Knowledge

Buoyancy

Source 📝

2871:
or the sea, the object will float and settle at a level where it displaces the same weight of fluid as the weight of the object. If the object is immersed in the fluid, such as a submerged submarine or air in a balloon, it will tend to rise. If the object has exactly the same density as the fluid, then its buoyancy equals its weight. It will remain submerged in the fluid, but it will neither sink nor float, although a disturbance in either direction will cause it to drift away from its position. An object with a higher average density than the fluid will never experience more buoyancy than weight and it will sink. A ship will float even though it may be made of steel (which is much denser than water), because it encloses a volume of air (which is much less dense than water), and the resulting shape has an average density less than that of the water.
2517: 2501: 1029: 1055: 2509: 2760:, which is a variable volume buoyancy bag which is inflated to increase buoyancy and deflated to decrease buoyancy. The desired condition is usually neutral buoyancy when the diver is swimming in mid-water, and this condition is unstable, so the diver is constantly making fine adjustments by control of lung volume, and has to adjust the contents of the buoyancy compensator if the depth varies. 2774: 2628: 1383: 1322: 84: 2579: 43: 2835: 2614:. This situation is typically valid for a range of heel angles, beyond which the center of buoyancy does not move enough to provide a positive righting moment, and the object becomes unstable. It is possible to shift from positive to negative or vice versa more than once during a heeling disturbance, and many shapes are stable in more than one position. 252: 186: 1058: 1062: 1061: 1057: 1056: 1063: 1060: 2870:
If the weight of an object is less than the weight of the displaced fluid when fully submerged, then the object has an average density that is less than the fluid and when fully submerged will experience a buoyancy force greater than its own weight. If the fluid has a surface, such as water in a lake
2609:
The stability of a buoyant object at the surface is more complex, and it may remain stable even if the center of gravity is above the center of buoyancy, provided that when disturbed from the equilibrium position, the center of buoyancy moves further to the same side that the center of gravity moves,
2556:
If two cubes are placed alongside each other with a face of each in contact, the pressures and resultant forces on the sides or parts thereof in contact are balanced and may be disregarded, as the contact surfaces are equal in shape, size and pressure distribution, therefore the buoyancy of two cubes
2193:
period cannot be done by the Archimedes principle alone; it is necessary to consider dynamics of an object involving buoyancy. Once it fully sinks to the floor of the fluid or rises to the surface and settles, Archimedes principle can be applied alone. For a floating object, only the submerged volume
2746:
rises tends to be stable. As a balloon rises it tends to increase in volume with reducing atmospheric pressure, but the balloon itself does not expand as much as the air on which it rides. The average density of the balloon decreases less than that of the surrounding air. The weight of the displaced
1307:
Example: A helium balloon in a moving car. During a period of increasing speed, the air mass inside the car moves in the direction opposite to the car's acceleration (i.e., towards the rear). The balloon is also pulled this way. However, because the balloon is buoyant relative to the air, it ends up
3101:
Note: In the absence of surface tension, the mass of fluid displaced is equal to the submerged volume multiplied by the fluid density. High repulsive surface tension will cause the body to float higher than expected, though the same total volume will be displaced, but at a greater distance from the
2586:
A floating object is stable if it tends to restore itself to an equilibrium position after a small displacement. For example, floating objects will generally have vertical stability, as if the object is pushed down slightly, this will create a greater buoyancy force, which, unbalanced by the weight
1123:
The weight of the displaced fluid is directly proportional to the volume of the displaced fluid (if the surrounding fluid is of uniform density). In simple terms, the principle states that the buoyancy force on an object is equal to the weight of the fluid displaced by the object, or the density of
2733:
tanks with seawater. To dive, the tanks are opened to allow air to exhaust out the top of the tanks, while the water flows in from the bottom. Once the weight has been balanced so the overall density of the submarine is equal to the water around it, it has neutral buoyancy and will remain at that
2545:
As this is a cube, the top and bottom surfaces are identical in shape and area, and the pressure difference between the top and bottom of the cube is directly proportional to the depth difference, and the resultant force difference is exactly equal to the weight of the fluid that would occupy the
2541:
Similarly, the downward force on the cube is the pressure on the top surface integrated over its area. The surface is at constant depth, so the pressure is constant. Therefore, the integral of the pressure over the area of the horizontal top surface of the cube is the hydrostatic pressure at that
1308:
being pushed "out of the way", and will actually drift in the same direction as the car's acceleration (i.e., forward). If the car slows down, the same balloon will begin to drift backward. For the same reason, as the car goes round a curve, the balloon will drift towards the inside of the curve.
2537:
The upward force on the cube is the pressure on the bottom surface integrated over its area. The surface is at constant depth, so the pressure is constant. Therefore, the integral of the pressure over the area of the horizontal bottom surface of the cube is the hydrostatic pressure at that depth
2105:
Though the above derivation of Archimedes principle is correct, a recent paper by the Brazilian physicist Fabio M. S. Lima brings a more general approach for the evaluation of the buoyant force exerted by any fluid (even non-homogeneous) on a body with arbitrary shape. Interestingly, this method
1135:
with gravity acting upon it. Suppose that when the rock is lowered into water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyancy force: 10 âˆ’ 3 = 7 newtons. Buoyancy reduces the apparent
2477:
Another possible formula for calculating buoyancy of an object is by finding the apparent weight of that particular object in the air (calculated in Newtons), and apparent weight of that object in the water (in Newtons). To find the force of buoyancy acting on the object when in air, using this
1288: 962:
increases with depth as a result of the weight of the overlying fluid. Thus, the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure
2491:
Air's density is very small compared to most solids and liquids. For this reason, the weight of an object in air is approximately the same as its true weight in a vacuum. The buoyancy of air is neglected for most objects during a measurement in air because the error is usually insignificant
1948: 2055:
If this volume of liquid is replaced by a solid body of exactly the same shape, the force the liquid exerts on it must be exactly the same as above. In other words, the "buoyancy force" on a submerged body is directed in the opposite direction to gravity and is equal in magnitude to
1229: 2700:
As a floating object rises or falls, the forces external to it change and, as all objects are compressible to some extent or another, so does the object's volume. Buoyancy depends on volume and so an object's buoyancy reduces if it is compressed and increases if it expands.
2530:
The sides are identical in area, and have the same depth distribution, therefore they also have the same pressure distribution, and consequently the same total force resulting from hydrostatic pressure, exerted perpendicular to the plane of the surface of each side.
1761:
denotes the distance from the surface of the liquid into it. Any object with a non-zero vertical depth will have different pressures on its top and bottom, with the pressure on the bottom being greater. This difference in pressure causes the upward buoyancy force.
1765:
The buoyancy force exerted on a body can now be calculated easily, since the internal pressure of the fluid is known. The force exerted on the body can be calculated by integrating the stress tensor over the surface of the body which is in contact with the fluid:
2560:
An object of any shape can be approximated as a group of cubes in contact with each other, and as the size of the cube is decreased, the precision of the approximation increases. The limiting case for infinitely small cubes is the exact equivalence.
