp. 9–10 1165: 1161: 1156: 1151: 1142:Planckian locus 1127: 1087: 1080: 1055: 1050: 1048: 1006: 984: 983: 965: 931: 919: 909: 886: 833: 823: 812: 808: 795: 794: 762:that marks the 754:is a region of 748: 742: 714:convection zone 581: 574: 511: 490: 478: 464: 335: 295:Planck constant 246: 230: 190:perfectly black 178: 147: 35: 28: 23: 22: 15: 12: 11: 5: 3559: 3557: 3549: 3548: 3543: 3538: 3533: 3523: 3522: 3519: 3518: 3484: 3483:External links 3481: 3479: 3478: 3440: 3424: 3418: 3395: 3369: 3355: 3349: 3329: 3323: 3307:Rechenberg, H. 3299: 3293: 3265: 3247:(8): 829–836. 3223: 3201: 3195: 3175: 3169: 3149: 3143: 3119: 3113: 3085: 3073: 3035:(2): 275–301. 3015: 3001: 2987: 2981: 2961: 2950: 2928: 2922: 2904:Goody, R. M.; 2901: 2884: 2882: 2879: 2876: 2875: 2868: 2846: 2839: 2808: 2802: ~ âˆ† 2799: 2784: 2777: 2760: 2702: 2695: 2675: 2668: 2646: 2639: 2616: 2586: 2559: 2549: 2543:. p. 28. 2523: 2516: 2494: 2487: 2459: 2452: 2426: 2369: 2362: 2344: 2337: 2314: 2307: 2285: 2278: 2258: 2251: 2231: 2224: 2198: 2192:10.1086/133525 2157: 2150: 2130: 2120: 2100: 2065: 2045: 2010:(2): 446–451. 1994: 1930: 1923: 1903: 1881: 1870: 1858: 1851: 1829:Mehra, Jagdish 1819: 1808: 1797: 1785: 1773: 1766: 1744: 1737: 1715: 1708: 1686: 1672: 1639: 1632: 1591: 1581: 1561: 1552: 1540: 1528: 1516: 1509: 1488: 1482:978-0521821438 1481: 1452: 1445: 1423: 1416: 1392: 1385: 1362: 1349: 1317: 1285: 1254: 1247: 1227: 1200: 1193: 1171: 1158: 1157: 1155: 1152: 1150: 1147: 1146: 1145: 1139: 1133: 1126: 1123: 1033: 1032: 1021: 1013: 1009: 1005: 1002: 999: 995: 991: 930: 927: 908: 905: 884: 874:speed of light 866: 865: 854: 845: 836: 832: 829: 826: 819: 815: 811: 805: 802: 741: 738: 595:), the Sun (a 593:red supergiant 573: 570: 510: 507: 489: 486: 477: 474: 463: 460: 334: 331: 245: 242: 229: 226: 177: 174: 140: 139: 132: 45:utilized as a 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3558: 3547: 3544: 3542: 3541:Heat transfer 3539: 3537: 3534: 3532: 3529: 3528: 3526: 3516: 3515: 3500: 3496: 3492: 3487: 3486: 3482: 3475: 3471: 3467: 3463: 3459: 3455: 3454: 3449: 3445: 3441: 3437: 3433: 3429: 3425: 3421: 3415: 3411: 3407: 3406: 3401: 3396: 3392: 3388: 3384: 3380: 3379: 3374: 3370: 3366: 3365: 3360: 3356: 3352: 3346: 3342: 3338: 3334: 3330: 3326: 3320: 3316: 3312: 3308: 3304: 3300: 3296: 3290: 3286: 3281: 3280: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3241: 3236: 3232: 3228: 3224: 3220: 3216: 3215: 3210: 3206: 3202: 3198: 3192: 3188: 3184: 3180: 3176: 3172: 3166: 3162: 3158: 3154: 3150: 3146: 3140: 3136: 3131: 3130: 