Knowledge (XXG)

Chamfer (geometry)

Source 📝

1299: 1290: 1603: 75: 1612: 84: 66: 1590: 2395: 2736: 2386: 2699: 2560: 2518: 2662: 2653: 2329: 2320: 2593: 1268: 2437: 2725: 808: 2366: 34: 2377: 1970: 1641: 349: 2551: 2309: 1419: 673: 2509: 1095: 475: 580: 43: 2428: 2222: 1945: 1923: 648: 628: 326: 319: 298: 293: 2540: 2498: 2208: 1869: 1394: 1372: 568: 312: 305: 2355: 2298: 2215: 1318: 25: 2688: 1259: 2582: 2201: 1910: 1888: 615: 595: 1359: 1337: 1899: 1348: 606: 2143: 2417: 2185: 2171: 2157: 2767: 1934: 1383: 637: 269: 258: 225: 220: 247: 236: 1021: 1820:. The pentagons are reduced in size and new faces, flattened hexagons, are added in place of all the original edges. For a certain depth of chamfering, all (final) edges of the cD have the same length; then, the hexagons are 937: 2253:
The chamfer operation applied in series creates progressively larger polyhedra with new faces, hexagonal, replacing the edges of the current one. The chamfer operator transforms GP(m,n) to GP(2m,2n).
140:. (Equivalently: it separates the faces by reducing them, and adds a new face between each two adjacent faces; but it only moves the vertices inward.) For a polyhedron, this operation adds a new 1222: 1174: 2778:
For polychora, new cells are created around the original edges. The cells are prisms, containing two copies of the original face, with pyramids augmented onto the prism sides.
575:
looks similar; but its hexagons correspond to the 4 faces, not to the 6 edges, of the yellow tetrahedron, i.e. to the 4 vertices, not to the 6 edges, of the red tetrahedron.
1048: 1876:
looks similar, but its hexagons correspond to the 20 faces, not to the 30 edges, of the icosahedron, i.e. to the 20 vertices, not to the 30 edges, of the dodecahedron.
1325:
looks similar; but its hexagons correspond to the 8 faces, not to the 12 edges, of the octahedron, i.e. to the 8 vertices, not to the 12 edges, of the cube.
1298: 1289: 942: 2994: 1602: 74: 2917: 1611: 83: 877: 3055: 2039: 1488: 759: 2829: 1589: 65: 2692: 2394: 3091: 2958: 2931: 136:
apart (outward), and adds a new face between each two adjacent faces; but contrary to expansion, it maintains the original
1129:
of a rhombic dodecahedron and a cube of edge length 1 when the eight order-3 vertices of the rhombic dodecahedron are at
3019: 534:
For a certain depth of chamfering/truncation, all (final) edges of the cT have the same length; then, the hexagons are
3081: 2864: 2586: 841:: the squares are reduced in size and new faces, hexagons, are added in place of all the original edges. The cC is a 2735: 3029: 2787: 1981: 1927: 1847: 1765: 1652: 1430: 684: 360: 152: 2385: 2698: 2559: 2819:, p. 575, or p. 597 on Wikisource, CRYSTALLOGRAPHY, 1. CUBIC SYSTEM, TETRAHEDRAL CLASS, FIGS. 30 & 31. 2517: 2797: 2792: 2229: 2102: 1903: 1564:
For a certain depth of truncation, all (final) edges of the cO have the same length; then, the hexagons are
1179: 579: 2592: 2880: 2661: 2652: 2436: 2370: 2328: 2319: 1832: 1793: 1376: 1077: 864: 788: 523: 3020:
Vertex- and edge-truncation of the Platonic and Archimedean solids leading to vertex-transitive polyhedra
1132: 3039: 2979: 2618: 2611: 2544: 2463: 2098: 1873: 1811: 1559: 1547: 1267: 1235: 846: 772: 572: 516: 197:
version where all edges have the same length, and in a canonical version where all edges touch the same
2724: 807: 2859: 2365: 2502: 2459: 2044: 2027: 1995: 1817: 1748: 1731: 1551: 1476: 1444: 1352: 1322: 1066: 747: 440: 423: 391: 129: 2376: 1969: 1640: 348: 3025: 2614: 2550: 2308: 2106: 1854: 1821: 1665: 1565: 1493: 1418: 1108: 1058: 856: 764: 694: 672: 553: 535: 512: 370: 194: 33: 2508: 1094: 1026: 3086: 2257: 1098:
Chamfered cube (3 zones are shown by 3 colors for their hexagons — each square is in 2 zones —.)
2984: 2901: 1944: 1922: 647: 627: 325: 318: 297: 292: 2956:; Grishukhin, V. (1998), "Fullerenes and coordination polyhedra versus half-cube embeddings", 2913: 2889: 2161: 2094: 1938: 1868: 1803: 1543: 1393: 1371: 842: 715: 567: 504: 474: 311: 304: 137: 42: 2967: 2905: 2893: 2729: 2427: 2421: 2237: 2221: 2175: 1317: 812: 641: 479: 3009: 2833: 2687: 2539: 2497: 2207: 1307:
Historical crystallographic models of axis shallower and deeper truncations of pyritohedron
2354: 2297: 2214: 2110: 2055: 1807: 1760: 1657: 1569: 1504: 860: 783: 539: 452: 145: 133: 24: 1909: 1887: 1258: 614: 594: 3060: 3046: 2927: 2885: 2313: 1839:, because only the (12) order-5 vertices of the rhombic triacontahedron are truncated. 1743: 1554:. These truncated vertices become congruent equilateral triangles, and the original 12 1358: 1336: 1084: 871: 435: 202: 190: 97: 2971: 2581: 2200: 1898: 1016:{\displaystyle \pi -{\frac {1}{2}}\cos ^{-1}(-{\frac {1}{3}})\approx 125.26^{\circ },} 3075: 2989: 2894: 2147: 1387: 1125: 93: 2359: 1347: 1239: 605: 262: 201:. (They look noticeably different only for solids containing triangles.) The shown 3066: 2953: 2909: 583:
Historical drawings of truncated tetrahedron and slightly chamfered tetrahedron.
