Knowledge (XXG)

Point reflection

Source 📝

1767:
common bonds. Polyhedra containing inversion centers are known as centrosymmetric, while those without are non-centrosymmetric. Six-coordinate octahedra are an example of centrosymmetric polyhedra, as the central atom acts as an inversion center through which the six bonded atoms retain symmetry. Tetrahedra, on the other hand, are non-centrosymmetric as an inversion through the central atom would result in a reversal of the polyhedron. Polyhedra with an odd (versus even) coordination number are not centrosymmtric.
169: 160: 530: 542: 147: 50: 1784:
oriented in space in a manner which contains an inversion center between the two. Two tetrahedra facing each other can have an inversion center in the middle, because the orientation allows for each atom to have a reflected pair. The inverse is also true, as multiple centrosymmetric polyhedra can be arranged to form a noncentrosymmetric point group.
1775:
fluorine. Distortions will not change the inherent geometry of the polyhedra—a distorted octahedron is still classified as an octahedron, but strong enough distortions can have an effect on the centrosymmetry of a compound. Disorder involves a split occupancy over two or more sites, in which an atom
1770:
Real polyhedra in crystals often lack the uniformity anticipated in their bonding geometry. Common irregularities found in crystallography include distortions and disorder. Distortion involves the warping of polyhedra due to nonuniform bonding lengths, often due to differing electrostatic attraction
1766:
depending on the bonding angles. All crystalline compounds come from a repetition of an atomic building block known as a unit cell, and these unit cells define which polyhedra form and in what order. These polyhedra link together via corner-, edge- or face sharing, depending on which atoms share
1783:
which describe how the different polyhedra arrange themselves in space in the bulk structure. Of these thirty-two point groups, eleven are centrosymmetric. The presence of noncentrosymmetric polyhedra does not guarantee that the point group will be the same—two non-centrosymmetric shapes can be
1795:. The lack of symmetry via inversion centers can allow for areas of the crystal to interact differently with incoming light. The wavelength, frequency and intensity of light is subject to change as the electromagnetic radiation interacts with different energy states throughout the structure. 1776:
will occupy one crystallographic position in a certain percentage of polyhedra and the other in the remaining positions. Disorder can influence the centrosymmetry of certain polyhedra as well, depending on whether or not the occupancy is split over an already-present inversion center.
870: 1268: 673: 1370: 1482: 1753:
and non-centrosymmetric compounds. Crystal structures are composed of various polyhedra, categorized by their coordination number and bond angles. For example, four-coordinate polyhedra are classified as
2323: 2024: 1771:
between heteroatoms. For instance, a titanium center will likely bond evenly to six oxygens in an octahedra, but distortion would occur if one of the oxygens were replaced with a more
2604: 2524: 1067: 1157: 2449:+1) (it is in the non-identity component), and there is no natural sense in which it is a "farther point" than any other point in the non-identity component, but it does provide a 2243: 1611: 452: 1116: 2572: 1851:. "Inversion" without indicating "in a point", "in a line" or "in a plane", means this inversion; in physics 3-dimensional reflection through the origin is also called a 2389: 2180: 1017: 1405: 2095: 493: 394: 2650: 2627: 2132: 2059: 1929: 1906: 1949: 1165: 1819:. The applications for nonlinear materials are still being researched, but these properties stem from the presence of (or lack thereof) an inversion center. 608: 2417:
Analogously, it is a longest element of the orthogonal group, with respect to the generating set of reflections: elements of the orthogonal group all have
2182:(from the representation by a matrix or as a product of reflections). Thus it is orientation-preserving in even dimension, thus an element of the 1763: 1520:. These rotations are mutually commutative. Therefore, inversion in a point in even-dimensional space is an orientation-preserving isometry or 2794: 1759: 1279: 2756:"Orthogonal planes" meaning all elements are orthogonal and the planes intersect at 0 only, not that they intersect in a line and have 2402: 133: 67: 1779:
Centrosymmetry applies to the crystal structure as a whole, not just individual polyhedra. Crystals are classified into thirty-two
1649: 2853: 2670: 114: 2712: 2429:
though it is not unique in this: other maximal combinations of rotations (and possibly reflections) also have maximal length.