3124: 3120: 3116: 3110: 3106: 3101: 3100: 3094: 3093:Prigogine, I. 3090: 3089:Kondepudi, D. 3086: 3082: 3078: 3077:Kirchhoff, G. 3074: 3070: 3066: 3065: 3060: 3051: 3046: 3042: 3038: 3034: 3030: 3029: 3024: 3020: 3019:Kirchhoff, G. 3016: 3012: 3011: 3006: 3005:Kirchhoff, G. 3002: 2998: 2997: 2992: 2991:Kirchhoff, G. 2988: 2984: 2978: 2974: 2970: 2966: 2962: 2959: 2953: 2947: 2943: 2939: 2938: 2933: 2929: 2925: 2919: 2915: 2911: 2907: 2902: 2898: 2894: 2890: 2886: 2885: 2880: 2871: 2865: 2861: 2857: 2850: 2847: 2842: 2836: 2832: 2831: 2825: 2824: 2819: 2812: 2809: 2805: 2803: 2795: 2791: 2787: 2780: 2771: 2767: 2763: 2757: 2753: 2749: 2744: 2739: 2734: 2729: 2725: 2721: 2717: 2713: 2712:Frank Wilczek 2706: 2703: 2698: 2692: 2688: 2687: 2679: 2676: 2671: 2665: 2661: 2657: 2650: 2647: 2642: 2636: 2632: 2628: 2620: 2617: 2604: 2600: 2596: 2590: 2587: 2583: 2577: 2570: 2563: 2560: 2556: 2552: 2546: 2542: 2538: 2534: 2527: 2524: 2519: 2513: 2509: 2505: 2498: 2495: 2490: 2484: 2480: 2476: 2475: 2470: 2463: 2460: 2455: 2449: 2445: 2441: 2437: 2430: 2427: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2386:Rep Prog Phys 2380: 2373: 2370: 2365: 2359: 2355: 2348: 2345: 2340: 2334: 2330: 2326: 2318: 2315: 2310: 2304: 2300: 2296: 2289: 2286: 2281: 2275: 2271: 2270: 2262: 2259: 2254: 2248: 2244: 2243: 2235: 2232: 2227: 2221: 2217: 2213: 2211: 2202: 2199: 2193: 2188: 2184: 2180: 2176: 2172: 2168: 2161: 2158: 2153: 2147: 2143: 2142: 2134: 2131: 2127: 2123: 2117: 2113: 2112: 2104: 2101: 2096: 2092: 2088: 2084: 2080: 2076: 2069: 2066: 2061: 2060:New Scientist 2057: 2049: 2046: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2009: 2005: 1998: 1995: 1990: 1986: 1981: 1976: 1971: 1966: 1962: 1958: 1954: 1950: 1949: 1944: 1937: 1935: 1931: 1926: 1920: 1916: 1915: 1907: 1904: 1899: 1892: 1885: 1882: 1879: 1874: 1871: 1868:, p. 159 1867: 1862: 1859: 1854: 1848: 1844: 1840: 1839: 1834: 1830: 1823: 1820: 1817: 1812: 1809: 1806: 1801: 1798: 1794: 1789: 1786: 1782: 1777: 1774: 1769: 1763: 1759: 1755: 1748: 1745: 1740: 1734: 1730: 1726: 1719: 1716: 1711: 1705: 1701: 1697: 1690: 1687: 1683: 1681: 1675: 1669: 1665: 1661: 1657: 1655: 1649: 1643: 1640: 1635: 1629: 1625: 1624: 1619: 1613: 1609: 1605: 1601: 1595: 1592: 1588: 1584: 1578: 1574: 1573: 1565: 1562: 1556: 1553: 1549: 1544: 1541: 1537: 1532: 1529: 1525: 1520: 1517: 1512: 1506: 1502: 1501: 1492: 1489: 1484: 1478: 1474: 1473: 1466: 1462: 1456: 1453: 1448: 1442: 1438: 1434: 1427: 1424: 1419: 1413: 1409: 1408: 1399: 1397: 1393: 1388: 1382: 1378: 1377: 1369: 1367: 