3102:
object. Where there is doubt about the meaning of "volume of fluid displaced", this should be interpreted as the overflow from a full container when the object is floated in it, or as the volume of the object below the average level of the fluid.
1179: 1008:
is an apparent force as a function of inertia. Buoyancy can exist without gravity in the presence of an inertial reference frame, but without an apparent "downward" direction of gravity or other source of acceleration, buoyancy does not exist.
2590:
Rotational stability is of great importance to floating vessels. Given a small angular displacement, the vessel may return to its original position (stable), move away from its original position (unstable), or remain where it is (neutral).
1124:
the fluid multiplied by the submerged volume times the gravitational acceleration, g. Thus, among completely submerged objects with equal masses, objects with greater volume have greater buoyancy. This is also known as upthrust.
1240: 2188:
If the buoyancy of an (unrestrained and unpowered) object exceeds its weight, it tends to rise. An object whose weight exceeds its buoyancy tends to sink. Calculation of the upwards force on a submerged object during its
1968:
the liquid exerts on an object within the liquid is equal to the weight of the liquid with a volume equal to that of the object. This force is applied in a direction opposite to gravitational force, that is of magnitude:
1676: 2549:
This means that the resultant upward force on the cube is equal to the weight of the fluid that would fit into the volume of the cube, and the downward force on the cube is its weight, in the absence of external forces.
1059: 2345:
It can be the case that forces other than just buoyancy and gravity come into play. This is the case if the object is restrained or if the object sinks to the solid floor. An object which tends to float requires a
1833: 2755:
Underwater divers are a common example of the problem of unstable buoyancy due to compressibility. The diver typically wears an exposure suit which relies on gas-filled spaces for insulation, and may also wear a
1099:—with the clarifications that for a sunken object the volume of displaced fluid is the volume of the object, and for a floating object on a liquid, the weight of the displaced liquid is the weight of the object. 2183: 1190: 1433: 2106:
leads to the prediction that the buoyant force exerted on a rectangular block touching the bottom of a container points downward! Indeed, this downward buoyant force has been confirmed experimentally.
1810: 1957:
is the measure of the volume in contact with the fluid, that is the volume of the submerged part of the body, since the fluid does not exert force on the part of the body which is outside of it.
2021: 2251: 1507: 2304: 1605: 1004:
Buoyancy is a function of the force of gravity or other source of acceleration on objects of different densities, and for that reason is considered an apparent force, in the same way that
324: 2113:
on the object must be zero if it is to be a situation of fluid statics such that Archimedes principle is applicable, and is thus the sum of the buoyancy force and the object's weight
1561: 978:
is greater than that of the fluid in which it is submerged tends to sink. If the object is less dense than the liquid, the force can keep the object afloat. This can occur only in a
2354:
of constraint N exerted upon it by the solid floor. The constraint force can be tension in a spring scale measuring its weight in the fluid, and is how apparent weight is defined.
2472: 2410: 2100: 1752: 1145: 2594:
Rotational stability depends on the relative lines of action of forces on an object. The upward buoyancy force on an object acts through the center of buoyancy, being the
3118: 2708:
less than that of the surrounding fluid, the object's equilibrium is stable and it remains at rest. If, however, its compressibility is greater, its equilibrium is then
1390:
has difficulties to get under water due to its buoyancy. When no swimming forces are implied, the natural equilibrium of forces keeps about half of the duck off water.
2692:
expels water from its buoyancy tanks, it rises because its volume is constant (the volume of water it displaces if it is fully submerged) while its mass is decreased.
1136:
weight of objects that have sunk completely to the sea floor. It is generally easier to lift an object up through the water than it is to pull it out of the water.
2197:
In order for Archimedes' principle to be used alone, the object in question must be in equilibrium (the sum of the forces on the object must be zero), therefore;
2582:
Illustration of the stability of bottom-heavy (left) and top-heavy (right) ships with respect to the positions of their centres of buoyancy (CB) and gravity (CG)
873: 2602:. A buoyant object will be stable if the center of gravity is beneath the center of buoyancy because any angular displacement will then produce a 'righting 1234:
yields the formula below. The density of the immersed object relative to the density of the fluid can easily be calculated without measuring any volumes:
2734:
depth. Most military submarines operate with a slightly negative buoyancy and maintain depth by using the "lift" of the stabilizers with forward motion.
2534:
There are two pairs of opposing sides, therefore the resultant horizontal forces balance in both orthogonal directions, and the resultant force is zero.
1283:{\displaystyle {\frac {\text{density of object}}{\text{density of fluid}}}={\frac {\text{weight}}{{\text{weight}}-{\text{apparent immersed weight}}}}\,} 1067:
The Galileo's Ball experiment, showing the different buoyancy of the same object, depending on its surrounding medium. The ball has certain buoyancy in
2747:
air is reduced. A rising balloon stops rising when it and the displaced air are equal in weight. Similarly, a sinking balloon tends to stop sinking.
1616: 963:
difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and (as explained by
3202:"Floater clustering in a standing wave: Capillarity effects drive hydrophilic or hydrophobic particles to congregate at specific points on a wave" 2194:
displaces water. For a sunken object, the entire volume displaces water, and there will be an additional force of reaction from the solid floor.
1943:{\displaystyle \mathbf {B} =\int \operatorname {div} \sigma \,dV=-\int \mathbf {f} \,dV=-\rho _{f}\mathbf {g} \int \,dV=-\rho _{f}\mathbf {g} V} 1075:
is added (which is less dense than water), it reduces the density of the medium, thus making the ball sink further down (reducing its buoyancy).
2564:
Angled surfaces do not nullify the analogy as the resultant force can be split into orthogonal components and each dealt with in the same way.
1001:, but the principles remain the same. Examples of buoyancy driven flows include the spontaneous separation of air and water or oil and water. 1960:
The magnitude of buoyancy force may be appreciated a bit more from the following argument. Consider any object of arbitrary shape and volume
2902: 1681:
Therefore, the shape of the open surface of a fluid equals the equipotential plane of the applied outer conservative force field. Let the
1224:{\displaystyle {\frac {\text{density of object}}{\text{density of fluid}}}={\frac {\text{weight}}{\text{weight of displaced fluid}}},\,} 3350: 3208: 2119: 1095:
Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object
3331: 3185: 3087: 3056: 2821: 2675: 2516: 1369: 866: 236: 167: 70: 1566:
Assuming the outer force field is conservative, that is it can be written as the negative gradient of some scalar valued function:
1400: 2712:, and it rises and expands on the slightest upward perturbation, or falls and compresses on the slightest downward perturbation. 255:
The forces at work in buoyancy. The object floats at rest because the upward force of buoyancy is equal to the downward force of
1772: 2914: 3074: 2799: 2653: 2309:
showing that the depth to which a floating object will sink, and the volume of fluid it will displace, is independent of the
1347: 839: 105: 540: 377: 3161: 2908: 2757: 3113: 979: 859: 580: 466: 535: 148: 1975: 444: 2203: 1087:, who first discovered this law in 212 BC. For objects, floating and sunken, and in gases as well as liquids (i.e. a 327: 120: 2557:
in contact is the sum of the buoyancies of each cube. This analogy can be extended to an arbitrary number of cubes.