1755: 86: 71: 1417: 1745:
Molecules contain an inversion center when a point exists through which all atoms can reflect while retaining symmetry. In
2848: 1780: 2441:), reflection through the origin is the farthest point from the identity element with respect to the usual metric. In O(2 93: 2769:
This follows by classifying orthogonal transforms as direct sums of rotations and reflections, which follows from the
2392: 2248: 1874: 1796: 362: 2858: 2732: 2195: 1816: 960: 100: 60: 1878: 1560: 850: 815: 567: 245: 208: 2863: 2727: 2183: 1958: 1730: 1583: 878: 808: 559: 349: 237: 2577: 2480: 1586:(in the other sense) of the axis. Notations for the type of operation, or the type of group it generates, are 82: 2326: 241: 2818: 1840: 882: 801: 967:
with an isometric reflection across each point. Symmetric spaces play an important role in the study of
2697: 2334: 2062: 1882: 1844: 1836: 1832: 858: 839: 811: 200: 1125: 2201: 1870: 1848: 1589: 419: 1426: 1288: 1174: 1072: 168: 159: 2410: 1634: 972: 964: 562:
with reflection across the plane of rotation, perpendicular to the axis of rotation. In dimension
558:
of 180 degrees. In three dimensions, a point reflection can be described as a 180-degree rotation
2533: 913: 729: 690: 507: 412:
is applied to any involution of Euclidean space, and the fixed set (an affine space of dimension
297: 2425:
with respect to the generating set of reflections, and reflection through the origin has length
2347: 1022: 2702: 2682: 2149: 1638: 869: 854: 469:
either 1 or −1. Reflection in a hyperplane has a single −1 eigenvalue (and multiplicity
353: 352:, meaning that they have order 2 – they are their own inverse: applying them twice yields the 264: 253: 216: 212: 107: 2770: 2722: 2717: 2692: 2687: 2656: 2462: 2338: 2105: 2066: 1852: 1828: 1792: 1788: 1734: 987: 929: 698: 405: 38: 31: 1378: 495:
on the 1 eigenvalue), while point reflection has only the −1 eigenvalue (with multiplicity
2707: 2418: 2071: 1952: 1863: 1812: 1772: 1750: 1746: 1564: 1528: 1521: 1493: 1263:{\displaystyle {\begin{cases}x_{c}={\frac {x+x'}{2}}\\y_{c}={\frac {y+y'}{2}}\end{cases}}} 940: 909: 835: 401: 397: 323: 301: 289: 472: 373: 150:
Example of a 2-dimensional figure with central symmetry, invariant under point reflection
2632: 2609: 2114: 2041: 1911: 1888: 2757: 1934: 1630: 849:
does not coincide with the origin, point reflection is equivalent to a special case of
668:{\displaystyle \mathrm {Ref} _{\mathbf {p} }(\mathbf {a} )=2\mathbf {p} -\mathbf {a} .} 529: 462: 281: 461:
In terms of linear algebra, assuming the origin is fixed, involutions are exactly the
2842: 2406: 2035: 953: 1804: 921: 905: 717: 541: 535: 204: 928:
by negation. It is precisely the subgroup of the Euclidean group that fixes the
873:
The composition of two offset point reflections in 2-dimensions is a translation.
2190:), and it is orientation-reversing in odd dimension, thus not an element of SO(2 1808: 276: 146: 49: 17: 834:
coincides with the origin, point reflection is equivalent to a special case of
2737: 2527: 2468: 2450: 466: 367: 968: 305: 2138:
orthogonal planes; note again that rotations in orthogonal planes commute.
857:
coinciding with P, and scale factor −1. (This is an example of non-linear
2111:
In 2 dimensions, it is in fact rotation by 180 degrees, and in dimension
1811:, and is a useful non-linear crystal. KTP is used for frequency-doubling 1571: 1119: 805: 555: 458:. In dimension 1 these coincide, as a point is a hyperplane in the line. 408:, a plane in 3-space), with the hyperplane being fixed, but more broadly 319: 308: 293: 184: 1273:
Hence, the equations to find the coordinates of the reflected point are
259:
An object that is invariant under a point reflection is said to possess
838:: uniform scaling with scale factor equal to −1. This is an example of 546: 1582:
which is perpendicular to the axis; the result does not depend on the
1555:-dimensional subspace spanned by these rotation planes. Therefore, it 682:
is the origin, point reflection is simply the negation of the vector
315: 1578:
by an angle of 180°, combined with reflection in the plane through
1365:{\displaystyle {\begin{cases}x'=2x_{c}-x\\y'=2y_{c}-y\end{cases}}} 868: 826:
Point reflection as a special case of uniform scaling or homothety
145: 2655:
Reflection through the identity extends to an automorphism of a
904:
The set consisting of all point reflections and translations is
2398:
It equals the identity if and only if the characteristic is 2.