1363: 1359: 1353: 1350: 1345: 1341: 1337: 1331: 1327: 1321: 1318: 1312: 1307: 1303: 1299: 1292: 1290: 1286: 1273: 1269: 1265: 1258: 1255: 1250: 1244: 1240: 1239: 1230: 1224: 1220: 1216: 1210: 1204: 1201: 1196: 1190: 1186: 1182: 1175: 1172: 1168: 1163: 1160: 1153: 1148: 1143: 1140: 1137: 1134: 1132: 1129: 1128: 1124: 1122: 1119: 1115: 1110: 1107: 1103: 1102:heat capacity 1098: 1097:εσT 1094: 1090: 1083: 1079: 1074: 1072: 1068: 1065: 1061: 1053:10 W⋅m⋅K 1047: â‰ˆ  1046: 1042: 1038: 1019: 1011: 1007: 1003: 1000: 997: 993: 989: 982: 981: 980: 978: 974: 970: 964: 960: 952: 948: 944: 940: 935: 928: 926: 924: 918: 914: 906: 904: 902: 898: 894: 890: 883: 879: 875: 871: 852: 843: 834: 830: 827: 824: 817: 813: 803: 800: 793: 792: 791: 789: 785: 781: 777: 773: 769: 765: 761: 760:event horizon 757: 753: 747: 739: 734: 730: 726: 721: 717: 715: 711: 707: 703: 699: 695: 691: 686: 682: 678: 674: 670: 667: 663: 659: 654: 646: 642: 637: 633: 630: 626: 622: 614: 613:Gamma Velorum 610: 606: 602: 598: 594: 590: 585: 579: 571: 569: 567: 563: 559: 556: 552: 548: 543: 541: 536: 532: 528: 523: 520: 516: 508: 506: 504: 499: 495: 487: 485: 483: 475: 473: 470: 459: 457: 453: 449: 444: 442: 438: 434: 430: 425: 423: 419: 415: 411: 408:is one where 407: 406: 400: 398: 394: 390: 386: 385: 379: 377: 373: 369: 365: 364: 358: 356: 350: 348: 344: 341:, absorption 340: 332: 330: 328: 324: 320: 316: 312: 307: 302: 301:= frequency. 300: 296: 292: 288: 284: 280: 276: 272: 268: 264: 259: 255: 250: 243: 237: 233: 228:Idealizations 227: 224: 223: 219: 215: 211: 207: 201: 197: 195: 191: 185: 183: 175: 173: 171: 167: 163: 159: 154: 150: 145: 137: 136:isotropically 133: 130: 129: 128: 125: 123: 119: 115: 111: 106: 104: 100: 99: 94: 90: 87:all incident 86: 82: 81:physical body 78: 74: 66: 62: 57: 53: 48: 44: 39: 33: 19: 3510: 3503:. Retrieved 3499:the original 3457: 3451: 3431: 3404: 3377: 3362: 3336: 3310: 3278: 3244: 3238: 3231:Kurlbaum, F. 3218: 3212: 3209:Kurlbaum, F. 3182: 3156: 3128: 3098: 3080: 3068: 3067:. Series 4. 3062: 3032: 3026: 3008: 2994: 2968: 2957: 2936: 2909: 2892: 2881:Bibliography 2859: 2849: 2829: 2822: 2811: 2797: 2793: 2789: 2782: 2775: 2773: 2719: 2705: 2685: 2678: 2659: 2649: 2630: 2619: 2607:. Retrieved 2598: 2589: 2575: 2562: 2554: 2536: 2526: 2507: 2497: 2473: 2462: 2439: 2429: 2418:the original 2389: 2385: 2372: 2353: 2347: 2328: 2325:"Figure 4.9" 2317: 2298: 2288: 2268: 2261: 2241: 2234: 2215: 2209: 2201: 2174: 2170: 2160: 2140: 2133: 2125: 2110: 2103: 2078: 2074: 2068: 2059: 2048: 2007: 2004:Nano Letters 2003: 