1456: 967:) is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the 3079: 2262: 2049: 1572: 2795: 2649: 1343: 451: 280: 101: 56: 2500: 127: 3391: 3371: 2784: 2638: 1332: 746: 741: 356: 1531: 1049: 964: 530: 523: 2524:
A simplified explanation for the integration of the pressure over the contact area may be stated as follows:
2934: 2803: 2788: 2657: 2642: 1351: 1336: 1112:(capillarity) acting on the body, but this additional force modifies only the amount of fluid displaced and 809: 804: 473: 94: 2492:(typically less than 0.1% except for objects of very low average density such as a balloon or light foam). 2350:
restraint force T in order to remain fully submerged. An object which tends to sink will eventually have a
2610:
thus providing a positive righting moment. If this occurs, the floating object is said to have a positive
1033: 361: 134: 2425: 2363: 3155: 1708:
is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is
784: 402: 196: 2062: 1714: 1174:{\displaystyle {\text{apparent immersed weight}}={\text{weight}}-{\text{weight of displaced fluid}}\,} 3248: 2964: 1447: 1298: 968: 622: 439: 419: 407: 351: 116: 2946: 2881: 2310: 998: 983: 824: 672: 565: 271: 1028: 3264: 3238: 2976: 2887: 2611: 844: 478: 434: 429: 3226: 2926: â€“ Classic science experiment demonstrating the Archimedes' principle and the ideal gas law 3386: 3327: 3181: 3135: 3127: 3083: 3052: 2997: â€“ Mixture of sand, silt or clay with water, which creates a liquefied soil when agitated 2347: 1113: 1037: 1017: 1005: 461: 412: 3302: 3256: 2970: 2603: 2508: 1816: 1084: 892: 799: 774: 687: 662: 657: 612: 3201: 3015: â€“ Gas-filled organ that contributes to the ability of a fish to control its buoyancy 2923: 2843: 2705: 1820: 1522: 1109: 1041: 789: 713: 627: 558: 492: 394: 211: 31: 1184:
then inserted into the quotient of weights, which has been expanded by the mutual volume
677: 547: 3252: 3396: 3000: 2988: 2847: 2599: 2573: 794: 652: 617: 518: 424: 207: 141: 3380: 3260: 3040: 2982: 2851: 2483:
Buoyancy force = weight of object in empty space − weight of object immersed in fluid
2336: 1824: 1128: 834: 667: 62: 3307: 3290: 3268: 2357:
If the object would otherwise float, the tension to restrain it fully submerged is:
1704:
is the mass density of the fluid. Taking the pressure as zero at the surface, where
3365: 3355: 3012: 2940: 2416: 2351: 2190: 987: 819: 814: 779: 511: 2598:
of the displaced volume of fluid. The weight force on the object acts through its
17: 3359: 1685:-axis point downward. In this case the field is gravity, so ÎŚ = − 993:
Buoyancy also applies to fluid mixtures, and is the most common driving force of
2952: 2773: 2627: 1382: 1321: 829: 732: 83: 2958: 1671:{\displaystyle \nabla (p+\Phi )=0\Longrightarrow p+\Phi ={\text{constant}}.\,} 1080: 994: 751: 647: 3131: 1293:(This formula is used for example in describing the measuring principle of a 1040:
due to the buoyancy force upon it and appears to float higher because of the
3139: 3006: 2994: 2929: 2863: 2834: 2726: 2721: 2689: 2578: 2110: 1294: 997:
currents. In these cases, the mathematical modelling is altered to apply to
723: 718: 552: 2839: 2709: 2595: 2332: 2320: 1450:. In this case the stress tensor is proportional to the identity tensor: 1394:
The equation to calculate the pressure inside a fluid in equilibrium is:
959: 702: 607: 587: 3048: 2949: â€“ Thermometer containing several glass vessels of varying density 2743: 2730: 2527:
Consider a cube immersed in a fluid with the upper surface horizontal.
2324: 2034: 1072: 975: 456: 256: 3003: â€“ Mixing process of warm, salty water with colder, fresher water 3018: 2967: â€“ Technique for measuring the density of a living person's body 1132: 955: 597: 1304:
Example: If you drop wood into water, buoyancy will keep it afloat.
251: 2973: â€“ Property necessary for a gas to be considered a lifting gas 2415:
When a sinking object settles on the solid floor, it experiences a
1757:
So pressure increases with depth below the surface of a liquid, as
1442:
is the force density exerted by some outer field on the fluid, and
27:
Upward force that opposes the weight of an object immersed in fluid
3243: 3227:"Using surface integrals for checking Archimedes' law of buoyancy" 2859: 2833: 2577: 2515: 2507: 2499: 2331:) at every location, since the density depends on temperature and 1965: 1088: 1068: 1053: 1027: 951: 947: 501: 250: 2905: â€“ Measure of fluid stability against vertical displacement 2896: 1387: 1091:), Archimedes' principle may be stated thus in terms of forces: 2178:{\displaystyle F_{\text{net}}=0=mg-\rho _{f}V_{\text{disp}}g\,} 958:
of a partially or fully immersed object. In a column of fluid,
3009: â€“ Watercraft capable of independent underwater operation 2855: 2767: 2621: 2553:
This analogy is valid for variations in the size of the cube.