43: 1375:
Particular is the case in which the point C has coordinates
340:
is loose, and considered by some an abuse of language, with
279:
including a point reflection among its symmetries is called
30:"Central inversion" redirects here. Not to be confused with 2104:
orthogonal reflections (reflection through the axes of any
1470: 1358: 1256: 2530:. This is particularly confusing for even spin groups, as 1749:, the presence of inversion centers distinguishes between 952:
Point reflection across the center of a sphere yields the
177:
Dual tetrahedra that are centrally symmetric to each other
2061:
on the diagonal, and, together with the identity, is the
1408: 220: 263:; if it is invariant under point reflection through its 1737:, which can be thought of as a "inversion in a plane". 1535: + 1)-dimensional space, it is equivalent to 554:
In two dimensions, a point reflection is the same as a
1477:{\displaystyle {\begin{cases}x'=-x\\y'=-y\end{cases}}} 521: 2635: 2612: 2580: 2536: 2483: 2350: 2251: 2204: 2152: 2117: 2074: 2044: 1961: 1937: 1914: 1891: 1835:
by −1. The operation commutes with every other
1592: 1420: 1381: 1282: 1168: 1128: 1075: 1025: 990: 611: 475: 422: 376: 2038:, it is represented in every basis by a matrix with 1827:
Inversion with respect to the origin corresponds to
207:
in which every point is reflected across a specific
74:. Unsourced material may be challenged and removed. 2644: 2621: 2598: 2566: 2518: 2445:+ 1), reflection through the origin is not in SO(2 2383: 2317: 2237: 2174: 2126: 2089: 2053: 2018: 1943: 1923: 1900: 1815:, utilizing a nonlinear optical property known as 1629:, and 1×. The group type is one of the three 1605: 1476: 1399: 1364: 1262: 1151: 1110: 1061: 1011: 667: 487: 446: 388: 2318:{\displaystyle O(2n+1)=SO(2n+1)\times \{\pm I\}} 1803:(KTP). crystalizes in the non-centrosymmetric, 2108:); note that orthogonal reflections commute. 1787:Non-centrosymmetric insulating compounds are 1500:-dimensional space, the inversion in a point 8: 2312: 2303: 1758:, while five-coordinate environments can be 939:= 1, the point reflection group is the full 2669:Reflection through the identity lifts to a 2344:It preserves every quadratic form, meaning 1547:mutually orthogonal planes intersecting at 1516:mutually orthogonal planes intersecting at 318:); a point reflection through the object's 356:– which is also true of other maps called 2634: 2611: 2579: 2535: 2493: 2482: 2349: 2333:Together with the identity, it forms the 2250: 2203: 2166: 2151: 2116: 2073: 2043: 2019:{\displaystyle (x,y,z)\mapsto (-x,-y,-z)} 1960: 1936: 1913: 1890: 1729:Closely related to inverse in a point is 1593: 1591: 1421: 1419: 1380: 1343: 1309: 1283: 1281: 1230: 1221: 1190: 1181: 1169: 1167: 1129: 1127: 1099: 1086: 1074: 1024: 989: 657: 649: 635: 625: 624: 613: 610: 474: 421: 375: 134:Learn how and when to remove this message 2599:{\displaystyle \operatorname {Spin} (n)} 2519:{\displaystyle -1\in \mathrm {Spin} (n)} 2194: + 1) and instead providing a 252:. The point of inversion is also called 2786: 2749: 1877:. Reflection through the origin is an 1551:, combined with the reflection in the 2 574:is even, and orientation-reversing if 304:, a point reflection is the same as a 1791:and can be useful for application in 1543:in each plane of an arbitrary set of 1512:in each plane of an arbitrary set of 980:Point reflection in analytic geometry 885:. Specifically, point reflection at 514:is defined with respect to a circle. 