1997: 1952: 1946: 1913: 1906: 1897: 1884: 1873: 1861: 1842: 1837: 1822: 1811: 1800: 1788: 1783:, p. 10 1776: 1757: 1747: 1728: 1718: 1699: 1689: 1679: 1677: 1663: 1659: 1653: 1642: 1622: 1594: 1586: 1571: 1564: 1555: 1550:, Chapter 13 1543: 1531: 1519: 1499: 1491: 1471: 1455: 1436: 1426: 1406: 1375: 1352: 1343: 1339: 1329: 1325: 1320: 1301: 1276:. Retrieved 1272:the original 1267: 1257: 1237: 1218: 1208: 1203: 1184: 1174: 1162: 1117: 1113: 1111: 1096: 1092: 1088: 1081: 1075: 1070: 1066: 1059: 1044: 1036: 1034: 972: 969:Planck's law 966: 920: 900: 892: 881: 869: 867: 787: 784:Planck's law 780:virtual pair 749: 728: 724: 710:chromosphere 697: 693: 689: 684: 680: 676: 672: 665: 661: 657: 650: 628: 618: 597:yellow dwarf 544: 524: 512: 491: 481: 479: 476:Realizations 465: 455: 451: 447: 445: 440: 436: 432: 428: 426: 421: 417: 413: 409: 404: 403: 401: 396: 392: 388: 382: 380: 375: 371: 367: 361: 359: 351: 346: 342: 338: 336: 303: 298: 290: 286: 282: 278: 266: 253: 251: 247: 231: 221: 217: 213: 209: 205: 203: 199: 194:black bodies 193: 189: 187: 179: 155: 148: 141: 126: 114:Planck's law 107: 102: 96: 76: 72: 70: 52: 43:Planck's law 3444:Stewart, B. 3359:Milne, E.A. 3333:Mihalas, D. 3153:Kuhn, T. S. 2932:Hermann, A. 2906:Yung, Y. L. 2208:"Table IX: 2177:: 120–123. 1866:Kangro 1976 1793:Planck 1914 1781:Planck 1914 1618:D. W. Snoke 1538:, Chapter 1 1536:Loudon 2000 1524:Planck 1914 1358:Planck 1914 1167:Planck 1914 876:, ℏ is the 778:in which a 772:evaporating 740:Black holes 706:photosphere 669:color index 641:photosphere 625:photosphere 547:super black 494:Otto Lummer 482:realization 363:opaque body 311:thermalized 122:temperature 3525:Categories 3505:1 February 3373:Planck, M. 3269:Mandel, L. 3227:Lummer, O. 3221:: 106–111. 3205:Lummer, O. 3179:Loudon, R. 3013:: 783–787. 2999:: 662–665. 2965:Kangro, H. 2605:. May 2024 2582:arXive.org 1898:Mech. Eng. 1610:, and the 1149:References 1136:Vantablack 1078:emissivity 957:See also: 947:black-body 911:See also: 752:black hole 744:See also: 660:(blue) or 566:Vantablack 555:phosphorus 527:lamp-black 515:camouflage 469:scattering 429:white body 289:= energy, 176:Definition 144:emissivity 103:white body 73:black body 3474:122316368 3303:Mehra, J. 3181:(2000) . 3123:Kragh, H. 3021:(1860c). 2942:MIT Press 2738:CiteSeerX 2580:See also 2414:250916407 2095:213017898 1209:gray body 1154:Citations 1004:σ 828:π 810:ℏ 756:spacetime 643:contains 492:In 1898, 454:= 1, and 439:= 0, and 405:grey body 327:H-theorem 275:frequency 210:blackbody 206:blackbody 158:astronomy 77:blackbody 49:standard. 