1315: 1139:
Assuming Archimedes' principle to be reformulated as follows,
928: 904: 901: 637: 179: 77: 36: 2943: â€“ Branch of fluid mechanics that studies fluids at rest 922: 1428:{\displaystyle \mathbf {f} +\operatorname {div} \,\sigma =0} 934: 910: 2985: â€“ Legal limit to which a merchant ship may be loaded 1805:{\displaystyle \mathbf {B} =\oint \sigma \,d\mathbf {A} .} 2911: â€“ Equipment for controlling the buoyancy of a diver 925: 2890: â€“ Variation in pressure as a function of elevation 2520:
Approximation of an arbitrary volume as a group of cubes
2892:
Pages displaying short descriptions of redirect targets
203: 3114:"The diving "Law-ers": A brief resume of their lives" 2428: 2366: 2265: 2206: 2122: 2065: 1978: 1836: 1775: 1717: 1619: 1575: 1534: 1459: 1403: 1243: 1193: 1148: 931: 907: 283: 2919:
Pages displaying wikidata descriptions as a fallback
919: 898: 2044:is the volume of the displaced body of liquid, and 916: 895: 108:. Unsourced material may be challenged and removed. 2917: â€“ equipment to regulate buoyancy of airships 2466: 2404: 2298: 2245: 2177: 2094: 2015: 1942: 1804: 1746: 1670: 1599: 1555: 1501: 1427: 1282: 1223: 1173: 318: 3119:South Pacific Underwater Medicine Society Journal 2961: â€“ Device used to measure density of liquids 2542:depth multiplied by the area of the top surface. 2979: â€“ Engineering discipline of marine vessels 2016:{\displaystyle B=\rho _{f}V_{\text{disp}}\,g,\,} 2955: â€“ Watertight buoyant body of a watercraft 2488:The final result would be measured in Newtons. 2246:{\displaystyle mg=\rho _{f}V_{\text{disp}}g,\,} 1093: 2937: â€“ Ballast carried to counteract buoyancy 2538:multiplied by the area of the bottom surface. 2478:particular information, this formula applies: 1502:{\displaystyle \sigma _{ij}=-p\delta _{ij}.\,} 988:accelerating due to a force other than gravity 2299:{\displaystyle m=\rho _{f}V_{\text{disp}}.\,} 1600:{\displaystyle \mathbf {f} =-\nabla \Phi .\,} 867: 8: 3142:. Archived from the original on 2 April 2011 1114:the spatial distribution of the displacement 1108:Archimedes' principle does not consider the 2802:. Unsourced material may be challenged and 2656:. Unsourced material may be challenged and 1350:. Unsourced material may be challenged and 319:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 71:Learn how and when to remove these messages 3326:. Oxford University Press US. p. 42. 3180:. Oxford University Press US. p. 41. 1127:Suppose a rock's weight is measured as 10 1104:buoyant force = weight of displaced fluid. 874: 860: 707: 497: 340: 262: 3306: 3242: 2822:Learn how and when to remove this message 2676:Learn how and when to remove this message 2504:Pressure distribution on an immersed cube 2463: 2448: 2427: 2401: 2377: 2365: 2295: 2286: 2276: 2264: 2242: 2230: 2220: 2205: 2174: 2165: 2155: 2127: 2121: 2091: 2076: 2064: 2012: 2005: 1999: 1989: 1977: 1932: 1926: 1909: 1901: 1895: 1878: 1873: 1857: 1837: 1835: 1794: 1790: 1776: 1774: 1743: 1728: 1716: 1667: 1659: 1618: 1596: 1576: 1574: 1552: 1535: 1533: 1525:. Using this the above equation becomes: 1498: 1486: 1464: 1458: 1415: 1404: 1402: 1370:Learn how and when to remove this message 1279: 1271: 1263: 1257: 1244: 1242: 1220: 1207: 1194: 1192: 1170: 1165: 1157: 1149: 1147: 974:For this reason, an object whose average 296: 282: 237:Learn how and when to remove this message 168:Learn how and when to remove this message 2722:Submarine § Submersion and trimming 2335:. For this reason, a ship may display a 1556:{\displaystyle \mathbf {f} =\nabla p.\,} 1381: 3032: 731: 686: 636: 596: 500: 369: 343: 270: 3295:Revista Brasileira de Ensino de Fisica 3153: 2838:Density column of liquids and solids: 3291:"A downward buoyant force experiment" 3225:Lima, FĂĄbio M. S. (22 January 2012). 2587:force, will push the object back up. 1079:Archimedes' principle is named after 7: 2991: â€“ Float used to support a boat 2899: â€“ Floating structure or device 2800:adding citations to reliable sources 2654:adding citations to reliable sources 1348:adding citations to reliable sources 1118:buoyancy = weight of displaced fluid 106:adding citations to reliable sources 2546:volume of the cube in its absence. 2467:{\displaystyle N=mg-\rho _{f}Vg.\,} 2405:{\displaystyle T=\rho _{f}Vg-mg.\,} 2313:regardless of geographic location. 1697:is the gravitational acceleration, 3214:from the original on 21 July 2011. 2704:If an object at equilibrium has a 2319:Note: If the fluid in question is 1653: 1632: 1620: 1590: 1587: 1543: 1020:of the displaced volume of fluid. 25: 3289:Lima, FĂĄbio M. S. (11 May 2014). 990:defining a "downward" direction. 52:This article has multiple issues. 3045:Longman Pronunciation Dictionary 2772: 2626: 2095:{\displaystyle B=\rho _{f}Vg.\,} 1933: 1902: 1874: 1838: 1795: 1777: 1747:{\displaystyle p=\rho _{f}gz.\,} 1577: 1536: 1405: 1320: 1131:when suspended by a string in a 1032:A metallic coin (an old British 891: 184: 82: 41: 3308:10.1590/S1806-11172014000200009 2915:Buoyancy compensator (aviation) 2862:(with blue food colouring) and 2729:rise and dive by filling large 93:needs additional citations for 60:or discuss these issues on the 3322:Pickover, Clifford A. (2008). 