273: 229: 2766: 2142: 1933: 2946: 2466:, GP(1,1), creates a Goldberg sequence: GP(1,1), GP(2,2), GP(4,4), GP(8,8)... 2416: 2184: 2170: 2156: 2068: 1775: 1517: 1088: 816: 798: 465: 251: 125: 3014: 2998:. Vol. 07 (11th ed.). Cambridge University Press. pp. 569–591. 1593:
Historical drawings of rhombic dodecahedron and slightly chamfered octahedron
1238:
and rectangular faces, can be constructed by chamfering the axial edges of a
2189: 1682: 1620:
Historical models of triakis cuboctahedron and slightly chamfered octahedron
1382: 636: 198: 268: 257: 224: 219: 530:: replacing 4 of its 8 vertices with congruent equilateral-triangle faces. 246: 235: 2086: 1699: 1535: 1227: 819:
are shown by 3 colors for their hexagons — each square is in 2 zones —.)
113: 2758:
Like the expansion operation, chamfer can be applied to any dimension.
2000: 1704: 1555: 1449: 867: 720: 396: 141: 106: 2983: 2621:, GP(3,0), creates a Goldberg sequence: GP(3,0), GP(6,0), GP(12,0)... 1243: 1083:
Because all the faces of the cC have an even number of sides and are
1959: 1867: 1630: 1588: 1408: 1316: 1093: 932:{\displaystyle \cos ^{-1}(-{\frac {1}{3}})\approx 109.47^{\circ }} 662: 578: 566: 338: 2940:
Fullerenes and coordination polyhedra versus half-cube embeddings
3035: 2302: 838: 527: 240: 52: 2943: 851:
For a certain depth of chamfering, all (final) edges of the
849:(and regular) squares, and 12 congruent flattened hexagons. 2761:
For polygons, it triples the number of vertices. Example:
2260:
sequence: GP(1,0), GP(2,0), GP(4,0), GP(8,0), GP(16,0)...
16:
Geometric operation which truncates the edges of polyhedra
1806:
with 80 vertices, 120 edges, and 42 faces: 12 congruent
1176:
and its six order-4 vertices are at the permutations of
2127:
The dual of the cI is the triakis icosidodecahedron.
1182: 1135: 1029: 945: 880: 159:
is represented by the letter "c". A polyhedron with
2938:Antoine Deza, Michel Deza, Viatcheslav Grishukhin, 105:For the concept in machining and architecture, see 1216: 1168: 1042: 1015: 931: 1586:The dual of the cO is the triakis cuboctahedron. 189:In the chapters below, the chamfers of the five 2772:(See also the previous version of this figure.) 1065:, because only the (6) order-4 vertices of the 51:Unchamfered, slightly chamfered, and chamfered 2932:"Mathematical Impressions: Goldberg Polyhedra" 1865:, containing pentagonal and hexagonal faces. 855:have the same length; then, the hexagons are 564:, containing triangular and hexagonal faces. 193:are described in detail. Each is shown in an 8: 2105:. The hexagonal faces of the cI can be made 845:with 32 vertices, 48 edges, and 18 faces: 6 163:edges will have a chamfered form containing 124:is a topological operator that modifies one 2136:Chamfered regular and quasiregular tilings 1962: 1633: 1411: 665: 549:is the alternate-triakis tetratetrahedron. 341: 1879: 1328: 586: 2256:A regular polyhedron, GP(1,0), creates a 1835:. The cD can more accurately be called a 1189: 1181: 1134: 1120:, containing square and hexagonal faces. 1061:. The cC can more accurately be called a 1034: 1028: 1004: 984: 966: 952: 944: 923: 903: 885: 879: 488:for a certain chamfering/truncating depth 3047:3.2.7. Systematic numbering for (C80-Ih) 2878:Clinton’s Equal Central Angle Conjecture 2765: 2623: 2468: 2262: 2134: 1967: 1638: 1416: 805: 670: 472: 346: 207: 2816: 2809: 1831:, although that name rather suggests a 1057:, although that name rather suggests a 1023:while a regular hexagon would have all 2948:(p. 72 Fig. 26. Chamfered tetrahedron) 2860:"A class of multi-symmetric polyhedra" 2113:, with a certain depth of truncation. 