3546:Infrared 3460:: 1–20. 3446:(1858). 3430:(2001). 3402:(1979). 3391:7154661M 3375:(1914). 3309:(1982). 3275:(1995). 3273:Wolf, E. 3233:(1901). 3155:(1978). 3125:(1999). 3095:(1998). 2967:(1976). 2934:(1971). 2908:(1989). 2891:(1950). 2770:13606600 2212:Indices" 2032:18181658 1989:19339498 1900:: 37–41. 1835:(2000). 1650:(2010). 1612:graviton 1125:See also 913:Big Bang 503:Hohlraum 391:= 1 and 370:= 0 and 271:spectrum 118:spectrum 63:and its 3249:Bibcode 3071:: 1–21. 3037:Bibcode 2718:(ed.). 2394:Bibcode 2179:Bibcode 2040:7412160 2012:Bibcode 1980:2669394 1957:Bibcode 1278:10 June 1056:‍ 1039:is the 895:is the 887:is the 872:is the 645:photons 589:Antares 285:, with 212:allows 166:planets 85:absorbs 3472:  3416:  3389:  3347:  3321:  3291:  3193:  3167:  3141:  3111:  2979:  2948:  2920:  2866:  2837:  2785:ν 2768:  2758:  2740:  2693:  2666:  2637:  2609:18 May 2547:  2514:  2485:  2450:  2412:  2360:  2335:  2305:  2276:  2249:  2222:  2148:  2118:  2093:  2038:  2030:  1987:  1977:  1921:  1849:  1764:  1735:  1706:  1670:  1630:  1614:. See 1606:, the 1600:photon 1579:  1507:  1479:  1443:  1414:  1383:  1346:(130). 1245:  1225:  1191:  1082:ε 1045:σ 1037:σ 1035:where 1017:  951:5780 K 868:where 850:  601:Sirius 564:(like 551:nickel 149:ε 3470:S2CID 2766:S2CID 2728:arXiv 2572:(PDF) 2421:(PDF) 2410:S2CID 2382:(PDF) 2091:S2CID 2036:S2CID 1894:(PDF) 1608:gluon 1064:power 609:Spica 558:alloy 450:= 0, 443:= 1. 435:= 0, 399:= 0. 378:= 1. 323:boson 162:stars 83:that 3507:2012 3495:NASA 3414:ISBN 3345:ISBN 3319:ISBN 3289:ISBN 3191:ISBN 3165:ISBN 3139:ISBN 3109:ISBN 2977:ISBN 2946:ISBN 2918:ISBN 2864:ISBN 2835:ISBN 2828:251 2756:ISBN 2691:ISBN 2664:ISBN 2635:ISBN 2611:2024 2603:NIST 2545:ISBN 2512:ISBN 2483:ISBN 2448:ISBN 2358:ISBN 2333:ISBN 2303:ISBN 2274:ISBN 2247:ISBN 2220:ISBN 2146:ISBN 2116:ISBN 2028:PMID 1985:PMID 1919:ISBN 1847:ISBN 1762:ISBN 1733:ISBN 1704:ISBN 1668:ISBN 1628:ISBN 1577:ISBN 1505:ISBN 1477:ISBN 1441:ISBN 1412:ISBN 1381:ISBN 1280:2019 1243:ISBN 1233:and 1223:ISBN 1189:ISBN 1049:5.67 961:and 941:and 915:and 899:and 727:and 517:and 496:and 416:and 208:. A 164:and 3462:doi 3257:doi 3245:310 3045:doi 3033:185 2748:doi 2402:doi 2210:U-B 2187:doi 2175:107 2083:doi 2020:doi 1975:PMC 1965:doi 1953:106 1330:109 1306:doi 1084:≀ 1 945:vs 729:U-B 725:B-V 702:Sun 698:B-V 694:U-B 690:B-V 685:U-B 681:U-B 666:B-V 607:), 603:(a 599:), 591:(a 360:An 218:all 214:all 156:In 151:= 1 75:or 3527:: 3509:. 3493:. 3468:. 3458:22 3456:. 3450:. 3434:. 3412:. 3408:. 3387:OL 3385:. 