3176:Pickover, Clifford A. (2008). 3075:English Pronouncing Dictionary 1644: 1635: 1623: 1: 3372:NASA's definition of buoyancy 2909:Buoyancy compensator (diving) 2052:at the location in question. 210:in tone and meet Knowledge's 3078:(18th ed.), Cambridge: 2323:, it will not have the same 1964:surrounded by a liquid. The 980:non-inertial reference frame 3231:European Journal of Physics 3413: 3261:10.1088/0143-0807/33/1/009 3080:Cambridge University Press 2719: 2571: 2512:Forces on an immersed cube 2050:gravitational acceleration 1819:can be transformed into a 1047: 29: 3160:: CS1 maint: unfit URL ( 1213:weight of displaced fluid 1167:weight of displaced fluid 1273:apparent immersed weight 1151:apparent immersed weight 1116:, so the principle that 1023: 378:Clausius–Duhem (entropy) 328:Fick's laws of diffusion 3361:Elementary Hydrostatics 2935:Diving weighting system 2903:Brunt–Väisälä frequency 536:Navier–Stokes equations 474:Material failure theory 30:For the 2019 film, see 3021: â€“ Reaction force 2867: 2742:The height to which a 2583: 2521: 2513: 2505: 2468: 2406: 2300: 2247: 2179: 2096: 2017: 1944: 1806: 1748: 1672: 1601: 1557: 1503: 1429: 1391: 1312:Forces and equilibrium 1284: 1225: 1175: 1097: 1076: 1045: 320: 260: 3324:Archimedes to Hawking 3178:Archimedes to Hawking 3112:Acott, Chris (1999). 3071:Roach, Peter (2011), 2837: 2581: 2519: 2511: 2503: 2469: 2407: 2301: 2248: 2180: 2097: 2018: 1945: 1823:with the help of the 1807: 1749: 1673: 1602: 1558: 1504: 1430: 1385: 1285: 1226: 1176: 1066: 1050:Archimedes' principle 1031: 1024:Archimedes' principle 982:, which either has a 965:Archimedes' principle 531:Bernoulli's principle 524:Archimedes' principle 321: 254: 2965:Hydrostatic weighing 2796:improve this section 2758:buoyancy compensator 2696:Compressible objects 2650:improve this section 2426: 2364: 2263: 2204: 2120: 2063: 1976: 1834: 1773: 1715: 1617: 1573: 1532: 1457: 1448:Cauchy stress tensor 1401: 1344:improve this section 1299:hydrostatic weighing 1241: 1191: 1146: 1016:of an object is the 623:Cohesion (chemistry) 445:Infinitesimal strain 281: 204:improve this article 102:improve this article 3253:2012EJPh...33..101L 2947:Galileo thermometer 2884:, also known as Air 2882:Atmosphere of Earth 2311:gravitational field 984:gravitational field 541:Poiseuille equation 272:Continuum mechanics 266:Part of a series on 2977:Naval architecture 2888:Archimedes paradox 2868: 2618:Fluids and objects 2612:metacentric height 2584: 2522: 2514: 2506: 2464: 2402: 2296: 2243: 2175: 2092: 2013: 1940: 1802: 1744: 1668: 1597: 1553: 1499: 1425: 1392: 1280: 1221: 1171: 1077: 1046: 1014:center of buoyancy 747:Magnetorheological 742:Electrorheological 479:Fracture mechanics 316: 261: 18:Center of buoyancy 2832: 2831: 2824: 2686: 2685: 2678: 2600:center of gravity 2289: 2233: 2168: 2130: 2002: 1662: 1380: 1379: 1372: 1277: 1274: 1266: 1261: 1252: 1251: 1248: 1247:density of object 1215: 1214: 1211: 1202: 1201: 1198: 1197:density of object 1168: 1160: 1152: 1064: 1018:center of gravity 1006:centrifugal force 954:that opposes the 884: 883: 759: 758: 693: 692: 462:Contact mechanics 385: 384: 314: 247: 246: 239: 229: 228: 212:quality standards 178: 177: 170: 152: 75: 16:(Redirected from 3404: 3351:Falling in Water 3338: 3337: 3319: 3313: 3312: 3310: 3286: 3280: 3279: 3277: 3275: 3246: 3222: 3216: 3215: 3213: 3207:. 23 June 2005. 3206: 3198: 3192: 3191: 3173: 3167: 3165: 3159: 3151: 3149: 3147: 3109: 3103: 3099: 3093: 3092: 3068: 3062: 3061: 3047:(3rd ed.), 3037: 2971:Lighter than air 2920: 2893: 2827: 2820: 2816: 2813: 2807: 2776: 2768: 2681: 2674: 2670: 2667: 2661: 2630: 2622: 2568:Static stability 2496:Simplified model 2473: 2471: 2470: 2465: 2453: 2452: 2411: 2409: 2408: 2403: 2382: 2381: 2305: 2303: 2302: 2297: 2291: 2290: 2287: 2281: 2280: 2252: 2250: 2249: 2244: 2235: 2234: 2231: 2225: 2224: 2184: 2182: 2181: 2176: 2170: 2169: 2166: 2160: 2159: 2132: 2131: 2128: 2101: 2099: 2098: 2093: 2081: 2080: 2022: 2020: 2019: 2014: 2004: 2003: 2000: 1994: 1993: 1949: 1947: 1946: 1941: 1936: 1931: 1930: 1905: 1900: 1899: 1877: 1841: 1817:surface integral 1811: 1809: 1808: 1803: 1798: 1780: 1753: 1751: 1750: 1745: 1733: 1732: 1677: 1675: 1674: 1669: 1663: 1660: 1606: 1604: 1603: 1598: 1580: 1562: 1560: 1559: 1554: 1539: 1508: 1506: 1505: 1500: 1494: 1493: 1472: 1471: 1434: 1432: 1431: 1426: 1408: 1375: 1368: 1364: 1361: 1355: 1324: 1316: 1289: 1287: 1286: 1281: 1278: 1276: 1275: 1272: 1267: 1264: 1259: 1258: 1253: 1250:density of fluid 1249: 1246: 1245: 1230: 1228: 1227: 1222: 1216: 1212: 1209: 1208: 1203: 1200:density of fluid 1199: 1196: 1195: 1180: 1178: 1177: 1172: 1169: 1166: 1161: 1158: 1153: 1150: 1065: 946:is a net upward 941: 940: 937: 936: 933: 930: 927: 924: 921: 918: 913: 912: 909: 906: 903: 900: 897: 876: 869: 862: 708: 673:Gay-Lussac's law 663:Combined gas law 613:Capillary action 498: 341: 325: 323: 322: 317: 315: 313: 305: 297: 263: 242: 