Knowledge (XXG)

Channelrhodopsin

Source πŸ“

122:. Based on action spectroscopy and simultaneous recordings of photocurrents and flagellar beating, it was determined that the photoreceptor currents and subsequent flagellar movements are mediated by rhodopsin and control phototaxis and photophobic responses. The extremely fast rise of the photoreceptor current after a brief light flash led to the conclusion that the rhodopsin and the channel are intimately linked in a protein complex, or even within one single protein. 399:'s lab optimized ChR2 for further increases in steady-state conductance and dramatically reduced desensitization by creating chimeras of ChR1 and ChR2 and mutating specific amino acids, yielding ChEF and ChIEF, which allowed the driving of trains of action potentials up to 100 Hz. In 2010, the groups of Hegemann and Deisseroth introduced an E123T mutation into native ChR2, yielding ChETA, which has faster on- and off- 375:, deploying the indirectly light-gated ion channel P2X2, it was henceforth microbial opsins like channelrhodopsin that dominated the field of genetically targeted remote control of excitable cells, due to the power, speed, targetability, ease of use, and temporal precision of direct optical activation, not requiring any external chemical compound such as caged ligands. 5157: 520:. Searches for homologous sequences in other organisms has yielded spectrally improved and stronger red-shifted channelrhodpsins (Chrimson). In combination with ChR2, these yellow/red light-sensitive channelrhodopsins allow controlling two populations of neurons independently with light pulses of different colors. 498:
Mutating the E123 residue accelerates channel kinetics (ChETA), and the resulting ChR2 mutants have been used to spike neurons at up to 200 Hz. In general, channelrhodopsins with slow kinetics are more light-sensitive on the population level, as open channels accumulate over time even at low light levels.
97:
and photoorientation of microalgae have been studied over more than a hundred years in many laboratories worldwide. In 1980, Ken Foster developed the first consistent theory about the functionality of algal eyes. He also analyzed published action spectra and complemented blind cells with retinal and
687:
Neurons can tolerate ChR expression for a long time, and several laboratories are testing optogenetic stimulation to solve medical needs. In blind mice, visual function can be partially restored by expressing ChR2 in inner retinal cells. In 2021, the red-light sensitive ChR ChrimsonR was virally
506:
H134R and T159C mutants display increased photocurrents, and a combination of T159 and E123 (ET/TC) has slightly larger photocurrents and slightly faster kinetics than wild-type ChR2. ChIEF, a chimera and point mutant of ChR1 and ChR2, demonstrates large photocurrents, little desensitization and
497:
Closing of the channel after optical activation can be substantially delayed by mutating the protein residues C128 or D156. This modification results in super-sensitive channelrhodopsins that can be opened by a blue light pulse and closed by a green or yellow light pulse (Step-function opsins).
515:
Chimeric channelrhodopsins have been developed by combining transmembrane helices from ChR1 and VChR1, leading to the development of ChRs with red spectral shifts (such as C1V1 and ReaChR). ReaChR has improved membrane trafficking and strong expression in mammalian cells, and has been used for
410:
The groups of Hegemann and Deisseroth also discovered that the introduction of the point mutation C128S makes the resulting ChR2-derivative a step-function tool: Once "switched on" by blue light, ChR2(C128S) stays in the open state until it is switched off by yellow light – a modification that
353:
as the light-sensing co-factor and it was unclear whether central mammalian nerve cells would contain sufficient retinal levels, but they do. It also showed, despite the small single-channel conductance, sufficient potency to drive mammalian neurons above action potential threshold. From this,
184: 550:
Mutating E90 to the positively charged amino acid arginine turns channelrhodopsin from an unspecific cation channel into a chloride-conducting channel (ChloC). The selectivity for Cl- was further improved by replacing negatively charged residues in the channel pore, making the
527:. After some engineering to improve membrane trafficking and speed, the resulting tool (CheRiff) produced large photocurrents at 460 nm excitation. It has been combined with the Genetically Encoded Calcium Indicator jRCaMP1b in an all-optical system called the OptoCaMP. 308:(ACRs) and potassium-selective channelrhodpsins (HcKCR1, HcKCR2) were structurally analyzed to understand their ion selectivity. ACRs and KCRs have been used to inhibit neuronal activity. Recently discovered viral channelrhodopsins (VCR1) are localized to the membrane of the 680:
can be stimulated to perform some desired behaviors for applications in robotics and control. ChR2 has also been used to map long-range connections from one side of the brain to the other, and to map the spatial location of inputs on the dendritic tree of individual neurons.
415:. VChR1 produces only tiny photocurrents, but with an absorption spectrum that is red-shifted relative to ChR2. Using parts of the ChR1 sequence, photocurrent amplitude was later improved to allow excitation of two neuronal populations at two distinct wavelengths. 448:
In March 2013, the Brain Prize (Grete Lundbeck European Brain Research Prize) was jointly awarded to Bamberg, Boyden, Deisseroth, Hegemann, MiesenbΓΆck, and Nagel for "their invention and refinement of optogenetics". The same year, Hegemann and Nagel received the
354:
channelrhodopsin became the first optogenetic tool, with which neural activity could be controlled with the temporal precision at which neurons operate (milliseconds). A second study was published later confirming the ability of ChR2 to control the activity of
371:. This was the first using ChR2 to steer the behavior of an animal in an optogenetic experiment, rendering a genetically specified cell type subject to optical remote control. Although both aspects had been illustrated earlier that year by the group of 125:
The name "channelrhodopsin" was coined to highlight this unusual property, and the sequences were renamed accordingly. The nucleotide sequences of the rhodopsins now called channelrhodopsins ChR1 and ChR2 were finally uncovered in a large-scale
435:(opto-fMRI). Other labs have pioneered the combination of ChR2 stimulation with calcium imaging for all-optical experiments, mapping of long-range and local neural circuits, ChR2 expression from a transgenic locus – directly or in the 390:
H134R (exchanging the amino acid Histidine in position 134 of the native protein for an Arginine) resulted in increased steady-state conductance, as described in a 2005 paper that also established ChR2 as an optogenetic tool in
563:
ACR) inhibit neuronal spiking in cell culture and in intact animals when illuminated with blue light. Calcium-selective channelrhodopsins have been engineered to activate calcium-dependent enzymes in cells.