3343:. 3339:. 3317:. 3305:; 3287:. 3283:. 3271:; 3255:. 3243:. 3237:. 3229:; 3219:17 3217:. 3207:; 3189:. 3163:. 3159:. 3137:. 3133:. 3107:. 3103:. 3091:; 3069:20 3061:. 3043:. 3031:. 3025:. 2975:. 2971:. 2944:. 2916:. 2895:. 2833:. 2830:ff 2820:. 2772:. 2764:. 2754:. 2746:. 2736:. 2658:. 2629:. 2601:. 2597:. 2574:. 2553:. 2539:. 2506:. 2481:. 2479:30 2471:. 2442:. 2408:. 2400:. 2390:41 2388:. 2384:. 2327:. 2297:. 2214:. 2185:. 2173:. 2169:. 2124:. 2089:. 2077:. 2058:. 2034:. 2026:. 2018:. 2006:. 1983:. 1973:. 1963:. 1951:. 1945:. 1933:^ 1896:. 1845:. 1843:ff 1831:; 1756:. 1727:. 1698:. 1676:. 1666:. 1664:ff 1658:. 1585:. 1435:. 1395:^ 1365:^ 1344:20 1342:. 1338:. 1328:: 1304:. 1300:. 1288:^ 1266:. 1217:. 1183:. 1095:= 1073:. 1043:, 979:: 891:, 880:, 790:: 750:A 560:, 505:. 480:A 427:A 412:, 402:A 395:= 381:A 374:+ 349:. 297:, 293:= 283:hf 281:= 71:A 3476:. 3464:: 3438:. 3422:. 3393:. 3353:. 3327:. 3297:. 3263:. 3259:: 3251:: 3199:. 3173:. 3147:. 3117:. 3053:. 3047:: 3039:: 2985:. 2954:. 2926:. 2899:. 2872:. 2843:. 2800:c 2798:T 2794:T 2790:T 2783:L 2778:V 2776:C 2750:: 2730:: 2699:. 2672:. 2643:. 2613:. 2584:. 2578:. 2520:. 2491:. 2456:. 2404:: 2396:: 2366:. 2341:. 2311:. 2282:. 2255:. 2228:. 2195:. 2189:: 2181:: 2154:. 2097:. 2085:: 2079:2 2062:. 2042:. 2022:: 2014:: 2008:8 1991:. 1967:: 1959:: 1927:. 1855:. 1770:. 1741:. 1712:. 1680:H 1654:H 1636:. 1513:. 1485:. 1449:. 1420:. 1389:. 1314:. 1308:: 1282:. 1251:. 1231:. 1197:. 1118:T 1114:P 1093:A 1091:/ 1089:P 1086:( 1071:A 1067:P 1060:T 1051:× 1020:, 1012:4 1008:T 1001:= 998:A 994:/ 990:P 973:T 901:M 893:G 885:B 882:k 870:c 853:, 844:M 839:B 835:k 831:G 825:8 818:3 814:c 804:= 801:T 788:T 735:. 677:B 673:U 662:V 658:B 629:T 615:. 580:. 553:– 456:ρ 452:α 448:τ 441:ρ 437:α 433:τ 422:α 418:τ 414:ρ 410:α 397:ρ 393:α 389:τ 376:ρ 372:α 368:τ 347:ρ 343:α 339:τ 309:" 299:f 291:h 287:E 279:E 267:T 254:T 196:. 67:. 34:. 20:)

Index

Cavity radiation
Black Bodies (film)
A physical approximation of a black body radiator model constitutes of a heated pyrographite chamber and peripheral devices which ensure temperature stability.
Planck's law
spectral irradiance

Rayleigh–Jeans law
ultraviolet catastrophe
physical body
absorbs
electromagnetic radiation
angle of incidence
black-body radiation
thermal equilibrium
Planck's law
spectrum
temperature
isotropically
emissivity
astronomy
stars
planets
effective temperature
Gustav Kirchhoff

thermal equilibrium
black-body radiation
spectrum
frequency
Planck constant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