235: 224: 221: 215: 188: 187: 180: 173: 166: 162: 159: 153: 151: 110: 86: 78: 67: 45: 44: 37: 21: 3412: 3411: 3407: 3406: 3405: 3403: 3402: 3401: 3392:Fluid mechanics 3377: 3376: 3347: 3342: 3341: 3334: 3321: 3320: 3316: 3288: 3287: 3283: 3273: 3271: 3224: 3223: 3219: 3211: 3204: 3200: 3199: 3195: 3188: 3175: 3174: 3170: 3152: 3145: 3143: 3111: 3110: 3106: 3100: 3096: 3090: 3070: 3069: 3065: 3059: 3039: 3038: 3034: 3029: 3024: 2924:Cartesian diver 2918: 2891: 2877: 2844:rubbing alcohol 2828: 2817: 2811: 2808: 2793: 2777: 2766: 2753: 2740: 2724: 2718: 2706:compressibility 2698: 2682: 2671: 2665: 2662: 2647: 2631: 2620: 2576: 2570: 2498: 2444: 2424: 2423: 2373: 2362: 2361: 2282: 2272: 2261: 2260: 2226: 2216: 2202: 2201: 2161: 2151: 2123: 2118: 2117: 2072: 2061: 2060: 2042: 2031: 1995: 1985: 1974: 1973: 1922: 1891: 1832: 1831: 1821:volume integral 1771: 1770: 1724: 1713: 1712: 1702: 1690: 1615: 1614: 1571: 1570: 1530: 1529: 1523:Kronecker delta 1520: 1482: 1460: 1455: 1454: 1399: 1398: 1376: 1365: 1359: 1356: 1341: 1325: 1314: 1262: 1239: 1238: 1189: 1188: 1144: 1143: 1120:remains valid. 1110:surface tension 1054: 1052: 1044:of the mercury. 1042:surface tension 1026: 915: 894: 890: 880: 851: 850: 849: 769: 761: 760: 714:Viscoelasticity 705: 695: 694: 682: 632: 628:Surface tension 592: 495: 493:Fluid mechanics 485: 484: 483: 397: 395:Solid mechanics 387: 386: 338: 330: 306: 298: 279: 278: 243: 232: 231: 230: 225: 219: 216: 201: 189: 185: 174: 163: 157: 154: 111: 109: 99: 87: 46: 42: 35: 32:Buoyancy (film) 28: 23: 22: 15: 12: 11: 5: 3410: 3408: 3400: 3399: 3394: 3389: 3379: 3378: 3375: 3374: 3369: 3353: 3346: 3345:External links 3343: 3340: 3339: 3332: 3314: 3281: 3237:(1): 101–113. 3217: 3193: 3186: 3168: 3104: 3094: 3088: 3063: 3057: 3041:Wells, John C. 3031: 3030: 3028: 3025: 3023: 3022: 3016: 3010: 3004: 3001:Salt fingering 2998: 2992: 2986: 2980: 2974: 2968: 2962: 2956: 2950: 2944: 2938: 2932: 2927: 2921: 2912: 2906: 2900: 2894: 2885: 2878: 2876: 2873: 2848:food colouring 2830: 2829: 2780: 2778: 2771: 2765: 2762: 2752: 2749: 2739: 2736: 2717: 2714: 2697: 2694: 2684: 2683: 2634: 2632: 2625: 2619: 2616: 2574:Ship stability 2572:Main article: 2569: 2566: 2497: 2494: 2486: 2485: 2475: 2474: 2462: 2459: 2456: 2451: 2447: 2443: 2440: 2437: 2434: 2431: 2413: 2412: 2400: 2397: 2394: 2391: 2388: 2385: 2380: 2376: 2372: 2369: 2343: 2342: 2307: 2306: 2294: 2285: 2279: 2275: 2271: 2268: 2256:and therefore 2254: 2253: 2241: 2238: 2229: 2223: 2219: 2215: 2212: 2209: 2186: 2185: 2173: 2164: 2158: 2154: 2150: 2147: 2144: 2141: 2138: 2135: 2126: 2103: 2102: 2090: 2087: 2084: 2079: 2075: 2071: 2068: 2040: 2037:of the fluid, 2029: 2024: 2023: 2011: 2008: 1998: 1992: 1988: 1984: 1981: 1951: 1950: 1939: 1935: 1929: 1925: 1921: 1918: 1915: 1912: 1908: 1904: 1898: 1894: 1890: 1887: 1884: 1881: 1876: 1872: 1869: 1866: 1863: 1860: 1856: 1853: 1850: 1847: 1844: 1840: 1813: 1812: 1801: 1797: 1793: 1789: 1786: 1783: 1779: 1755: 1754: 1742: 1739: 1736: 1731: 1727: 1723: 1720: 1700: 1688: 1679: 1678: 1666: 1658: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1608: 1607: 1595: 1592: 1589: 1586: 1583: 1579: 1564: 1563: 1551: 1548: 1545: 1542: 1538: 1516: 1510: 1509: 1497: 1492: 1489: 1485: 1481: 1478: 1475: 1470: 1467: 1463: 1436: 1435: 1424: 1421: 1418: 1414: 1411: 1407: 1378: 1377: 1328: 1326: 1319: 1313: 1310: 1291: 1290: 1270: 1256: 1232: 1231: 1219: 1206: 1182: 1181: 1164: 1156: 1102:More tersely: 1048:Main article: 1025: 1022: 882: 881: 879: 878: 871: 864: 856: 853: 852: 848: 847: 842: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 771: 770: 767: 766: 763: 762: 757: 756: 755: 754: 749: 744: 736: 735: 729: 728: 727: 726: 721: 716: 706: 701: 700: 697: 696: 691: 690: 684: 683: 681: 680: 675: 670: 665: 660: 655: 650: 644: 641: 640: 634: 633: 631: 630: 625: 620: 618:Chromatography 615: 610: 604: 601: 600: 594: 593: 591: 590: 571: 570: 569: 550: 538: 533: 521: 508: 505: 504: 496: 491: 490: 487: 486: 482: 481: 476: 471: 470: 469: 459: 454: 449: 448: 447: 442: 432: 427: 422: 417: 416: 415: 405: 399: 398: 393: 392: 389: 388: 383: 382: 381: 380: 372: 371: 367: 366: 365: 364: 359: 354: 346: 345: 339: 336: 335: 332: 331: 326: 312: 309: 304: 301: 295: 292: 289: 286: 275: 274: 268: 267: 245: 244: 227: 226: 192: 190: 183: 176: 175: 90: 88: 81: 76: 50: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3409: 3398: 3395: 3393: 3390: 3388: 3385: 3384: 3382: 3373: 3370: 3367: 3363: 3362: 3357: 3354: 3352: 3349: 3348: 3344: 3335: 3333:9780195336115 3329: 3325: 3318: 3315: 3309: 3304: 3300: 3296: 3292: 3285: 3282: 3270: 3266: 3262: 3258: 3254: 3250: 3245: 3240: 3236: 3232: 3228: 3221: 3218: 3210: 3203: 3197: 3194: 3189: 3187:9780195336115 3183: 3179: 3172: 3169: 3163: 3157: 3141: 3137: 3133: 3129: 3125: 3121: 3120: 3115: 3108: 3105: 3098: 3095: 3091: 3089:9780521152532 3085: 3081: 3077: 3076: 3067: 3064: 3060: 3058:9781405881180 3054: 3050: 3046: 3042: 3036: 3033: 3026: 3020: 3017: 3014: 3011: 3008: 3005: 3002: 2999: 2996: 2993: 2990: 2987: 2984: 2983:Plimsoll line 2981: 2978: 2975: 2972: 