1837:pentatruncated rhombic triacontahedron 1217:{\displaystyle (\pm {\sqrt {3}},0,0).} 1881:Icosahedral chamfers and their duals 1827:The cD is also inaccurately called a 1053:The cC is also inaccurately called a 588:Tetrahedral chamfers and their duals 7: 2122:tritruncated rhombic triacontahedron 1816:It is constructed as a chamfer of a 1330:Octahedral chamfers and their duals 1276:Pyritohedron and its axis truncation 205:are dual to the canonical versions. 2900:(2nd ed.). Springer. pp.  1169:{\displaystyle (\pm 1,\pm 1,\pm 1)} 1063:tetratruncated rhombic dodecahedron 652:alternate-triakis tetratetrahedron 632:alternate-triakis tetratetrahedron 457:Alternate-triakis tetratetrahedron 2754:Chamfered polytopes and honeycombs 14: 2888:(2012). "Goldberg Polyhedra". In 1829:truncated rhombic triacontahedron 1581:tritruncated rhombic dodecahedron 837:is constructed as a chamfer of a 2734: 2723: 2697: 2686: 2660: 2651: 2591: 2580: 2558: 2549: 2538: 2516: 2507: 2496: 2435: 2426: 2415: 2393: 2384: 2375: 2364: 2353: 2327: 2318: 2307: 2296: 2220: 2213: 2206: 2199: 2183: 2169: 2155: 2141: 1968: 1943: 1932: 1921: 1908: 1897: 1886: 1639: 1610: 1601: 1417: 1392: 1381: 1370: 1357: 1346: 1335: 1297: 1288: 1266: 1257: 806: 671: 646: 635: 626: 613: 604: 593: 473: 347: 324: 317: 310: 303: 296: 291: 267: 256: 245: 234: 223: 218: 82: 73: 64: 41: 32: 23: 2101:the 20 order-3 vertices of the 2064: 2054: 2038: 2026: 2018: 2006: 1990: 1980: 1771: 1759: 1742: 1730: 1722: 1710: 1694: 1681: 1664: 1651: 1513: 1503: 1487: 1475: 1467: 1455: 1439: 1429: 794: 782: 758: 746: 738: 726: 710: 693: 683: 461: 451: 434: 422: 414: 402: 386: 369: 359: 144:face in place of each original 128:into another. It is similar to 2249:Relation to Goldberg polyhedra 2078:for a certain truncating depth 1785:for a certain chamfering depth 1550:the 8 order-3 vertices of the 1527:for a certain truncating depth 1208: 1183: 1163: 1136: 1055:truncated rhombic dodecahedron 994: 978: 913: 897: 826:for a certain chamfering depth 1: 2972:10.1016/S0012-365X(98)00065-X 610:dual of the tetratetrahedron 515:: replacing its 6 edges with 3067:How to make a chamfered cube 2713: 2676: 2641: 2570: 2528: 2486: 2405: 2343: 2286: 2227: 2197: 2139: 1043:{\displaystyle 120^{\circ }} 278: 209: 2910:10.1007/978-0-387-92714-5_9 2865:Tohoku Mathematical Journal 3108: 3030:Conway polyhedron notation 2858:Goldberg, Michael (1937). 2788:Conway polyhedron notation 2060:Triakis icosidodecahedron 1999:30 congruent equilateral* 1949:triakis icosidodecahedron 1928:pentakis icosidodecahedron 1848:pentakis icosidodecahedron 1791: 1766:Pentakis icosidodecahedron 1703:30 congruent equilateral* 1448:12 congruent equilateral* 719:12 congruent equilateral* 153:Conway polyhedron notation 104: 3026:VRML polyhedral generator 2131:Chamfered regular tilings 2075: 1782: 1524: 939:and 4 internal angles of 823: 485: 395:6 congruent equilateral* 185:Chamfered Platonic solids 501:alternate truncated cube 2995:Encyclopædia Britannica 2985:"Crystallography"  2798:Cantellation (geometry) 2793:Near-miss Johnson solid 2103:rhombic triacontahedron 1904:rhombic triacontahedron 1634:Chamfered dodecahedron 2980:Spencer, Leonard James 2934:. Simons Science News. 2773: 1963:Chamfered icosahedron 1892:chamfered dodecahedron 1877: 1844:chamfered dodecahedron 1833:rhombicosidodecahedron 1800:chamfered dodecahedron 1794:Chamfered dodecahedron 1627:Chamfered dodecahedron 1594: 1509:Triakis cuboctahedron 1398:triakis cuboctahedron 1377:tetrakis cuboctahedron 1326: 1218: 1170: 1099: 1078:tetrakis cuboctahedron 1044: 1017: 933: 789:Tetrakis cuboctahedron 584: 576: 524:alternately truncating 342:Chamfered tetrahedron 96:of slightly chamfered 