7: 1831:of the position vector, and also to 1823:Inversion with respect to the origin 1741:Inversion centers in crystallography 594:, the formula for the reflection of 72:adding citations to reliable sources 2134:, it is rotation by 180 degrees in 1955:. In three dimensions, this sends 2503: 2500: 2497: 2494: 2391:, and thus is an element of every 1862:refers to the point reflection of 1570:Geometrically in 3D it amounts to 620: 617: 614: 25: 2457:Clifford algebras and spin groups 1152:{\displaystyle {\overline {PP'}}} 924:of order 2, the latter acting on 751:The formula for the inversion in 2238:{\displaystyle O(2n+1)\to \pm 1} 1650:point groups in three dimensions 947:Point reflections in mathematics 889:followed by point reflection at 658: 650: 636: 626: 540: 528: 167: 158: 48: 1606:{\displaystyle {\overline {1}}} 893:is translation by the vector 2( 740:is the same as the vector from 447:{\displaystyle 1\leq k\leq n-1} 59:needs additional citations for 2593: 2587: 2561: 2552: 2513: 2507: 2378: 2372: 2363: 2354: 2297: 2282: 2270: 2255: 2226: 2223: 2208: 2163: 2153: 2084: 2078: 2013: 1986: 1983: 1980: 1962: 1394: 1382: 1111:{\displaystyle C(x_{c},y_{c})} 1105: 1079: 1056: 1034: 1006: 994: 881:of two point reflections is a 785:* are the position vectors of 640: 632: 348:is widely used. Such maps are 1: 2477:be confused with the element 1908:, and can also be written as 1860:reflection through the origin 1781:crystallographic point groups 1633:types in 3D without any pure 2567:{\displaystyle -I\in SO(2n)} 1598: 1144: 526: 506:should not be confused with 366:refers to a reflection in a 27:Geometric symmetry operation 2393:indefinite orthogonal group 1875:Cartesian coordinate system 1797:Potassium titanyl phosphate 322:is the same as a half-turn 292:, a point reflection is an 240:: applying it twice is the 2880: 2733:Riemannian symmetric space 2713:Kovner–Besicovitch measure 2466: 2460: 2384:{\displaystyle Q(-v)=Q(v)} 1817:second-harmonic generation 1069:with respect to the point 36: 29: 2823:sites.math.washington.edu 1879:orthogonal transformation 1062:{\displaystyle P'(x',y')} 851:homothetic transformation 830:When the inversion point 246:homothetic transformation 236:A point reflection is an 2819:"Lab 9 Point Reflection" 2728:Reflection (mathematics) 2453:in the other component. 2184:special orthogonal group 2175:{\displaystyle (-1)^{n}} 704:with respect to a point 566:, point reflections are 267:, it is said to possess 244:. It is equivalent to a 233:are more commonly used. 37:Not to be confused with 2327:internal direct product 865:Point reflection group 728:*. In other words, the 716:is the midpoint of the 590:in the Euclidean space 242:identity transformation 2854:Functions and mappings 2795:"Reflections in Lines" 2646: 2623: 2600: 2568: 2520: 2385: 2319: 2239: 2176: 2128: 2091: 2055: 2020: 1945: 1925: 1902: 1813:neodymium-doped lasers 1607: 1574:about an axis through 1559:rather than preserves 1508:rotations over angles 1478: 1401: 1366: 1264: 1153: 1112: 1063: 1013: 1012:{\displaystyle P(x,y)} 874: 814:which has exactly one 669: 489: 448: 390: 151: 2698:Congruence (geometry) 2647: 2624: 2601: 2569: 2521: 2467:Further information: 2461:Further information: 2386: 2320: 2240: 2177: 2129: 2092: 2056: 2021: 1946: 1926: 1903: 1883:scalar multiplication 1853:parity transformation 1837:linear transformation 1833:scalar multiplication 1608: 1479: 1402: 1400:{\displaystyle (0,0)} 1367: 1265: 1154: 1113: 1064: 1014: 872: 859:affine transformation 840:linear transformation 812:affine transformation 670: 490: 449: 391: 149: 2849:Euclidean symmetries 2633: 2610: 2578: 2534: 2481: 2348: 2249: 2202: 2150: 2115: 2090:{\displaystyle O(n)} 2072: 2042: 1959: 1935: 1912: 1889: 1849:general linear group 1764:trigonal bipyramidal 1590: 1492:In even-dimensional 1418: 1379: 1280: 1166: 1126: 1118:, the latter is the 1073: 1023: 988: 609: 473: 420: 374: 344:preferred; however, 211:. When dealing with 68:improve this article 2411:signed permutations 2146:It has determinant 2100:It is a product of 1652:contain inversion: 1635:rotational symmetry 1527:In odd-dimensional 1019:and its reflection 973:Riemannian geometry 965:Riemannian manifold 524: 488:{\displaystyle n-1} 389:{\displaystyle n-1} 360:. More narrowly, a 273:centrally symmetric 2645:{\displaystyle -I} 2642: 2622:{\displaystyle -1} 2619: 2596: 2564: 2516: 2381: 2315: 2235: 2172: 2127:{\displaystyle 2n} 2124: 2087: 2054:{\displaystyle -1} 2051: 2016: 1941: 1924:{\displaystyle -I} 1921: 1901:{\displaystyle -1} 1898: 1829:additive inversion 1603: 1474: 1469: 1397: 1362: 1357: 1260: 1255: 1149: 1108: 1059: 1009: 914:semidirect product 875: 691:Euclidean geometry 678:In the case where 665: 522: 508:inversive geometry 485: 444: 386: 248:with scale factor 222:inversion symmetry 213:crystal structures 152: 83:"Point reflection" 2859:Clifford algebras 2799:new.math.uiuc.edu 2703:Estermann measure 2683:Affine involution 2665:grade involution. 