2969: 2966: 2963: 2960: 2957: 2954: 2951: 2948: 2945: 2942: 2939: 2936: 2933: 2931: 2928: 2925: 2922: 2916: 2913: 2910: 2907: 2904: 2901: 2898: 2895: 2889: 2886: 2883: 2880: 2879: 2874: 2872: 2865: 2861: 2857: 2853: 2852:vegetable oil 2849: 2845: 2841: 2836: 2826: 2823: 2815: 2805: 2801: 2797: 2791: 2790: 2786: 2781:This section 2779: 2775: 2770: 2769: 2763: 2761: 2759: 2750: 2748: 2745: 2737: 2735: 2732: 2728: 2723: 2715: 2713: 2711: 2707: 2702: 2695: 2693: 2691: 2680: 2677: 2669: 2659: 2655: 2651: 2645: 2644: 2640: 2635:This section 2633: 2629: 2624: 2623: 2617: 2615: 2613: 2607: 2605: 2601: 2597: 2592: 2588: 2580: 2575: 2567: 2565: 2562: 2558: 2554: 2551: 2547: 2543: 2539: 2535: 2532: 2528: 2525: 2518: 2510: 2502: 2495: 2493: 2489: 2484: 2481: 2480: 2479: 2460: 2457: 2454: 2449: 2445: 2441: 2438: 2435: 2432: 2429: 2422: 2421: 2420: 2418: 2398: 2395: 2392: 2389: 2386: 2383: 2378: 2374: 2370: 2367: 2360: 2359: 2358: 2355: 2353: 2349: 2340: 2338: 2337:Plimsoll line 2334: 2328: 2326: 2322: 2316: 2315: 2314: 2312: 2292: 2283: 2277: 2273: 2269: 2266: 2259: 2258: 2257: 2239: 2236: 2227: 2221: 2217: 2213: 2210: 2207: 2200: 2199: 2198: 2195: 2192: 2171: 2162: 2156: 2152: 2148: 2145: 2142: 2139: 2136: 2133: 2124: 2116: 2115: 2114: 2112: 2107: 2088: 2085: 2082: 2077: 2073: 2069: 2066: 2059: 2058: 2057: 2053: 2051: 2047: 2043: 2036: 2032: 2009: 2006: 1996: 1990: 1986: 1982: 1979: 1972: 1971: 1970: 1967: 1963: 1958: 1956: 1937: 1927: 1923: 1919: 1916: 1913: 1910: 1906: 1896: 1892: 1888: 1885: 1882: 1879: 1870: 1867: 1864: 1861: 1858: 1854: 1851: 1848: 1845: 1842: 1830: 1829: 1828: 1826: 1825:Gauss theorem 1822: 1818: 1799: 1791: 1787: 1784: 1781: 1769: 1768: 1767: 1763: 1760: 1740: 1737: 1734: 1729: 1725: 1721: 1718: 1711: 1710: 1709: 1707: 1703: 1696: 1692: 1684: 1664: 1656: 1650: 1647: 1641: 1638: 1629: 1626: 1613: 1612: 1611: 1593: 1584: 1581: 1569: 1568: 1567: 1549: 1546: 1540: 1528: 1527: 1526: 1524: 1519: 1515: 1495: 1490: 1487: 1483: 1479: 1476: 1473: 1468: 1465: 1461: 1453: 1452: 1451: 1449: 1445: 1441: 1422: 1419: 1416: 1412: 1409: 1397: 1396: 1395: 1389: 1384: 1374: 1371: 1363: 1353: 1349: 1345: 1339: 1338: 1334: 1329:This section 1327: 1323: 1318: 1317: 1311: 1309: 1305: 1302: 1300: 1296: 1268: 1254: 1237: 1236: 1235: 1217: 1204: 1187: 1186: 1185: 1162: 1154: 1142: 1141: 1140: 1137: 1134: 1130: 1125: 1121: 1119: 1115: 1111: 1106: 1105: 1100: 1096: 1092: 1090: 1086: 1082: 1074: 1070: 1051: 1043: 1039: 1035: 1030: 1021: 1019: 1015: 1010: 1007: 1002: 1000: 996: 991: 989: 985: 981: 977: 972: 970: 966: 961: 957: 953: 950:exerted by a 949: 945: 939: 888: 877: 872: 870: 865: 863: 858: 857: 855: 854: 846: 843: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 772: 765: 764: 753: 750: 748: 745: 743: 740: 739: 738: 737: 734: 730: 725: 722: 720: 717: 715: 712: 711: 710: 709: 704: 699: 698: 689: 685: 679: 676: 674: 671: 669: 666: 664: 661: 659: 658:Charles's law 656: 654: 651: 649: 646: 645: 643: 642: 639: 635: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 605: 603: 602: 599: 595: 589: 586: 582: 579: 575: 572: 567: 566:non-Newtonian 564: 560: 556: 555: 554: 551: 549: 546: 542: 539: 537: 534: 532: 529: 525: 522: 520: 517: 513: 510: 509: 507: 506: 503: 499: 494: 489: 488: 480: 477: 475: 472: 468: 465: 464: 463: 460: 458: 455: 453: 452:Compatibility 450: 446: 443: 441: 440:Finite strain 438: 437: 436: 433: 431: 428: 426: 423: 421: 418: 414: 411: 410: 409: 406: 404: 401: 400: 396: 391: 390: 379: 376: 375: 374: 373: 368: 363: 360: 358: 355: 353: 350: 349: 348: 347: 344:Conservations 342: 334: 333: 329: 310: 307: 302: 299: 293: 290: 287: 284: 277: 276: 273: 269: 265: 264: 258: 253: 249: 241: 238: 223: 213: 209: 205: 199: 198: 195:reads like a 193:This article 191: 182: 181: 172: 169: 161: 150: 147: 143: 140: 136: 133: 129: 126: 122: 119: â€“  118: 114: 113:Find sources: 107: 103: 97: 96: 91:This article 89: 85: 80: 79: 74: 72: 65: 64: 59: 58: 53: 48: 39: 38: 33: 19: 3366:Google Books 3360: 3356:W. H. Besant 3323: 3317: 3298: 3294: 3284: 3272:. Retrieved 3234: 3230: 3220: 3196: 3177: 3171: 3156:cite journal 3144:. Retrieved 3123: 3117: 3107: 3097: 3072: 3066: 3044: 3035: 3013:Swim bladder 2941:Hydrostatics 2869: 2818: 2812:January 2016 2809: 2794:Please help 2782: 2754: 2741: 2725: 2703: 2699: 2687: 2672: 2666:January 2016 2663: 2648:Please help 2636: 2608: 2593: 2589: 2585: 2563: 2559: 2555: 2552: 2548: 2544: 2540: 2536: 2533: 2529: 2526: 2523: 2490: 2487: 2482: 2476: 2417:normal force 2414: 2356: 2352:normal force 2344: 2330: 2318: 2308: 2255: 2196: 2191:accelerating 2187: 2108: 2104: 2054: 2045: 2038: 2027: 2025: 1961: 1959: 1954: 1952: 1814: 1764: 1758: 1756: 1705: 1698: 1694: 1686: 1682: 1680: 1609: 1565: 1517: 1513: 1511: 1443: 1439: 1437: 1393: 1366: 1360:January 2016 1357: 1342:Please help 1330: 1306: 1303: 1292: 1233: 1183: 1138: 1126: 1122: 1117: 1107: 1103: 1101: 1098: 1094: 1078: 1036:) floats in 1013: 1011: 1003: 992: 973: 943: 886: 885: 733:Smart fluids 678:Graham's law 584: 577: 573: 562: 548:Pascal's law 544: 527: 515: 370:Inequalities 248: 233: 217: 194: 164: 155: 145: 138: 131: 124: 112: 100:Please help 95:verification 92: 68: 61: 55: 54:Please help 51: 3301:(2): 2309. 