3092:Mathematical notation 3010:Chamfered Tetrahedron 2769: 2619:pentakis dodecahedron 2464:truncated icosahedron 2120:can also be called a 2118:chamfered icosahedron 2091:chamfered icosahedron 1996:equilateral triangles 1956:Chamfered icosahedron 1914:chamfered icosahedron 1874:truncated icosahedron 1871: 1698:12 congruent regular 1592: 1579:can also be called a 1445:equilateral triangles 1412:Chamfered octahedron 1320: 1236:pyritohedral symmetry 1219: 1171: 1097: 1045: 1018: 934: 865:alternately truncated 863:. They are congruent 619:chamfered tetrahedron 599:chamfered tetrahedron 582: 573:truncated tetrahedron 570: 547:chamfered tetrahedron 497:chamfered tetrahedron 392:equilateral triangles 335:Chamfered tetrahedron 181:new hexagonal faces. 2959:Discrete Mathematics 2460:truncated octahedron 2028:Vertex configuration 1818:regular dodecahedron 1732:Vertex configuration 1577:chamfered octahedron 1552:rhombic dodecahedron 1540:chamfered octahedron 1477:Vertex configuration 1405:Chamfered octahedron 1363:chamfered octahedron 1353:rhombic dodecahedron 1323:truncated octahedron 1180: 1133: 1067:rhombic dodecahedron 1027: 943: 878: 748:Vertex configuration 424:Vertex configuration 2876:Joseph D. Clinton, 2615:tetrakis hexahedron 2137: 1882: 1855:Goldberg polyhedron 1824:, but not regular. 1814:flattened hexagons. 1666:Goldberg polyhedron 1562:flattened hexagons. 1331: 1109:Goldberg polyhedron 1085:centrally symmetric 1059:rhombicuboctahedron 695:Goldberg polyhedron 589: 554:Goldberg polyhedron 519:flattened hexagons; 513:regular tetrahedron 371:Goldberg polyhedron 3082:Goldberg polyhedra 2890:Senechal, Marjorie 2774: 2770:A chamfered square 2258:Goldberg polyhedra 2135: 1975:(equilateral form) 1880: 1878: 1646:(equilateral form) 1595: 1424:(equilateral form) 1329: 1327: 1230:equivalent to the 1214: 1166: 1100: 1040: 1013: 929: 678:(equilateral form) 587: 585: 577: 354:(equilateral form) 2930:(June 18, 2013). 2919:978-0-387-92713-8 2751: 2750: 2608: 2607: 2456: 2455: 2246: 2245: 2162:Triangular tiling 2095:convex polyhedron 2083: 2082: 2014:hexagon-hexagon) 2012:triangle-hexagon, 1953: 1952: 1939:icosidodecahedron 1916:(canonical form) 1894:(canonical form) 1810:pentagons and 30 1804:convex polyhedron 1790: 1789: 1718:hexagon-hexagon) 1716:pentagon-hexagon, 1544:convex polyhedron 1532: 1531: 1463:hexagon-hexagon) 1461:triangle-hexagon, 1402: 1401: 1365:(canonical form) 1343:(canonical form) 1315: 1314: 1242:. This occurs in 1194: 1050:internal angles. 992: 960: 911: 843:convex polyhedron 831: 830: 734:hexagon-hexagon) 656: 655: 621:(canonical form) 601:(canonical form) 505:convex polyhedron 493: 492: 410:hexagon-hexagon) 408:triangle-hexagon, 332: 331: 3099: 3015:Chamfered Solids 2999: 2987: 2974: 2935: 2923: 2899: 2873: 2845: 2844: 2842: 2841: 2832:. Archived from 2826: 2820: 2814: 2738: 2727: 2701: 2690: 2664: 2655: 2624: 2595: 2584: 2562: 2553: 2542: 2520: 2511: 2500: 2469: 2439: 2430: 2419: 2397: 2388: 2379: 2368: 2357: 2331: 2322: 2311: 2300: 2263: 2224: 2217: 2210: 2203: 2187: 2176:Hexagonal tiling 2173: 2159: 2145: 2138: 2079: 1976: 1972: 1960: 1947: 1936: 1925: 1912: 1901: 1890: 1883: 1842:The dual of the 1786: 1660:= t5daD = dk5aD 1647: 1643: 1631: 1614: 1605: 1528: 1425: 1421: 1409: 1396: 1385: 1374: 1361: 1350: 1339: 1332: 1301: 1292: 1270: 1261: 1249: 1248: 1223: 1221: 1220: 1215: 1195: 1190: 1175: 1173: 1172: 1167: 1128: 1111: 1072:The dual of the 1049: 1047: 1046: 1041: 1039: 1038: 1022: 1020: 1019: 1014: 1009: 1008: 993: 985: 974: 973: 961: 953: 938: 936: 935: 930: 928: 927: 912: 904: 893: 892: 827: 810: 679: 675: 663: 650: 642:tetratetrahedron 639: 630: 617: 608: 