1944:{\displaystyle I} 1881:corresponding to 1639:cyclic symmetries 1601: 1565:indirect isometry 1504:is equivalent to 1251: 1211: 1147: 855:homothetic center 853:: homothety with 598:across the point 552: 551: 400:– a point on the 254:homothetic center 217:physical sciences 197:central inversion 144: 143: 136: 118: 16:(Redirected from 2871: 2833: 2832: 2830: 2829: 2815: 2809: 2808: 2806: 2805: 2791: 2774: 2771:spectral theorem 2767: 2761: 2754: 2723:Parity (physics) 2718:Orthogonal group 2693:Clifford algebra 2688:Circle inversion 2657:Clifford algebra 2651: 2649: 2648: 2643: 2628: 2626: 2625: 2620: 2605: 2603: 2602: 2597: 2573: 2571: 2570: 2565: 2525: 2523: 2522: 2517: 2506: 2463:Clifford algebra 2390: 2388: 2387: 2382: 2339:orthogonal group 2324: 2322: 2321: 2316: 2244: 2242: 2241: 2236: 2181: 2179: 2178: 2173: 2171: 2170: 2133: 2131: 2130: 2125: 2106:orthogonal basis 2096: 2094: 2093: 2088: 2067:orthogonal group 2060: 2058: 2057: 2052: 2026:, and so forth. 2025: 2023: 2022: 2017: 1950: 1948: 1947: 1942: 1930: 1928: 1927: 1922: 1907: 1905: 1904: 1899: 1858:In mathematics, 1793:nonlinear optics 1760:square pyramidal 1733:in respect to a 1645: = 1. 1612: 1610: 1609: 1604: 1602: 1594: 1542: 1511: 1483: 1481: 1480: 1475: 1473: 1472: 1457: 1436: 1406: 1404: 1403: 1398: 1371: 1369: 1368: 1363: 1361: 1360: 1348: 1347: 1332: 1314: 1313: 1298: 1269: 1267: 1266: 1261: 1259: 1258: 1252: 1247: 1246: 1231: 1226: 1225: 1212: 1207: 1206: 1191: 1186: 1185: 1158: 1156: 1155: 1150: 1148: 1143: 1142: 1130: 1117: 1115: 1114: 1109: 1104: 1103: 1091: 1090: 1068: 1066: 1065: 1060: 1055: 1044: 1033: 1018: 1016: 1015: 1010: 984:Given the point 930:line at infinity 797:* respectively. 674: 672: 671: 666: 661: 653: 639: 631: 630: 629: 623: 544: 532: 525: 494: 492: 491: 486: 454:) is called the 453: 451: 450: 445: 404:, a line in the 395: 393: 392: 387: 346:point reflection 314: 269:central symmetry 251: 227:inversion center 189:point reflection 171: 162: 139: 132: 128: 125: 119: 117: 76: 52: 44: 39:Reflection point 32:Circle inversion 21: 18:Central symmetry 2879: 2878: 2874: 2873: 2872: 2870: 2869: 2868: 2864:Quadratic forms 2839: 2838: 2837: 2836: 2827: 2825: 2817: 2816: 2812: 2803: 2801: 2793: 2792: 2788: 2783: 2778: 2777: 2773:, for instance. 2768: 2764: 2755: 2751: 2746: 2708:Euclidean group 2679: 2661:main involution 2631: 2630: 2629:and 2 lifts of 2608: 2607: 2576: 2575: 2532: 2531: 2479: 2478: 2471: 2465: 2459: 2435: 2403:longest element 2346: 2345: 2247: 2246: 2245:, showing that 2200: 2199: 2162: 2148: 2147: 2144: 2113: 2112: 2070: 2069: 2040: 2039: 2032: 2030:Representations 1957: 1956: 1953:identity matrix 1933: 1932: 1910: 1909: 1887: 1886: 1864:Euclidean space 1843:: it is in the 1839:, but not with 1825: 1802: 1773:electronegative 1751:centrosymmetric 1747:crystallography 1743: 1725: 1718: 1711: 1699: 1689: 1674: 1664: 1628: 1621: 1588: 1587: 1540: 1539:rotations over 1529:Euclidean space 1522:direct isometry 1509: 1494:Euclidean space 1490: 1468: 1467: 1450: 1447: 1446: 1429: 1422: 1416: 1415: 1409:paragraph below 1377: 1376: 1356: 1355: 1339: 1325: 1322: 1321: 1305: 1291: 1284: 1278: 1277: 1254: 1253: 1239: 1232: 1217: 1214: 1213: 1199: 1192: 1177: 1170: 1164: 1163: 1135: 1131: 1124: 1123: 1122:of the segment 1095: 1082: 1071: 1070: 1048: 1037: 1026: 1021: 1020: 986: 985: 982: 961:symmetric space 949: 910:Euclidean group 