365:
It was demonstrated that ChR2, if expressed in specific neurons or muscle cells, can evoke predictable behaviors, i.e. can control the nervous system of an intact animal, in this case the invertebrate
4613:
Lagali PS, Balya D, Awatramani GB, MΓΌnch TA, Kim DS, Busskamp V, et al. (June 2008). "Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration".
883:
Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, et al. (October 1984). "A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas".
485:
can be useful to visualize the morphology of ChR2 expressing cells, i.e. simultaneously indicate which cells are tagged with FP and allow the activity to be controlled by the channelrhodopsin.
362:-4 in this case, demonstrating for the first time that excitable cells could be activated and silenced using these two tools simultaneously, illuminating the tissue at different wavelengths. 539:(excitatory). Variants with moderate to high calcium permeability have been engineered (CatCh, CapChRs). K-specific channelrhodopsins (KCRs, WiChR) were recently discovered in various 1155:
Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, et al. (February 2003). "Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization".
175:
Their roles in generation of photoreceptor currents in algal cells were characterized by Oleg Sineshchekov, Kwang-Hwan Jung and John Spudich, and Peter Berthold and Peter Hegemann.
507:
kinetics similar to wild-type ChR2. Variants with extended open time (ChR2-XXL) produce extremely large photocurrents and are very light sensitive on the population level.
696:
have been shown to work well in animal experiments and are currently undergoing clinical trials. In the future, ChRs may find even more medical applications, e.g. for
300:Γ…. Within milliseconds, the retinal relaxes back to the all-trans form, closing the pore and stopping the flow of ions. Most natural channelrhodopsins are nonspecific 411:
deteriorates temporal precision, but increases light sensitivity by two orders of magnitude. They also discovered and characterized VChR1 in the multicellular algae
2729:"In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam" 1360:
Bamann C, Kirsch T, Nagel G, Bamberg E (January 2008). "Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function".
378:
To overcome its principal downsides – the small single-channel conductance (especially in steady-state), the limitation to one optimal excitation wavelength (~470
661:
ACR2 and the red-light sensitive cation channel Chrimson which have been combined in a single protein (BiPOLES) for bidirectional control of membrane potential.
489:
close to the retinal binding pocket have been shown to affect the biophysical properties of the channelrhodopsin, resulting in a variety of different tools.
349:, achieving temporal precision on the order of milliseconds (both in terms of delay to spiking and in terms of temporal jitter). Because all opsins require 727:
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, et al. (June 2002). "Channelrhodopsin-1: a light-gated proton channel in green algae".
74:
are the first discovered channelrhodopsins. Variants that are sensitive to different colors of light or selective for specific ions (ACRs, KCRs) have been
657:
together enable multiple-color optical activation and silencing of neural activity. Another interesting pair is the blue-light sensitive chloride channel
1675:
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (September 2005). "Millisecond-timescale, genetically targeted optical control of neural activity".
934:
Litvin FF, Sineshchekov OA, Sineshchekov VA (February 1978). "Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis".
3577:
Govorunova EG, Gou Y, Sineshchekov OA, Li H, Wang Y, Brown LS, et al. (2021-09-17). "Kalium rhodopsins: Natural light-gated potassium channels".
5121: 382:
nm, blue) as well as the relatively long recovery time, not permitting controlled firing of neurons above 20–40 Hz – ChR2 has been optimized using
4085:
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. (April 2007). "Multimodal fast optical interrogation of neural circuitry".
5047: 358:
neurons, at this time in the chick spinal cord. This study was the first wherein ChR2 was expressed alongside an optical silencer, vertebrate
5116: 4434: 5188: 2573:
Petreanu L, Huber D, Sobczyk A, Svoboda K (May 2007). "Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections".
454: 5111: 642:
have been engineered and were also found in nature. These tools can be used to silence neurons in cell culture and in live animals by
256:). This makes cellular depolarization extremely fast, robust, and useful for bioengineering and neuroscience applications, including 5074: 1720:"Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin" 1142: 639: 556: 305: 4407:
Xu Z, Ziye X, Craig H, Silvia F (Dec 2013). "Spike-based indirect training of a spiking neural network-controlled virtual insect".
269: 1141:
Kateriya, S. Fuhrmann, M. Hegemann, P.: Direct Submission: Chlamydomonas reinhardtii retinal binding protein (cop4) gene; GenBank
450: 442: 535:
Most channelrhodopsins are unspecific cation channels. When expressed in neurons, they conduct mostly Na ions and are therefore
4028:"Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution" 1256:"Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization" 608:
neurons without adding any chemical compounds. Before the discovery of channelrhodopsins, neuroscientists were limited to
1782:"Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses" 1870:
Zhang F, Wang LP, Boyden ES, Deisseroth K (October 2006). "Channelrhodopsin-2 and optical control of excitable cells".
3610:"WiChR, a highly potassium-selective channelrhodopsin for low-light one- and two-photon inhibition of excitable cells" 1570: 544: 204: 162:
by Takahashi's group. Both sequences were found to function as single-component light-activated cation channels in a
4951:"Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration" 4566:"Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration" 4517:"Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration" 5040: 2027:
Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P (March 2010). "Ultrafast optogenetic control".
241: 2527:
Zhang YP, Oertner TG (February 2007). "Optical induction of synaptic plasticity using a light-sensitive channel".