597: 590: 545:The dual of the 511:by chamfering a 489: 477: 355: 351: 339: 328: 321: 314: 307: 300: 295: 271: 260: 249: 238: 227: 222: 208: 180: 176: 169: 162: 86: 77: 68: 45: 36: 27: 3107: 3106: 3102: 3101: 3100: 3098: 3097: 3096: 3072: 3071: 3006: 2978: 2951: 2926: 2920: 2884: 2857: 2854: 2849: 2848: 2839: 2837: 2828: 2827: 2823: 2815: 2811: 2806: 2784: 2771: 2756: 2743: 2739: 2728: 2719: 2718: 2706: 2702: 2691: 2682: 2681: 2669: 2665: 2656: 2647: 2646: 2600: 2596: 2585: 2576: 2575: 2563: 2554: 2543: 2534: 2533: 2521: 2512: 2501: 2492: 2491: 2448: 2444: 2440: 2431: 2420: 2411: 2410: 2398: 2389: 2380: 2369: 2358: 2349: 2348: 2336: 2332: 2323: 2312: 2301: 2292: 2291: 2251: 2193: 2188: 2179: 2174: 2165: 2160: 2151: 2146: 2133: 2097:constructed by 2077: 2071:, equilateral* 2056:Dual polyhedron 2048: 2034:(12) 6.6.6.6.6 2033: 2013: 2011: 1998: 1982:Conway notation 1974: 1973: 1958: 1948: 1937: 1926: 1915: 1913: 1902: 1893: 1891: 1864: 1861:(2,0) or {5+,3} 1860: 1815: 1796: 1784: 1778:, equilateral* 1761:Dual polyhedron 1754: 1737: 1717: 1715: 1702: 1690: 1677: 1673: 1653:Conway notation 1645: 1644: 1629: 1624: 1623: 1622: 1621: 1617: 1616: 1615: 1607: 1606: 1563: 1546:constructed by 1526: 1520:, equilateral* 1505:Dual polyhedron 1497: 1482: 1462: 1460: 1447: 1431:Conway notation 1423: 1422: 1407: 1397: 1386: 1375: 1364: 1362: 1351: 1342: 1340: 1311: 1310: 1309: 1308: 1304: 1303: 1302: 1294: 1293: 1280: 1279: 1278: 1277: 1273: 1272: 1271: 1263: 1262: 1178: 1177: 1131: 1130: 1123: 1119: 1116:(2,0) or {4+,3} 1115: 1102: 1069:are truncated. 1030: 1025: 1024: 1000: 962: 941: 940: 919: 881: 876: 875: 872:internal angles 850: 825: 811: 801:, equilateral* 784:Dual polyhedron 776: 771: 768: 753: 733: 732:square-hexagon, 731: 718: 706: 702: 685:Conway notation 677: 676: 666:Chamfered cube 661: 651: 640: 631: 620: 618: 609: 600: 598: 563: 560:(2,0) or {3+,3} 559: 487: 478: 468:, equilateral* 453:Dual polyhedron 446: 429: 409: 407: 394: 382: 378: 361:Conway notation 353: 352: 337: 287: 285: 283: 281: 272: 261: 250: 239: 228: 214: 212: 191:Platonic solids 187: 178: 177:new edges, and 171: 164: 160: 132:: it moves the 122:edge-truncation 110: 103: 102: 101: 100: 98:Platonic solids 89: 88: 87: 79: 78: 70: 69: 58: 57: 56: 55: 48: 47: 46: 38: 37: 29: 28: 17: 12: 11: 5: 3105: 3103: 3095: 3094: 3089: 3084: 3074: 3073: 3070: 3069: 3064: 3063: 3062: 3058: 3057:(Number 7 -Ih) 3052:Fullerene C80 3050: 3044: 3043: 3042: 3040:Chamfered cube 3023: 3017: 3012: 3005: 3004:External links 3002: 3001: 3000: 2990:Chisholm, Hugh 2976: 2949: 2936: 2924: 2918: 2882: 2874: 2853: 2850: 2847: 2846: 2821: 2808: 2807: 2805: 2802: 2801: 2800: 2795: 2790: 2783: 2780: 2776: 2775: 2755: 2752: 2749: 2748: 2745: 2741: 2732: 2721: 2716: 2712: 2711: 2708: 2704: 2695: 2684: 2679: 2675: 2674: 2671: 2667: 2658: 2649: 2644: 2640: 2639: 2636: 2633: 2630: 2627: 2606: 2605: 2602: 2598: 2589: 2578: 2573: 2569: 2568: 2565: 2556: 2547: 2536: 2531: 2527: 2526: 2523: 2514: 2505: 2494: 2489: 2485: 2484: 2481: 2478: 2475: 2472: 2454: 2453: 2450: 2446: 2442: 2433: 2424: 2413: 2408: 2404: 2403: 2400: 2391: 2382: 2373: 2362: 2351: 2346: 2342: 2341: 2338: 2334: 2325: 2316: 2305: 2294: 2289: 2285: 2284: 2281: 2278: 2275: 2272: 2269: 2266: 2250: 2247: 2244: 2243: 2240: 2235: 2232: 2226: 2225: 2218: 2211: 2204: 2196: 2195: 2181: 2167: 2153: 2132: 2129: 2081: 2080: 2073: 2072: 2066: 2062: 2061: 2058: 2052: 2051: 2046: 2042: 2036: 2035: 2030: 2024: 2023: 2020: 2016: 2015: 2008: 2004: 2003: 1992: 1988: 1987: 1984: 1978: 1977: 1965: 1964: 1957: 1954: 1951: 1950: 1941: 1930: 1918: 1917: 1906: 1895: 1862: 1858: 1853:The cD is the 1792:Main article: 1788: 