867: 836:uniform scaling 828: 720:with endpoints 612: 607: 606: 586:Given a vector 584: 570:-preserving if 545: 533: 520: 471: 470: 418: 417: 398:affine subspace 372: 371: 334: 312: 302:Euclidean plane 290:Euclidean space 282:centrosymmetric 249: 231:centrosymmetric 193:point inversion 191:(also called a 181: 180: 179: 178: 174: 173: 172: 164: 163: 140: 129: 123: 120: 77: 75: 65: 53: 42: 35: 28: 23: 22: 15: 12: 11: 5: 2877: 2875: 2867: 2866: 2861: 2856: 2851: 2841: 2840: 2835: 2834: 2810: 2785: 2784: 2782: 2779: 2776: 2775: 2762: 2758:dihedral angle 2748: 2747: 2745: 2742: 2741: 2740: 2735: 2730: 2725: 2720: 2715: 2710: 2705: 2700: 2695: 2690: 2685: 2678: 2675: 2641: 2638: 2618: 2615: 2606:there is both 2595: 2592: 2589: 2586: 2583: 2574:, and thus in 2563: 2560: 2557: 2554: 2551: 2548: 2545: 2542: 2539: 2515: 2512: 2509: 2505: 2502: 2499: 2496: 2492: 2489: 2486: 2458: 2455: 2434: 2431: 2415: 2414: 2399: 2396: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2359: 2356: 2353: 2342: 2314: 2311: 2308: 2305: 2302: 2299: 2296: 2293: 2290: 2287: 2284: 2281: 2278: 2275: 2272: 2269: 2266: 2263: 2260: 2257: 2254: 2234: 2231: 2228: 2225: 2222: 2219: 2216: 2213: 2210: 2207: 2169: 2165: 2161: 2158: 2155: 2143: 2140: 2123: 2120: 2086: 2083: 2080: 2077: 2050: 2047: 2031: 2028: 2015: 2012: 2009: 2006: 2003: 2000: 1997: 1994: 1991: 1988: 1985: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1940: 1920: 1917: 1897: 1894: 1824: 1821: 1800: 1742: 1739: 1727: 1726: 1723: 1716: 1709: 1704: 1694: 1684: 1679: 1669: 1659: 1648:The following 1631:symmetry group 1626: 1617: 1600: 1597: 1489: 1486: 1485: 1484: 1471: 1466: 1463: 1460: 1456: 1453: 1449: 1448: 1445: 1442: 1439: 1435: 1432: 1428: 1427: 1425: 1396: 1393: 1390: 1387: 1384: 1373: 1372: 1359: 1354: 1351: 1346: 1342: 1338: 1335: 1331: 1328: 1324: 1323: 1320: 1317: 1312: 1308: 1304: 1301: 1297: 1294: 1290: 1289: 1287: 1271: 1270: 1257: 1250: 1245: 1242: 1238: 1235: 1229: 1224: 1220: 1216: 1215: 1210: 1205: 1202: 1198: 1195: 1189: 1184: 1180: 1176: 1175: 1173: 1146: 1141: 1138: 1134: 1107: 1102: 1098: 1094: 1089: 1085: 1081: 1078: 1058: 1054: 1051: 1047: 1043: 1040: 1036: 1032: 1029: 1008: 1005: 1002: 999: 996: 993: 981: 978: 977: 976: 957: 948: 945: 941:isometry group 866: 863: 827: 824: 771: 770: 676: 675: 664: 660: 656: 652: 648: 645: 642: 638: 634: 628: 622: 619: 616: 583: 580: 550: 549: 538: 519: 516: 484: 481: 478: 465:maps with all 463:diagonalizable 443: 440: 437: 434: 431: 428: 425: 385: 382: 379: 333: 330: 261:point symmetry 201:transformation 176: 175: 166: 165: 157: 156: 155: 154: 153: 142: 141: 56: 54: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2876: 2865: 2862: 2860: 2857: 2855: 2852: 2850: 2847: 2846: 2844: 2824: 2820: 2814: 2811: 2800: 2796: 2790: 2787: 2780: 2772: 2766: 2763: 2759: 2753: 2750: 2743: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2680: 2676: 2674: 2672: 2667: 2666: 2662: 2659:, called the 2658: 2653: 2639: 2636: 2616: 2613: 2590: 2584: 2581: 2558: 2555: 2549: 2546: 2543: 2540: 2537: 2529: 2510: 2490: 2487: 2484: 2476: 2470: 2464: 2456: 2454: 2452: 2448: 2444: 2440: 2432: 2430: 2428: 2424: 2420: 2412: 2408: 2407:Coxeter group 2404: 2400: 2397: 2394: 2375: 2369: 2366: 2360: 2357: 2351: 2343: 2340: 2336: 2332: 2331: 2330: 2328: 2309: 2306: 2300: 2294: 2291: 2288: 2285: 2279: 2276: 2273: 2267: 2264: 2261: 2258: 2252: 2232: 2229: 2220: 2217: 2214: 2211: 2205: 2197: 2193: 2189: 2185: 2167: 2159: 2156: 2141: 2139: 2137: 2121: 2118: 2109: 2107: 2103: 2098: 2081: 2075: 2068: 2064: 2048: 2045: 2037: 2036:scalar matrix 2029: 2027: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1977: 1974: 1971: 1968: 1965: 1954: 1938: 1918: 1915: 1895: 1892: 1884: 1880: 1876: 1872: 1868: 1865: 1861: 1856: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1822: 1820: 1818: 1814: 1810: 1806: 1798: 1794: 1790: 1789:piezoelectric 1785: 1782: 1777: 1774: 1768: 1765: 1761: 1757: 1752: 1748: 1740: 1738: 1736: 1732: 