418:
Deisseroth's group has pioneered many applications in live animals such as genetically targeted remote control in
3221: 677: 114: 98:
retinal analogues, which led to the conclusion that the photoreceptor for motility responses in Chlorophyceae is
70: 5010: 5193: 4138:"NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics" 2073:
Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K (February 2009). "Bi-stable neural state switches".
1400:"NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics" 1030:"The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions" 638:. Optical control of behavior has been demonstrated in nematodes, fruit flies, zebrafish, and mice. Recently, 5160: 3730:"An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo" 245: 31: 4358:
Anisimova M, van Bommel B, Wang R, Mikhaylova M, Simon Wiegert J, Oertner TG, et al. (February 2022).
296:-retinal. This change introduces a further one in the transmembrane protein, opening the pore to at least 6 4412: 2670:"High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice" 2362: 701: 697: 428: 367: 229: 127: 3914:"Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons" 1457:"Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition" 622:
that behavior. Controlling networks of genetically modified cells with light, an emerging field known as
5183: 5142: 5033: 3847:
Fernandez Lahore RG, Pampaloni NP, Schiewer E, Heim MM, Tillert L, Vierock J, et al. (2022-12-21).
3520:
Fernandez Lahore RG, Pampaloni NP, Peter E, Heim MM, Tillert L, Vierock J, et al. (December 2022).
616:
this activity with behavior. This is not sufficient to prove that the recorded neural activity actually
437: 309: 4907:"In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2" 4301:"Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII" 684:
In 2006, it was reported that transfection with Channelrhodopsin could restore eyesight to blind mice.
3273:
Anisimova M, van Bommel B, Wang R, Mikhaylova M, Wiegert JS, Oertner TG, et al. (December 2022).
4778: 4471: 4312: 4255: 4149: 4094: 4039: 3982: 3925: 3860: 3801: 3741: 3681: 3621: 3533: 3076: 3017: 2958: 2856: 2797: 2740: 2681: 2478: 2421: 2354: 2297: 2240: 2183: 1980: 1793: 1731: 1620: 1525: 1411: 1316: 1208: 1098: 1041: 994: 943: 892: 736: 689: 200: 49:: movement in response to light. Expressed in cells of other organisms, they enable light to control 23: 4905:
Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, et al. (April 2007).
4822:
Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, Gehrt A, et al. (December 2018).
4765:
Mager T, Lopez de la Morena D, Senn V, Schlotte J, D Errico A, Feldbauer K, et al. (May 2018).
4417: 3124:"ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation" 3668:
Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, et al. (April 2014).
3475:"Ultra light-sensitive and fast neuronal activation with the CaΒ²+-permeable channelrhodopsin CatCh" 2367: 673: 643: 478: 383: 321: 217: 1607:
Eria-Oliveira AS, Folacci M, Chassot AA, Fedou S, ThΓ©zΓ© N, Zabelskii D, et al. (2024-01-02).
4656:
Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, et al. (July 2021).
4638: 4440: 4118: 3971:"Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice" 3788:
Berndt A, Lee SY, Wietek J, Ramakrishnan C, Steinberg EE, Rashid AJ, et al. (January 2016).
3707: 3590: 3502: 2927: 2621:"The columnar and laminar organization of inhibitory connections to neocortical excitatory cells" 2598: 2552: 2098: 2052: 1895: 1700: 1589: 1494: 1010: 967: 916: 785:"Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii" 760: 589: 552: 4716:
Hernandez VH, Gehrt A, Reuter K, Jing Z, Jeschke M, Mendoza Schulz A, et al. (March 2014).
4242:
Vierock J, Rodriguez-Rozada S, Dieter A, Pieper F, Sims R, Tenedini F, et al. (July 2021).
3063:
Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, et al. (September 2014).
3004:
Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, Hegemann P, et al. (May 2011).
2118:"Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri" 1969:"Characterization of engineered channelrhodopsin variants with improved properties and kinetics" 372: 236:). The retinal chromophore is covalently linked to the rest of the protein through a protonated 4193:
Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. (March 2014).
3171:
Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, et al. (March 2014).
2410:"Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry" 1303:
Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, et al. (January 2012).
1195:
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, et al. (November 2003).
5090: 4980: 4936: 4892: 4853: 4804: 4747: 4679: 4630: 4595: 4546: 4497: 4430: 4389: 4340: 4281: 4224: 4175: 4110: 4067: 4008: 3951: 3894: 3876: 3829: 3767: 3699: 3647: 3559: 3494: 3455: 3404: 3353: 3304: 3255: 3202: 3153: 3104: 3045: 2986: 2919: 2884: 2825: 2766: 2709: 2650: 2590: 2544: 2504: 2447: 2390: 2323: 2266: 2209: 2147: 2090: 2044: 2006: 1949: 1887: 1852: 1811: 1759: 1692: 1654: 1636: 1551: 1486: 1437: 1377: 1342: 1285: 1236: 1172: 1124: 1067: 959: 908: 865: 816: 752: 693: 400: 188: 75: 38: 5020: 4888: 3473:
Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, et al. (April 2011).
5126: 4970: 4962: 4926: 4918: 4884: 4843: 4835: 4794: 4786: 4767:"High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics" 4737: 4729: 4669: 4622: 4585: 4577: 4536: 4528: 4487: 4479: 4422: 4379: 4371: 4330: 4320: 4271: 4263: 4214: 4206: 4165: 4157: 4102: 4057: 4047: 3998: 3990: 3969:
Huber D, Petreanu L, Ghitani N, Ranade S, HromΓ‘dka T, Mainen Z, et al. (January 2008).
3941: 3933: 3884: 3868: 3819: 3809: 3757: 3749: 3689: 3637: 3629: 3582: 3549: 3541: 3486: 3445: 3435: 3394: 3384: 3343: 3335: 3322:
Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, et al. (August 2014).