1787: 1780: 1779: 1773: 1769: 1768: 1763: 1757: 1756: 1752: 1746: 1744:Symmetry group 1740: 1739: 1734: 1728: 1727: 1724: 1720: 1719: 1712: 1708: 1707: 1696: 1692: 1691: 1688: 1685: 1679: 1678: 1675: 1674:(2,0) = {5+,3} 1671: 1668: 1662: 1661: 1655: 1649: 1648: 1636: 1635: 1628: 1625: 1619: 1618: 1609: 1608: 1600: 1599: 1598: 1597: 1596: 1530: 1529: 1522: 1521: 1515: 1511: 1510: 1507: 1501: 1500: 1495: 1491: 1485: 1484: 1479: 1473: 1472: 1469: 1465: 1464: 1457: 1453: 1452: 1441: 1437: 1436: 1433: 1427: 1426: 1414: 1413: 1406: 1403: 1400: 1399: 1390: 1379: 1367: 1366: 1355: 1344: 1341:chamfered cube 1313: 1312: 1306: 1305: 1296: 1295: 1287: 1286: 1285: 1284: 1283: 1281: 1275: 1274: 1265: 1264: 1256: 1255: 1254: 1253: 1252: 1232:chamfered cube 1213: 1210: 1207: 1204: 1201: 1198: 1193: 1188: 1185: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1124:The cC is the 1117: 1113: 1105:chamfered cube 1074:chamfered cube 1037: 1033: 1012: 1007: 1003: 999: 996: 991: 988: 983: 980: 977: 972: 969: 965: 959: 956: 951: 948: 926: 922: 918: 915: 910: 907: 902: 899: 896: 891: 888: 884: 853:chamfered cube 835:chamfered cube 829: 828: 821: 820: 803: 802: 796: 792: 791: 786: 780: 779: 774: 766: 762: 756: 755: 750: 744: 743: 740: 736: 735: 728: 724: 723: 712: 708: 707: 704: 703:(2,0) = {4+,3} 700: 697: 691: 690: 687: 681: 680: 668: 667: 660: 659:Chamfered cube 657: 654: 653: 644: 633: 623: 622: 611: 602: 561: 557: 552:The cT is the 532: 531: 520: 491: 490: 483: 482: 470: 469: 463: 459: 458: 455: 449: 448: 444: 438: 436:Symmetry group 432: 431: 426: 420: 419: 416: 412: 411: 404: 400: 399: 388: 384: 383: 380: 379:(2,0) = {3+,3} 376: 373: 367: 366: 363: 357: 356: 344: 343: 336: 333: 330: 329: 322: 315: 308: 301: 289: 277: 276: 265: 254: 243: 232: 216: 203:dual polyhedra 186: 183: 170:new vertices, 94:crystal models 91: 90: 81: 80: 72: 71: 63: 62: 61: 60: 59: 50: 49: 40: 39: 31: 30: 22: 21: 20: 19: 18: 15: 13: 10: 9: 6: 4: 3: 2: 3104: 3093: 3090: 3088: 3085: 3083: 3080: 3079: 3077: 3068: 3065: 3061: 3059: 3056: 3054: 3053: 3051: 3048: 3045: 3041: 3037: 3034: 3033: 3031: 3027: 3024: 3021: 3018: 3016: 3013: 3011: 3008: 3007: 3003: 2997: 2996: 2991: 2986: 2981: 2977: 2973: 2969: 2965: 2961: 2960: 2955: 2950: 2947: 2945: 2941: 2937: 2933: 2929: 2925: 2921: 2915: 2911: 2907: 2903: 2898: 2897: 2896:Shaping Space 2891: 2887: 2883: 2881: 2879: 2875: 2871: 2867: 2866: 2861: 2856: 2855: 2851: 2836:on 2014-08-12 2835: 2831: 2830:"C80 Isomers" 2825: 2822: 2818: 2813: 2810: 2803: 2799: 2796: 2794: 2791: 2789: 2786: 2785: 2781: 2779: 2768: 2764: 2763: 2762: 2759: 2753: 2746: 2742: 2737: 2733: 2731: 2726: 2722: 2714: 2709: 2705: 2700: 2696: 2694: 2689: 2685: 2677: 2672: 2668: 2663: 2659: 2654: 2650: 2642: 2637: 2634: 2631: 2628: 2626: 2625: 2622: 2620: 2616: 2613: 2603: 2599: 2594: 2590: 2588: 2583: 2579: 2571: 2566: 2561: 2557: 2552: 2548: 2546: 2541: 2537: 2529: 2524: 2519: 2515: 2510: 2506: 2504: 2499: 2495: 2487: 2482: 2479: 2476: 2473: 2471: 2470: 2467: 2465: 2461: 2451: 2447: 2443: 2438: 2434: 2429: 2425: 2423: 2418: 2414: 2406: 2401: 2396: 2392: 2387: 2383: 2378: 2374: 2372: 2367: 2363: 2361: 2356: 2352: 2344: 2339: 2335: 2330: 2326: 2321: 2317: 2315: 2310: 2306: 2304: 2299: 2295: 2287: 2282: 2279: 2276: 2273: 2270: 2267: 2265: 2264: 2261: 2259: 2254: 2248: 2241: 2239: 2236: 2233: 2231: 2228: 2223: 2219: 2216: 2212: 2209: 2205: 2202: 2198: 2191: 2186: 2182: 2177: 2172: 2168: 2163: 2158: 2154: 2149: 2148:Square tiling 2144: 2140: 2130: 2128: 2125: 2123: 2119: 2114: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2074: 2070: 2067: 2063: 2059: 2057: 2053: 2049: 2043: 2041: 2037: 2031: 2029: 2025: 2022:72 (2 