1722: 1715: 1708: 1705: 1703: 1697: 1693: 1688: 1683: 1680: 1678: 1672: 1668: 1662: 1658: 1655: 1654: 1653: 1651: 1646: 1644: 1640: 1636: 1632: 1625: 1620: 1616: 1595: 1585: 1581: 1577: 1573: 1568: 1566: 1562: 1558: 1554: 1550: 1546: 1538: 1534: 1530: 1525: 1523: 1519: 1515: 1507: 1503: 1499: 1495: 1487: 1464: 1461: 1458: 1454: 1451: 1443: 1440: 1437: 1433: 1430: 1423: 1414: 1413: 1412: 1410: 1391: 1388: 1385: 1352: 1349: 1344: 1340: 1336: 1333: 1329: 1326: 1318: 1315: 1310: 1306: 1302: 1299: 1295: 1292: 1285: 1276: 1275: 1274: 1248: 1243: 1240: 1236: 1233: 1227: 1222: 1218: 1208: 1203: 1200: 1196: 1193: 1187: 1182: 1178: 1171: 1162: 1161: 1160: 1139: 1136: 1132: 1121: 1100: 1096: 1092: 1087: 1083: 1076: 1052: 1049: 1045: 1041: 1038: 1030: 1027: 1003: 1000: 997: 991: 979: 974: 970: 966: 962: 958: 955: 954:antipodal map 951: 950: 946: 944: 943:of the line. 942: 938: 933: 931: 927: 923: 919: 915: 911: 907: 902: 900: 896: 892: 888: 884: 880: 871: 864: 862: 860: 856: 852: 848: 843: 841: 837: 833: 825: 823: 821: 817: 813: 810: 807: 803: 798: 796: 792: 788: 784: 780: 776: 769: 765: 761: 758: 757: 756: 754: 749: 747: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 700: 696: 692: 687: 685: 681: 662: 654: 646: 643: 605: 604: 603: 601: 597: 593: 589: 581: 579: 577: 573: 569: 565: 561: 557: 548: 543: 539: 537: 531: 527: 517: 515: 513: 509: 505: 500: 498: 482: 479: 476: 468: 464: 459: 457: 441: 438: 435: 432: 429: 426: 423: 415: 411: 407: 403: 399: 383: 380: 377: 369: 365: 364: 359: 355: 351: 347: 343: 339: 331: 329: 327: 326: 321: 317: 310: 307: 303: 299: 295: 291: 286: 284: 283: 278: 274: 270: 266: 262: 257: 255: 247: 243: 239: 234: 232: 228: 224: 223: 218: 214: 210: 206: 202: 198: 194: 190: 186: 170: 161: 148: 138: 135: 127: 116: 113: 109: 106: 102: 99: 95: 92: 88: 85: –  84: 80: 79:Find sources: 73: 69: 63: 62: 57:This article 55: 51: 46: 45: 40: 33: 19: 2826:. Retrieved 2822: 2813: 2802:. Retrieved 2798: 2789: 2765: 2752: 2671:pseudoscalar 2668: 2664: 2660: 2654: 2474: 2472: 2446: 2442: 2438: 2436: 2426: 2422: 2416: 2191: 2187: 2145: 2135: 2110: 2101: 2099: 2033: 1866: 1859: 1857: 1826: 1805:orthorhombic 1786: 1778: 1769: 1744: 1728: 1720: 1713: 1706: 1701: 1695: 1691: 1686: 1681: 1676: 1670: 1666: 1660: 1656: 1647: 1642: 1623: 1618: 1614: 1579: 1575: 1569: 1556: 1552: 1548: 1544: 1536: 1532: 1526: 1517: 1513: 1505: 1501: 1497: 1491: 1374: 1272: 983: 936: 935:In the case 934: 925: 922:cyclic group 917: 906:Lie subgroup 903: 898: 894: 890: 886: 876: 846: 844: 831: 829: 819: 799: 794: 790: 786: 782: 778: 774: 772: 767: 763: 759: 752: 750: 745: 741: 737: 733: 725: 721: 718:line segment 713: 712:* such that 709: 705: 701: 694: 688: 683: 679: 677: 599: 595: 591: 587: 585: 575: 571: 563: 553: 536:parallelogon 523:2D examples 511: 503: 501: 496: 460: 455: 413: 409: 396:dimensional 361: 357: 354:identity map 345: 341: 337: 335: 324: 287: 280: 272: 268: 260: 258: 235: 230: 226: 221: 205:affine space 196: 192: 188: 182: 130: 121: 111: 104: 97: 90: 78: 66:Please help 61:verification 58: 2198:of the map 1869:across the 1841:translation 1809:space group 1584:orientation 1563:, it is an 1561:orientation 932:pointwise. 912:. It is a 883:translation 879:composition 818:, which is 816:fixed point 708:is a point 568:orientation 467:eigenvalues 358:reflections 350:involutions 332:Terminology 296:(preserves 277:point group 215:and in the 209:fixed point 2843:Categories 2828:2024-04-27 2804:2024-04-27 2781:References 2738:Spin group 2528:spin group 2473:It should 2469:Spin group 2451:base point 2401:It is the 2142:Properties 1756:tetrahedra 1731:reflection 1488:Properties 969:Lie groups 809:involutive 534:Hexagonal 410:reflection 368:hyperplane 363:reflection 338:reflection 300:). In the 238:involution 219:the terms 94:newspapers 2637:− 2614:− 2585:⁡ 2544:∈ 2538:− 2491:∈ 2485:− 2358:− 2307:± 2301:× 2230:± 2227:→ 2196:splitting 2157:− 2046:− 2008:− 1999:− 1990:− 1984:↦ 1916:− 1893:− 1675:for