3294: 3286: 3245: 3237: 3192: 3184: 3143: 3135: 3094: 3084: 3035: 3025: 2976: 2966: 2911: 2874: 2864: 2815: 2805: 2756: 2748: 2699: 2689: 2640: 2632: 2582: 2536: 2494: 2486: 2467:"Global and local fMRI signals driven by neurons defined optogenetically by type and wiring" 2437: 2429: 2380: 2372: 2313: 2305: 2256: 2248: 2199: 2191: 2172:"Neocortical excitation/inhibition balance in information processing and social dysfunction" 2170:
Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O'Shea DJ, et al. (July 2011).
2137: 2129: 2082: 2036: 1996: 1988: 1939: 1931: 1920:"A user's guide to channelrhodopsin variants: features, limitations and future developments" 1879: 1842: 1801: 1749: 1739: 1684: 1644: 1628: 1581: 1541: 1533: 1512:
Kim YS, Kato HE, Yamashita K, Ito S, Inoue K, Ramakrishnan C, et al. (September 2018).
1476: 1468: 1427: 1419: 1369: 1332: 1324: 1275: 1267: 1226: 1216: 1164: 1114: 1106: 1057: 1049: 1002: 951: 900: 855: 847: 806: 796: 744: 605: 482: 257: 50: 35: 3608:
Vierock J, Peter E, Grimm C, Rozenberg A, Chen IW, Tillert L, et al. (December 2022).
3226:"Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex" 5095: 5085: 4824:"Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos" 4244:"BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons" 3790:"Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity" 3324:"All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins" 2902:
Reiner A, Isacoff EY (October 2013). "The Brain Prize 2013: the optogenetics revolution".
2408:
Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, et al. (July 2010).
635: 581: 486: 336: 277: 2284:
Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. (May 2009).
985:
Harz H, Hegemann P (June 1991). "Rhodopsin-regulated calcium currents in Chlamydomonas".
458: 4782: 4475: 4316: 4259: 4153: 4098: 4043: 3986: 3929: 3864: 3805: 3745: 3685: 3625: 3537: 3080: 3021: 2962: 2860: 2801: 2744: 2685: 2482: 2425: 2358: 2301: 2244: 2187: 2116:
Zhang F, Prigge M, BeyriΓ¨re F, Tsunoda SP, Mattis J, Yizhar O, et al. (June 2008).
1984: 1797: 1735: 1649: 1624: 1608: 1529: 1415: 1320: 1212: 1102: 1045: 998: 947: 896: 740: 672:
can be identified. This is useful to study the molecular events during the induction of
653:
experiments. The blue-light sensitive ChR2 and the yellow light-activated chloride pump
4975: 4950: 4931: 4906: 4848: 4823: 4799: 4766: 4742: 4717: 4590: 4565: 4541: 4516: 4492: 4459: 4384: 4359: 4335: 4300: 4276: 4243: 4219: 4194: 4170: 4137: 4062: 4027: 4003: 3970: 3946: 3913: 3889: 3848: 3824: 3789: 3762: 3729: 3642: 3609: 3554: 3521: 3450: 3423: 3399: 3372: 3348: 3323: 3299: 3274: 3250: 3225: 3197: 3172: 3148: 3123: 3099: 3064: 3040: 3005: 2981: 2946: 2879: 2844: 2820: 2785: 2761: 2728: 2704: 2669: 2645: 2620: 2499: 2466: 2442: 2409: 2385: 2342: 2318: 2285: 2261: 2228: 2204: 2171: 2142: 2117: 2001: 1968: 1944: 1919: 1780:
Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (December 2005).
1754: 1719: 1546: 1513: 1481: 1456: 1432: 1399: 1337: 1304: 1280: 1255: 1119: 1086: 1062: 1029: 536: 387: 119: 3728:
Wietek J, Beltramo R, Scanziani M, Hegemann P, Oertner TG, Wiegert JS (October 2015).
2229:"Neural substrates of awakening probed with optogenetic control of hypocretin neurons" 1231: 1196: 1168: 1110: 1053: 860: 835: 811: 784: 477:
end of Channelrhodopsin-2 extends into the intracellular space and can be replaced by
5177: 5080: 3711: 3594: 3006:"High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels" 2931: 1831:"Remote control of behavior through genetically targeted photostimulation of neurons" 1718:
Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, et al. (December 2005).
1609:"Hijacking of internal calcium dynamics by intracellularly residing viral rhodopsins" 1593: 1498: 764: 654: 453:
for "the discovery of channelrhodopsin". In 2015, Boyden and Deisseroth received the
169: 106: 54: 5015: 5000: 4444: 3371:
Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, et al. (March 2016).
2668:
Wang H, Peca J, Matsuzaki M, Matsuzaki K, Noguchi J, Qiu L, et al. (May 2007).
2602: 2556: 2102: 1899: 1455:
Govorunova EG, Gou Y, Sineshchekov OA, Li H, Lu X, Wang Y, et al. (July 2022).
5056: 4642: 4122: 3506: 3241: 2845:"Two-photon single-cell optogenetic control of neuronal activity by sculpted light" 2727:
Mohanty SK, Reinscheid RK, Liu X, Okamura N, Krasieva TB, Berns MW (October 2008).
2465:
Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS, et al. (June 2010).
2056: 1935: 1704: 1569:
Tajima S, Kim YS, Fukuda M, Byrne EF, Wang PY, Paggi JM, et al. (2022-10-31).
1014: 971: 920: 650: 631: 623: 577: 470: 325: 249: 68:). Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) from the model organism 65: 4658:"Partial recovery of visual function in a blind patient after optogenetic therapy" 427:, the optogenetic induction of learning in rodents, the experimental treatment of 4966: 4922: 4581: 4532: 4052: 2971: 2286:"Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning" 851: 403:, permitting the control of individual action potentials at frequencies up to 200 3849:"Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling" 3522:"Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling" 3065:"Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications" 2752: 2227:
Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (November 2007).