types) 2021: 2017: 2010:120 (2 types: 2009: 2005: 2002: 1997: 1994:20 congruent 1993: 1989: 1985: 1983: 1979: 1971: 1966: 1961: 1955: 1946: 1942: 1940: 1935: 1931: 1929: 1924: 1920: 1919: 1911: 1907: 1905: 1900: 1896: 1889: 1885: 1884: 1875: 1870: 1866: 1856: 1851: 1849: 1845: 1840: 1838: 1834: 1830: 1825: 1823: 1819: 1813: 1809: 1805: 1801: 1795: 1781: 1777: 1774: 1770: 1767: 1764: 1762: 1758: 1750: 1747: 1745: 1741: 1735: 1733: 1729: 1726:80 (2 types) 1725: 1721: 1714:120 (2 types: 1713: 1709: 1706: 1701: 1697: 1693: 1686: 1684: 1680: 1669: 1667: 1663: 1659: 1656: 1654: 1650: 1642: 1637: 1632: 1626: 1613: 1604: 1591: 1587: 1584: 1582: 1578: 1573: 1571: 1567: 1561: 1558:faces become 1557: 1553: 1549: 1545: 1541: 1537: 1523: 1519: 1516: 1512: 1508: 1506: 1502: 1498: 1492: 1490: 1486: 1480: 1478: 1474: 1471:30 (2 types) 1470: 1466: 1458: 1454: 1451: 1446: 1442: 1438: 1434: 1432: 1428: 1420: 1415: 1410: 1404: 1395: 1391: 1389: 1388:cuboctahedron 1384: 1380: 1378: 1373: 1369: 1368: 1360: 1356: 1354: 1349: 1345: 1338: 1334: 1333: 1324: 1319: 1300: 1291: 1282: 1269: 1260: 1251: 1250: 1247: 1245: 1241: 1237: 1233: 1229: 1224: 1211: 1205: 1202: 1199: 1196: 1191: 1186: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1127: 1126:Minkowski sum 1121: 1110: 1106: 1096: 1092: 1090: 1086: 1081: 1079: 1075: 1070: 1068: 1064: 1060: 1056: 1051: 1035: 1031: 1010: 1005: 1001: 997: 989: 986: 981: 975: 970: 967: 963: 957: 954: 949: 946: 924: 920: 916: 908: 905: 900: 894: 889: 886: 882: 873: 869: 866: 862: 858: 854: 848: 844: 840: 836: 822: 818: 814: 809: 804: 800: 797: 793: 790: 787: 785: 781: 777: 769: 763: 761: 757: 751: 749: 745: 742:32 (2 types) 741: 737: 729: 725: 722: 717: 713: 709: 698: 696: 692: 688: 686: 682: 674: 669: 664: 658: 649: 645: 643: 638: 634: 629: 625: 624: 616: 612: 607: 603: 596: 592: 591: 581: 574: 569: 565: 555: 550: 548: 543: 541: 537: 529: 525: 521: 518: 514: 510: 509: 508: 507:constructed: 506: 502: 498: 484: 481: 476: 471: 467: 464: 460: 456: 454: 450: 442: 439: 437: 433: 427: 425: 421: 418:16 (2 types) 417: 413: 405: 401: 398: 393: 389: 385: 374: 372: 368: 364: 362: 358: 350: 345: 340: 334: 327: 323: 320: 316: 313: 309: 306: 302: 299: 294: 290: 279: 275: 270: 266: 264: 259: 255: 253: 248: 244: 242: 237: 233: 231: 226: 221: 217: 210: 206: 204: 200: 196: 192: 184: 182: 175: 168: 158: 154: 149: 147: 143: 139: 135: 131: 127: 123: 119: 115: 108: 99: 95: 85: 76: 67: 54: 44: 35: 26: 3022:Livio Zefiro 2993: 2966:(1): 41–80, 2963: 2957: 2939: 2928:Hart, George 2895: 2886:Hart, George 2877: 2869: 2863: 2838:. Retrieved 2834:the original 2824: 2817:Spencer 1911 2812: 2777: 2760: 2757: 2609: 2457: 2255: 2252: 2126: 2121: 2117: 2115: 2090: 2084: 1852: 1843: 1841: 1836: 1828: 1826: 1799: 1797: 1585: 1580: 1576: 1574: 1539: 1533: 1483:(6) 6.6.6.6 1459:48 (2 types: 1443:8 congruent 1240:pyritohedron 1231: 1225: 1122: 1107:is also the 1104: 1101: 1082: 1073: 1071: 1062: 1054: 1052: 852: 834: 832: 730:48 (2 types: 714:6 congruent 551: 546: 544: 533: 526:a (regular) 500: 496: 494: 406:24 (2 types: 390:4 congruent 286:(equilateral 188: 173: 166: 156: 150: 121: 117: 111: 2107:equilateral 2050:, , (*532) 1986:cI = t3daI 1822:equilateral 1749:Icosahedral 1738:(20) 6.6.6 1566:equilateral 1499:, , (*432) 1435:cO = t3daO 1234:, but with 1228:topological 857:equilateral 689:cC = t4daC 536:equilateral 441:Tetrahedral 195:equilateral 92:Historical 3076:Categories 2952:Deza, A.; 2872:: 104–108. 2840:2014-08-09 2804:References 2109:, but not 2099:truncating 2065:Properties 2032:(24) 3.6.6 1772:Properties 1736:(60) 5.6.6 1568:, but not 1548:truncating 1514:Properties 1481:(24) 3.6.6 1246:crystals. 