even 1599:¯ 1462:− 1441:− 1407:(see the 1350:− 1316:− 1145:¯ 806:isometric 695:inversion 655:− 512:inversion 504:inversion 502:The term 480:− 439:− 433:≤ 427:≤ 381:− 342:inversion 336:The term 311:(180° or 306:half-turn 271:or to be 2677:See also 2433:Geometry 2421:at most 2395:as well. 1931:, where 1799:, KTiOPO 1700:for odd 1572:rotation 1557:reverses 1531:, say (2 1455:′ 1434:′ 1330:′ 1296:′ 1244:′ 1204:′ 1140:′ 1120:midpoint 1053:′ 1042:′ 1031:′ 897: − 578:is odd. 560:composed 556:rotation 518:Examples 510:, where 416:, where 320:centroid 309:rotation 298:distance 294:isometry 185:geometry 124:May 2024 2526:in the 2437:In SO(2 2405:of the 2337:of the 2065:of the 1951:is the 1873:of the 1847:of the 1496:, say 2 920:with a 908:of the 802:mapping 582:Formula 547:Octagon 316:radians 199:) is a 108:scholar 2419:length 2335:center 2325:as an 2063:center 1871:origin 1845:center 1807:Pna21 1719:, and 1637:, see 804:is an 773:where 730:vector 693:, the 456:mirror 265:center 110:  103:  96:  89:  81:  2744:Notes 2034:As a 1735:plane 1641:with 963:is a 845:When 800:This 762:* = 2 732:from 699:point 697:of a 406:plane 115:JSTOR 101:books 2760:90°. 2582:Spin 2186:SO(2 1690:and 1665:and 971:and 877:The 793:and 781:and 724:and 402:line 325:spin 275:. A 187:, a 87:news 2663:or 2475:not 2409:of 1885:by 1762:or 916:of 901:). 861:.) 755:is 748:*. 744:to 736:to 689:In 602:is 499:). 288:In 229:or 203:of 195:or 183:In 70:by 2845:: 2821:. 2797:. 2673:. 2652:. 2427:n, 2329:. 2097:. 1855:. 1712:, 1622:, 1613:, 1567:. 1524:. 1411:) 1159:; 959:A 842:. 822:. 789:, 777:, 766:− 686:. 328:. 285:. 256:. 250:−1 225:, 2831:. 2807:. 2640:I 2617:1 2594:) 2591:n 2588:( 2562:) 2559:n 2556:2 2553:( 2550:O 2547:S 2541:I 2514:) 2511:n 2508:( 2504:n 2501:i 2498:p 2495:S 2488:1 2447:r 2443:r 2439:r 2423:n 2413:. 2379:) 2376:v 2373:( 2370:Q 2367:= 2364:) 2361:v 2355:( 2352:Q 2341:. 2313:} 2310:I 2304:{ 2298:) 2295:1 2292:+ 2289:n 2286:2 2283:( 2280:O 2277:S 2274:= 2271:) 2268:1 2265:+ 2262:n 2259:2 2256:( 2253:O 2233:1 2224:) 2221:1 2218:+ 2215:n 2212:2 2209:( 2206:O 2192:n 2188:n 2168:n 2164:) 2160:1 2154:( 2136:n 2122:n 2119:2 2102:n 2085:) 2082:n 2079:( 2076:O 2049:1 2014:) 2011:z 2005:, 2002:y 1996:, 1993:x 1987:( 1981:) 1978:z 1975:, 1972:y 1969:, 1966:x 1963:( 1939:I 1919:I 1896:1 1867:R 1801:4 1724:h 1721:I 1717:h 1714:O 1710:h 1707:T 1702:n 1698:d 1696:n 1692:D 1687:n 1685:2 1682:S 1677:n 1673:h 1671:n 1667:D 1663:h 1661:n 1657:C 1643:n 1627:2 1624:S 1619:i 1615:C 1596:1 1580:P 1576:P 1553:N 1549:P 1545:N 1541:π 1537:N 1533:N 1518:P 1514:N 1510:π 1506:N 1502:P 1498:N 1465:y 1459:= 1452:y 1444:x 1438:= 1431:x 1424:{ 1395:) 1392:0 1389:, 1386:0 1383:( 1353:y 1345:c 1341:y 1337:2 1334:= 1327:y 1319:x 1311:c 1307:x 1303:2 1300:= 1293:x 1286:{ 1249:2 1241:y 1237:+ 1234:y 1228:= 1223:c 1219:y 1209:2 1201:x 1197:+ 1194:x 1188:= 1183:c 1179:x 1172:{ 1137:P 1133:P 1106:) 1101:c 1097:y 1093:, 1088:c 1084:x 1080:( 1077:C 1057:) 1050:y 1046:, 1039:x 1035:( 1028:P 1007:) 1004:y 1001:, 998:x 995:( 992:P 975:. 956:. 937:n 926:R 918:R 899:p 895:q 891:q 887:p 847:P 832:P 820:P 795:X 791:X 787:P 783:x 779:x 775:p 768:x 764:p 760:x 753:P 746:X 742:P 738:P 734:X 726:X 722:X 714:P 710:X 706:P 702:X 684:a 680:p 663:. 659:a 651:p 647:2 644:= 641:) 637:a 633:( 627:p 621:f 618:e 615:R 600:p 596:a 592:R 588:a 576:n 572:n 564:n 497:n 483:1 477:n 442:1 436:n 430:k 424:1 414:k 384:1 378:n 370:( 313:π 137:) 131:( 126:) 122:( 112:· 105:· 98:· 91:· 64:. 41:. 34:. 20:)

Index

Central symmetry
Circle inversion
Reflection point

verification
improve this article
adding citations to reliable sources
"Point reflection"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message



geometry
transformation
affine space
fixed point
crystal structures
physical sciences
inversion symmetry
involution
identity transformation
homothetic transformation
homothetic center
center
point group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.