597: 517: 396: 237: 212: 42: 4949:
Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, et al. (April 2006).
4790: 4674: 4657: 4564:
Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, et al. (April 2006).
4515:
Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, et al. (April 2006).
4305:
Proceedings of the National Academy of Sciences of the United States of America
4267: 3872: 3794:
Proceedings of the National Academy of Sciences of the United States of America
3545: 3069:
Proceedings of the National Academy of Sciences of the United States of America
3010:
Proceedings of the National Academy of Sciences of the United States of America
2915: 2849:
Proceedings of the National Academy of Sciences of the United States of America
2790:
Proceedings of the National Academy of Sciences of the United States of America
2674:
Proceedings of the National Academy of Sciences of the United States of America
1847: 1830: 1724:
Proceedings of the National Academy of Sciences of the United States of America
1632: 1571:"Structural basis for ion selectivity in potassium-selective channelrhodopsins" 1472: 1254:
Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (June 2008).
1201:
Proceedings of the National Academy of Sciences of the United States of America
789:
Proceedings of the National Academy of Sciences of the United States of America
3937: 3586: 1992: 1806: 1781: 1585: 1537: 1373: 1197:"Channelrhodopsin-2, a directly light-gated cation-selective membrane channel" 1087:"Two light-activated conductances in the eye of the green alga Volvox carteri" 688:
delivered to the eyes of a human patient suffering from retinal degeneration (
474: 355: 253: 94: 46: 4426: 4375: 3880: 3440: 3290: 1640: 4839: 4325: 4161: 3814: 3694: 3669: 3089: 3030: 2869: 2810: 2694: 2619:
KΓ€tzel D, Zemelman BV, Buetfering C, WΓΆlfel M, MiesenbΓΆck G (January 2011).
2376: 2341:
Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (April 2009).
2309: 1744: 1423: 1221: 748: 627: 618: 601: 359: 233: 208: 192: 99: 27: 4984: 4940: 4896: 4857: 4808: 4751: 4698: 4683: 4634: 4599: 4550: 4501: 4393: 4360:"Spike-timing-dependent plasticity rewards synchrony rather than causality" 4344: 4285: 4228: 4179: 4114: 4071: 4012: 3955: 3898: 3833: 3771: 3703: 3651: 3633: 3563: 3498: 3459: 3422:
Afshar Saber W, Gasparoli FM, Dirks MG, Gunn-Moore FJ, Antkowiak M (2018).
3408: 3357: 3308: 3275:"Spike-timing-dependent plasticity rewards synchrony rather than causality" 3259: 3206: 3157: 3108: 3049: 2990: 2923: 2888: 2829: 2770: 2713: 2654: 2594: 2548: 2508: 2451: 2394: 2327: 2270: 2213: 2151: 2094: 2048: 2010: 1953: 1891: 1856: 1815: 1763: 1696: 1658: 1555: 1514:"Crystal structure of the natural anion-conducting channelrhodopsin GtACR1" 1490: 1441: 1381: 1346: 1289: 1271: 1240: 1176: 1128: 820: 801: 756: 547:
the membrane upon illumination, preventing spike generation (inhibitory).
138:
by three research groups generated confusion about their naming: The names
1071: 1028:
Holland EM, Braun FJ, NonnengΓ€sser C, Harz H, Hegemann P (February 1996).
912: 869: 4901:(Naturel function of channelrhodopsins and other photoreceptors in green) 4136:
Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (August 2015).
1398:
Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (August 2015).
963: 705: 669: 585: 345: 276:
The natural ("wild-type") ChR2 absorbs blue light with an absorption and
226: 4483: 4106: 3994: 3912:
Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (August 2008).
3389: 2490: 2433: 2252: 2195: 1328: 4210: 3339: 3188: 593: 573: 540: 423: 419: 350: 268: 222: 164: 135: 83: 61: 57: 3753: 3373:"Sensitive red protein calcium indicators for imaging neural activity" 1305:"Crystal structure of the channelrhodopsin light-gated cation channel" 572:
Channelrhodopsins can be readily expressed in excitable cells such as
4733: 2540: 1883: 1006: 955: 904: 340: 329: 301: 285: 4945:(Using channelrhodopsin in transgenic mice to study brain circuitry) 4626: 4460:"The subcellular organization of neocortical excitatory connections" 3670:"Conversion of channelrhodopsin into a light-gated chloride channel" 3490: 3139: 3122:
Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (October 2013).
2636: 2133: 2086: 2040: 118:
were studied over many years in the groups of Oleg Sineshchekov and
3474: 2586: 1688: 543:. When expressed in neurons, potassium-selective channelrhodopsins 445:
excitation of ChR2, permitting the activation of individual cells.
665: 320:
In 2005, three groups sequentially established ChR2 as a tool for
267: 182: 79: 523:
A blue-shifted channelrhodopsin has been discovered in the alga
432: 252:), channelrhodopsins directly form ion channels (i.e., they are 5029: 5025: 4195:"Independent optical excitation of distinct neural populations" 3173:"Independent optical excitation of distinct neural populations" 183: 2947:"Temporal control of immediate early gene induction by light" 649:
Using multiple colors of light expands the possibilities of
4458:
Petreanu L, Mao T, Sternson SM, Svoboda K (February 2009).
2843:
Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A (June 2010).
2786:"Two-photon excitation of channelrhodopsin-2 at saturation" 339:'s lab demonstrated that ChR2 could be deployed to control 5005: 2343:"Optical deconstruction of parkinsonian neural circuitry" 630:
link between activity in a specific group of neurons and
516:
minimally invasive, transcranial activation of brainstem
457:
and in 2020, MiesenbΓΆck, Hegemann and Nagel received the
2945:
Schoenenberger P, Gerosa D, Oertner TG (December 2009).