2953:Hull (ship) 1071:, but once 752:Ferrofluids 653:Boyle's law 425:Hooke's law 403:Deformation 206:to make it 3381:Categories 3073:Cambridge 3027:References 2959:Hydrometer 2846:(with red 2727:Submarines 2720:See also: 2716:Submarines 1081:Archimedes 1034:pound coin 995:convection 805:Gay-Lussac 768:Scientists 668:Fick's law 648:Atmosphere 467:frictional 420:Plasticity 408:Elasticity 128:newspapers 117:"Buoyancy" 57:improve it 3244:1110.5264 3132:0813-1988 3007:Submarine 2995:Quicksand 2930:Dasymeter 2864:aluminium 2783:does not 2690:submarine 2637:does not 2446:ρ 2442:− 2390:− 2375:ρ 2274:ρ 2218:ρ 2153:ρ 2149:− 2111:net force 2074:ρ 1987:ρ 1924:ρ 1920:− 1907:∫ 1893:ρ 1889:− 1871:∫ 1868:− 1855:σ 1852:⁡ 1846:∫ 1788:σ 1785:∮ 1726:ρ 1654:Φ 1645:⟹ 1633:Φ 1621:∇ 1591:Φ 1588:∇ 1585:− 1544:∇ 1484:δ 1477:− 1462:σ 1417:σ 1331:does not 1295:dasymeter 1269:− 1163:− 969:displaced 845:Truesdell 775:Bernoulli 724:Rheometer 719:Rheometry 559:Newtonian 553:Viscosity 303:φ 291:− 220:July 2023 158:July 2014 63:talk page 3387:Buoyancy 3269:54556860 3209:Archived 3140:16986801 3043:(2008), 2875:See also 2840:baby oil 2738:Balloons 2710:unstable 2596:centroid 2333:salinity 2321:seawater 1661:constant 1085:Syracuse 999:continua 960:pressure 944:upthrust 887:Buoyancy 703:Rheology 608:Adhesion 588:Pressure 574:Buoyancy 519:Dynamics 357:Momentum 197:textbook 3358:(1889) 3274:8 April 3249:Bibcode 3146:13 June 3049:Longman 2989:Pontoon 2804:removed 2789:sources 2764:Density 2744:balloon 2731:ballast 2658:removed 2643:sources 2348:tension 2325:density 2048:is the 2035:density 2033:is the 1521:is the 1446:is the 1352:removed 1337:sources 1297:and of 1129:newtons 1073:ethanol 1038:mercury 976:density 971:fluid. 790:Charles 598:Liquids 512:Statics 457:Bending 257:gravity 208:neutral 202:Please 142:scholar 3330:  3267:  3184:  3138:  3130:  3086:  3055:  3019:Thrust 2751:Divers 2604:moment 2329:ρ 2026:where 1953:where 1693:where 1610:Then: 1438:where 1265:weight 1260:weight 1210:weight 1159:weight 1133:vacuum 986:or is 956:weight 942:), or 840:Stokes 835:Pascal 825:Navier 820:Newton 810:Graham 785:Cauchy 688:Plasma 583:  581:Mixing 576:  561:  543:  526:  514:  502:Fluids 435:Strain 430:Stress 413:linear 362:Energy 144:  137:  130:  123:  115:  3397:Force 3364:from 3265:S2CID 3239:arXiv 3212:(PDF) 3205:(PDF) 3126:(1). 2860:water 2688:As a 1966:force 1512:Here 1089:fluid 1069:water 952:fluid 948:force 815:Hooke 795:Euler 780:Boyle 638:Gases 149:JSTOR 135:books 3328:ISBN 3276:2021 3182:ISBN 3162:link 3148:2009 3136:OCLC 3128:ISSN 3084:ISBN 3053:ISBN 2897:Buoy 2787:any 2785:cite 2641:any 2639:cite 2419:of: 2288:disp 2232:disp 2167:disp 2109:The 2041:disp 2001:disp 1815:The 1388:duck 1335:any 1333:cite 1012:The 830:Noll 800:Fick 352:Mass 337:Laws 121:news 3303:doi 3257:doi 2856:wax 2850:), 2798:by 2652:by 2606:'. 2129:net 1849:div 1413:div 1346:by 1301:.) 1083:of 104:by 3383:: 3299:36 3297:. 3293:. 3263:. 3255:. 3247:. 3235:33 3233:. 3229:. 3158:}} 3154:{{ 3134:. 3124:29 3122:. 3116:. 3082:, 3051:, 2858:, 2854:, 2842:, 1827:: 1691:gz 1518:ij 1386:A 929:ən 923:uː 905:ən 902:ɔɪ 66:. 3368:. 3336:. 3311:. 3305:: 3278:. 3259:: 3251:: 3241:: 3190:. 3166:. 3164:) 3150:. 2866:. 2825:) 2819:( 2814:) 2810:( 2806:. 2792:. 2679:) 2673:( 2668:) 2664:( 2660:. 2646:. 2461:. 2458:g 2455:V 2450:f 2439:g 2436:m 2433:= 2430:N 2399:. 2396:g 2393:m 2387:g 2384:V 2379:f 2371:= 2368:T 2341:) 2339:. 2327:( 2317:( 2293:. 2284:V 2278:f 2270:= 2267:m 2240:, 2237:g 2228:V 2222:f 2214:= 2211:g 2208:m 2172:g 2163:V 2157:f 2146:g 2143:m 2140:= 2137:0 2134:= 2125:F 2089:. 2086:g 2083:V 2078:f 2070:= 2067:B 2046:g 2039:V 2030:f 2028:ρ 2010:, 2007:g 1997:V 1991:f 1983:= 1980:B 1962:V 1955:V 1938:V 1934:g 1928:f 1917:= 1914:V 1911:d 1903:g 1897:f 1886:= 1883:V 1880:d 1875:f 1865:= 1862:V 1859:d 1843:= 1839:B 1800:. 1796:A 1792:d 1782:= 1778:B 1759:z 1741:. 1738:z 1735:g 1730:f 1722:= 1719:p 1706:z 1701:f 1699:ρ 1695:g 1689:f 1687:ρ 1683:z 1665:. 1657:= 1651:+ 1648:p 1642:0 1639:= 1636:) 1630:+ 1627:p 1624:( 1594:. 1582:= 1578:f 1550:. 1547:p 1541:= 1537:f 1514:δ 1496:. 1491:j 1488:i 1480:p 1474:= 1469:j 1466:i 1444:σ 1440:f 1423:0 1420:= 1410:+ 1406:f 1373:) 1367:( 1362:) 1358:( 1354:. 1340:. 1255:= 1218:, 1205:= 1155:= 938:/ 935:i 932:s 926:j 920:b 917:ˈ 914:, 911:i 908:s 899:b 896:ˈ 893:/ 889:( 875:e 868:t 861:v 585:¡ 578:¡ 568:) 563:¡ 557:( 545:¡ 528:¡ 516:¡ 311:x 308:d 300:d 294:D 288:= 285:J 259:. 240:) 234:( 222:) 218:( 214:. 200:. 171:) 165:( 160:) 156:( 146:¡ 139:¡ 132:¡ 125:¡ 98:. 73:) 69:( 34:. 20:)

Index

Center of buoyancy
Buoyancy (film)
improve it
talk page
Learn how and when to remove these messages

verification
improve this article
adding citations to reliable sources
"Buoyancy"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
textbook
improve this article
neutral
quality standards
Learn how and when to remove this message

gravity
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