1089:zonohedron 1087:, it is a 859:, but not 795:Properties 778:, , (3*2) 770:, , (*432) 754:(8) 6.6.6 752:(24) 4.6.6 538:, but not 462:Properties 430:(4) 6.6.6 428:(12) 3.6.6 157:chamfering 126:polyhedron 118:chamfering 3087:Polyhedra 3049:fullerene 2635:GP(12,0) 2612:truncated 2280:GP(16,0) 2190:Rhombille 1812:congruent 1700:pentagons 1683:Fullerene 1560:congruent 1187:± 1158:± 1149:± 1140:± 1036:∘ 1006:∘ 998:≈ 982:− 976:⁡ 968:− 950:− 947:π 925:∘ 917:≈ 901:− 895:⁡ 887:− 870:, have 2 847:congruent 517:congruent 280:Chamfered 199:midsphere 142:hexagonal 130:expansion 2982:(1911). 2954:Deza, M. 2782:See also 2632:GP(6,0) 2629:GP(3,0) 2480:GP(4,4) 2477:GP(2,2) 2474:GP(1,1) 2277:GP(8,0) 2274:GP(4,0) 2271:GP(2,0) 2268:GP(1,0) 2194:dr{6,3} 2087:geometry 2040:Symmetry 2019:Vertices 2001:hexagons 1723:Vertices 1705:hexagons 1536:geometry 1489:Symmetry 1468:Vertices 1450:hexagons 760:Symmetry 739:Vertices 721:hexagons 415:Vertices 397:hexagons 282:Platonic 213:Platonic 138:vertices 114:geometry 2992:(ed.). 2942:, 1998 2892:(ed.). 2852:Sources 2720:{6+,3} 2683:{5+,3} 2648:{4+,3} 2577:{6+,3} 2535:{5+,3} 2493:{4+,3} 2412:{6+,3} 2350:{5+,3} 2293:{4+,3} 2111:regular 1846:is the 1808:regular 1570:regular 1556:rhombic 1076:is the 861:regular 716:squares 540:regular 107:chamfer 3038:model 2916:  2904:–138. 2744:cctkH 2707:cctkD 2670:cctkC 2449:ccccH 2399:ccccD 2337:ccccC 2180:{6,3} 2166:{3,6} 2152:{4,4} 2089:, the 2069:convex 1776:convex 1538:, the 1518:convex 1244:pyrite 1002:125.26 921:109.47 868:rhombi 799:convex 522:or by 466:convex 288:form) 215:solid 2988:. In 2740:ctkH 2703:ctkD 2666:ctkC 2601:cctΔ 2564:cctI 2522:cctO 2445:cccH 2390:cccD 2333:cccC 2242:cdaH 2192:, daH 2093:is a 2007:Edges 1991:Faces 1802:is a 1711:Edges 1695:Faces 1542:is a 1456:Edges 1440:Faces 817:zones 727:Edges 711:Faces 503:is a 403:Edges 387:Faces 284:solid 274:{3,5} 263:{5,3} 252:{3,4} 241:{4,3} 230:{3,3} 134:faces 3036:VRML 2914:ISBN 2747:... 2710:... 2673:... 2657:tkC 2638:... 2604:... 2597:ctΔ 2567:... 2555:ctI 2525:... 2513:ctO 2483:... 2458:The 2452:... 2441:ccH 2402:... 2381:ccD 2340:... 2324:ccC 2283:... 2116:The 1872:The 1798:The 1575:The 1321:The 1103:The 839:cube 833:The 571:The 528:cube 495:The 211:Seed 146:edge 53:cube 2968:doi 2964:192 2944:PDF 2906:doi 2902:125 2730:tkH 2693:tkD 2617:or 2462:or 2432:cH 2234:cΔ 2178:, H 2164:, Δ 2150:, Q 2085:In 1863:2,0 1676:2,0 1534:In 1118:2,0 1032:120 964:cos 883:cos 874:of 815:(3 813:Net 705:2,0 562:2,0 558:III 499:or 480:Net 381:2,0 377:III 365:cT 151:In 120:or 112:In 3078:: 3032:) 2962:, 2912:. 2870:43 2868:. 2862:. 2717:VI 2715:GP 2678:GP 2645:IV 2643:GP 2610:A 2587:tΔ 2574:VI 2572:GP 2545:tI 2530:GP 2503:tO 2490:IV 2488:GP 2409:VI 2407:GP 2371:cD 2345:GP 2314:cC 2290:IV 2288:GP 2238:cH 2230:cQ 2124:. 1857:GP 1850:. 1755:) 1751:(I 1689:80 1670:GP 1658:cD 1583:. 1572:. 1226:A 1114:IV 1112:GP 1091:: 1080:. 701:IV 699:GP 556:GP 542:. 447:) 443:(T 375:GP 155:, 148:. 116:, 3028:( 2975:. 2970:: 2922:. 2908:: 2843:. 2680:V 2532:V 2422:H 2360:D 2347:V 2303:C 2076:* 2047:h 2045:I 1859:V 1783:* 1753:h 1687:C 1672:V 1525:* 1496:h 1494:O 1212:. 1209:) 1206:0 1203:, 1200:0 1197:, 1192:3 1184:( 1164:) 1161:1 1155:, 1152:1 1146:, 1143:1 1137:( 1011:, 995:) 990:3 987:1 979:( 971:1 958:2 955:1 914:) 909:3 906:1 898:( 890:1 824:* 775:h 773:T 767:h 765:O 486:* 445:d 179:e 174:e 172:3 167:e 165:2 161:e 109:.

Index




cube



crystal models
Platonic solids
chamfer
geometry
polyhedron
expansion
faces
vertices
hexagonal
edge
Conway polyhedron notation
Platonic solids
equilateral
midsphere
dual polyhedra


{3,3}

{4,3}

{3,4}

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.