4989:(Using channelrhodopsin potentially to treat blindness) 3424:"All-Optical Assay to Study Biological Neural Networks" 692:), leading to partial recovery of his vision. Optical 146:
were used for initial submission by Hegemann's group;
2522: 2520: 2518: 1967:
Lin JY, Lin MZ, Steinbach P, Tsien RY (March 2009).
304:channels (CCRs), conducting H, Na, K, and Ca ions. 5135: 5104: 5063: 4875:Hegemann P (2008). "Algal sensory photoreceptors". 1157:
Biochemical and Biophysical Research Communications
778: 776: 774: 664:Using fluorescently labeled ChR2, light-stimulated 1393: 1391: 783:Sineshchekov OA, Jung KH, Spudich JL (June 2002). 576:using a variety of transfection techniques (viral 134:. Independent submission of the same sequences to 4718:"Optogenetic stimulation of the auditory pathway" 4411:. IEEE Decision and Control. pp. 6798–6805. 481:without affecting channel function. This kind of 2568: 2566: 2022: 2020: 312:and lead to calcium release when illuminated. 4699:"Algae proteins partially restore man's sight" 4299:Zhang YP, Holbro N, Oertner TG (August 2008). 3783: 3781: 3723: 3721: 3663: 3661: 2614: 2612: 2165: 2163: 2161: 2068: 2066: 1670: 1668: 288:, it induces a conformational change from all- 5041: 5001:Optogenetics Resource Center / Deisseroth lab 1775: 1773: 1190: 1188: 1186: 199:In terms of structure, channelrhodopsins are 8: 4409:52nd IEEE Conference on Decision and Control 722: 720: 244:that open other ion channels indirectly via 240:. Whereas most 7-transmembrane proteins are 1913: 1911: 1909: 5048: 5034: 5026: 64:influx, and other cellular processes (see 4974: 4930: 4847: 4798: 4741: 4673: 4589: 4540: 4491: 4416: 4383: 4334: 4324: 4275: 4218: 4169: 4061: 4051: 4002: 3945: 3888: 3823: 3813: 3761: 3693: 3641: 3553: 3449: 3439: 3398: 3388: 3347: 3298: 3249: 3196: 3147: 3098: 3088: 3039: 3029: 2980: 2970: 2878: 2868: 2819: 2809: 2760: 2703: 2693: 2644: 2498: 2441: 2384: 2366: 2317: 2260: 2203: 2141: 2000: 1943: 1846: 1805: 1753: 1743: 1648: 1545: 1480: 1431: 1336: 1279: 1230: 1220: 1118: 1061: 859: 810: 800: 626:., allows researchers now to explore the 612:the activity of neurons in the brain and 4889:10.1146/annurev.arplant.59.032607.092847 2784:Rickgauer JP, Tank DW (September 2009). 704:patients or to control certain forms of 716: 459:Shaw prize in Life Science and Medicine 187:Crystal structure of channelrhodopsin. 441:conditional paradigm – as well as the 4722:The Journal of Clinical Investigation 836:"Light Antennas in phototactic algae" 834:Foster KW, Smyth RD (December 1980). 640:chloride-conducting channelrhodopsins 461:for the development of optogenetics. 280:maximum at 480 nm. When the all- 211:, and contain the light-isomerizable 7: 5156: 1829:Lima SQ, MiesenbΓΆck G (April 2005). 1085:Braun FJ, Hegemann P (March 1999). 469:Channelrhodopsins are key tools in 455:Breakthrough Prize in Life Sciences 272:Scheme of ChR2-RFP fusion construct 557:Anion-conducting channelrhodopsins 431:in rats, and the combination with 306:Anion-conducting channelrhodopsins 14: 324:targeted optical remote control ( 5155: 451:Louis-Jeantet Prize for Medicine 407:Hz (in appropriate cell types). 332:, neural circuits and behavior. 4026:Han X, Boyden ES (March 2007). 316:Development as a molecular tool 4877:Annual Review of Plant Biology 3242:10.1523/JNEUROSCI.3741-14.2015 1936:10.1113/expphysiol.2009.051961 592:. The light-absorbing pigment 1: 1169:10.1016/S0006-291X(02)03079-6 1111:10.1016/S0006-3495(99)77326-1 1054:10.1016/S0006-3495(96)79635-2 596:is present in most cells (of 4967:10.1016/j.neuron.2006.02.026 4923:10.1016/j.neuron.2007.03.005 4582:10.1016/j.neuron.2006.02.026 4533:10.1016/j.neuron.2006.02.026 4053:10.1371/journal.pone.0000299 2972:10.1371/journal.pone.0008185 1362:Journal of Molecular Biology 852:10.1128/mr.44.4.572-630.1980 205:seven-transmembrane proteins 4697:Gallagher J (24 May 2021). 3230:The Journal of Neuroscience 2753:10.1529/biophysj.108.130187 284:-retinal complex absorbs a 242:G protein-coupled receptors 16:Class of transport proteins 5210: 5189:Integral membrane proteins 4791:10.1038/s41467-018-04146-3 4675:10.1038/s41591-021-01351-4 4268:10.1038/s41467-021-24759-5 3873:10.1038/s41467-022-35373-4 3546:10.1038/s41467-022-35373-4 2916:10.1016/j.tins.2013.08.005 1848:10.1016/j.cell.2005.02.004 1633:10.1038/s41467-023-44548-6 1473:10.1038/s41593-022-01094-6 678:cultured neuronal networks 465:Designer-channelrhodopsins 5151: 3938:10.1016/j.cub.2008.06.077 3587:10.1101/2021.09.17.460684 3428:Frontiers in Neuroscience 3220:Hooks BM, Lin JY, Guo C, 1993:10.1016/j.bpj.2008.11.034 1807:10.1016/j.cub.2005.11.032 1586:10.1101/2022.10.30.514430 1538:10.1038/s41586-018-0511-6 1374:10.1016/j.jmb.2007.10.072 115:Chlamydomonas reinhardtii 71:Chlamydomonas reinhardtii 4427:10.1109/CDC.2013.6760966 3441:10.3389/fnins.2018.00451 604:, making it possible to 154:by Spudich's group; and 32:light-gated ion channels 4840:10.15252/embj.201899649 4326:10.1073/pnas.0802940105 4162:10.1126/science.aaa7484 3815:10.1073/pnas.1523341113 3695:10.1126/science.1249375 3090:10.1073/pnas.1408269111 3031:10.1073/pnas.1017210108 2904:Trends in Neurosciences 2870:10.1073/pnas.1006620107 2811:10.1073/pnas.0907084106 2695:10.1073/pnas.0700384104 2377:10.1126/science.1167093 2310:10.1126/science.1168878 1924:Experimental Physiology 1918:Lin JY (January 2011). 1745:10.1073/pnas.0509030102 1424:10.1126/science.aaa7484 1222:10.1073/pnas.1936192100 840:Microbiological Reviews 749:10.1126/science.1072068 110:Haematococcus pluvialis 51:electrical excitability 4376:10.1093/cercor/bhac050 3634:10.1126/sciadv.add7729 3291:10.1093/cercor/bhac050 1272:10.1105/tpc.108.057919 802:10.1073/pnas.122243399 698:deep-brain stimulation 502:Photocurrent amplitude 273: 196: 130:sequencing project in 78:from other species of 5143:Voltage-sensitive dye 5064:Optogenetic actuators 4771:Nature Communications 4248:Nature Communications 3853:Nature Communications 3581:: 2021.09.17.460684. 3526:Nature Communications 1613:Nature Communications 310:endoplasmic reticulum 271: 201:retinylidene proteins 186: 105:Photocurrents of the 24:retinylidene proteins 690:retinitis pigmentosa 479:fluorescent proteins 5105:Optogenetic sensors 4783:2018NatCo...9.1750M 4615:Nature Neuroscience 4484:10.1038/nature07709 4476:2009Natur.457.1142P 4470:(7233): 1142–1145. 4317:2008PNAS..10512039Z 4311:(33): 12039–12044. 4260:2021NatCo..12.4527V 4154:2015Sci...349..647G 4107:10.1038/nature05744 4099:2007Natur.446..633Z 4044:2007PLoSO...2..299H 3995:10.1038/nature06445 3987:2008Natur.451...61H 3930:2008CBio...18.1133D 3865:2022NatCo..13.7844F 3806:2016PNAS..113..822B 3746:2015NatSR...514807W 3686:2014Sci...344..409W 3626:2022SciA....8D7729V 3538:2022NatCo..13.7844F 3479:Nature Neuroscience 3390:10.7554/eLife.12727 3128:Nature Neuroscience 3081:2014PNAS..11113972D 3075:(38): 13972–13977. 3022:2011PNAS..108.7595B 2963:2009PLoSO...4.8185S 2861:2010PNAS..10711981A 2855:(26): 11981–11986. 2802:2009PNAS..10615025R 2796:(35): 15025–15030. 2745:2008BpJ....95.3916M 2733:Biophysical Journal 2686:2007PNAS..104.8143W 2625:Nature Neuroscience 2575:Nature Neuroscience 2491:10.1038/nature09108 2483:2010Natur.465..788L 2434:10.1038/nature09159 2426:2010Natur.466..622K 2359:2009Sci...324..354G 2302:2009Sci...324.1080T 2296:(5930): 1080–1084. 2253:10.1038/nature06310 2245:2007Natur.450..420A 2196:10.1038/nature10360 2188:2011Natur.477..171Y 2122:Nature Neuroscience 2075:Nature Neuroscience 2029:Nature Neuroscience 1985:2009BpJ....96.1803L 1973:Biophysical Journal 1798:2005CBio...15.2279N 1736:2005PNAS..10217816L 1730:(49): 17816–17821. 1677:Nature Neuroscience 1625:2024NatCo..15...65E 1530:2018Natur.561..343K 1461:Nature Neuroscience 1416:2015Sci...349..647G 1329:10.1038/nature10870 1321:2012Natur.482..369K 1213:2003PNAS..10013940N 1207:(24): 13940–13945. 1103:1999BpJ....76.1668B 1091:Biophysical Journal 1046:1996BpJ....70..924H 1034:Biophysical Journal 999:1991Natur.351..489H 948:1978Natur.271..476L 897:1984Natur.311..756F 741:2002Sci...296.2395N 735:(5577): 2395–2398. 674:synaptic plasticity 644:shunting inhibition 429:Parkinson's disease 384:genetic engineering 132:C. reinhardtii 30:) that function as 22:are a subfamily of 5136:Related techniques 4211:10.1038/nmeth.2836 3734:Scientific Reports 3340:10.1038/nmeth.3000 3189:10.1038/nmeth.2836 590:transgenic animals 553:reversal potential 274: 197: 170:human kidney cells 5171: 5170: 5091:Bacteriorhodopsin 4436:978-1-4673-5717-3 4148:(6248): 647–650. 4093:(7136): 633–639. 3924:(15): 1133–1137. 3754:10.1038/srep14807 3680:(6182): 409–412. 3236:(10): 4418–4426. 3134:(10): 1499–1508. 3016:(18): 7595–7600. 2680:(19): 8143–8148. 2477:(7299): 788–792. 2420:(7306): 622–626. 2353:(5925): 354–359. 2239:(7168): 420–424. 2182:(7363): 171–178. 1792:(24): 2279–2284. 1524:(7723): 343–348. 1410:(6248): 647–650. 1315:(7385): 369–374. 993:(6326): 489–491. 942:(5644): 476–478. 891:(5988): 756–759. 795:(13): 8689–8694. 694:cochlear implants 525:Scherffelia dubia 246:second messengers 20:Channelrhodopsins 5201: 5159: 5158: 5075:Anion-conducting 5071:Channelrhodopsin 5050: 5043: 5036: 5027: 4988: 4978: 4944: 4934: 4900: 4862: 4861: 4851: 4828:The EMBO Journal 4819: 4813: 4812: 4802: 4762: 4756: 4755: 4745: 4734:10.1172/JCI69050 4728:(3): 1114–1129. 4713: 4707: 4706: 4694: 4688: 4687: 4677: 4668:(7): 1223–1229. 4653: 4647: 4646: 4610: 4604: 4603: 4593: 4561: 4555: 4554: 4544: 4512: 4506: 4505: 4495: 4455: 4449: 4448: 4420: 4404: 4398: 4397: 4387: 4355: 4349: 4348: 4338: 4328: 4296: 4290: 4289: 4279: 4239: 4233: 4232: 4222: 4190: 4184: 4183: 4173: 4133: 4127: 4126: 4082: 4076: 4075: 4065: 4055: 4023: 4017: 4016: 4006: 3966: 3960: 3959: 3949: 3909: 3903: 3902: 3892: 3844: 3838: 3837: 3827: 3817: 3785: 3776: 3775: 3765: 3725: 3716: 3715: 3697: 3665: 3656: 3655: 3645: 3620:(49): eadd7729. 3614:Science Advances 3605: 3599: 3598: 3574: 3568: 3567: 3557: 3517: 3511: 3510: 3470: 3464: 3463: 3453: 3443: 3419: 3413: 3412: 3402: 3392: 3368: 3362: 3361: 3351: 3319: 3313: 3312: 3302: 3270: 3264: 3263: 3253: 3217: 3211: 3210: 3200: 3168: 3162: 3161: 3151: 3119: 3113: 3112: 3102: 3092: 3060: 3054: 3053: 3043: 3033: 3001: 2995: 2994: 2984: 2974: 2942: 2936: 2935: 2899: 2893: 2892: 2882: 2872: 2840: 2834: 2833: 2823: 2813: 2781: 2775: 2774: 2764: 2739:(8): 3916–3926. 2724: 2718: 2717: 2707: 2697: 2665: 2659: 2658: 2648: 2616: 2607: 2606: 2570: 2561: 2560: 2541:10.1038/nmeth988 2524: 2513: 2512: 2502: 2462: 2456: 2455: 2445: 2405: 2399: 2398: 2388: 2370: 2338: 2332: 2331: 2321: 2281: 2275: 2274: 2264: 2224: 2218: 2217: 2207: 2167: 2156: 2155: 2145: 2113: 2107: 2106: 2070: 2061: 2060: 2024: 2015: 2014: 2004: 1979:(5): 1803–1814. 1964: 1958: 1957: 1947: 1915: 1904: 1903: 1884:10.1038/nmeth936 1867: 1861: 1860: 1850: 1826: 1820: 1819: 1809: 1777: 1768: 1767: 1757: 1747: 1715: 1709: 1708: 1683:(9): 1263–1268. 1672: 1663: 1662: 1652: 1604: 1598: 1597: 1575: 1566: 1560: 1559: 1549: 1509: 1503: 1502: 1484: 1452: 1446: 1445: 1435: 1395: 1386: 1385: 1357: 1351: 1350: 1340: 1300: 1294: 1293: 1283: 1266:(6): 1665–1677. 1251: 1245: 1244: 1234: 1224: 1192: 1181: 1180: 1152: 1146: 1143:accession number 1139: 1133: 1132: 1122: 1097:(3): 1668–1678. 1082: 1076: 1075: 1065: 1025: 1019: 1018: 1007:10.1038/351489a0 982: 976: 975: 956:10.1038/271476a0 931: 925: 924: 905:10.1038/311756a0 880: 874: 873: 863: 831: 825: 824: 814: 804: 780: 769: 768: 724: 555:more negative. 483:fusion construct 258:photostimulation 248:(i.e., they are 195: 34:. They serve as 5209: 5208: 5204: 5203: 5202: 5200: 5199: 5198: 5194:Neurotechnology 5174: 5173: 5172: 5167: 5147: 5131: 5100: 5096:Proteorhodopsin 5086:Archaerhodopsin 5059: 5054: 4997: 4992: 4948: 4904: 4874: 4870: 4868:Further reading 4865: 4821: 4820: 4816: 4764: 4763: 4759: 4715: 4714: 4710: 4696: 4695: 4691: 4662:Nature Medicine 4655: 4654: 4650: 4627:10.1038/nn.2117 4612: 4611: 4607: 4563: 4562: 4558: 4514: 4513: 4509: 4457: 4456: 4452: 4437: 4418:10.1.1.671.6351 4406: 4405: 4401: 4364:Cerebral Cortex 4357: 4356: 4352: 4298: 4297: 4293: 4241: 4240: 4236: 4192: 4191: 4187: 4135: 4134: 4130: 4084: 4083: 4079: 4025: 4024: 4020: 3981:(7174): 61–64. 3968: 3967: 3963: 3918:Current Biology 3911: 3910: 3906: 3846: 3845: 3841: 3787: 3786: 3779: 3727: 3726: 3719: 3667: 3666: 3659: 3607: 3606: 3602: 3576: 3575: 3571: 3519: 3518: 3514: 3491:10.1038/nn.2776 3472: 3471: 3467: 3421: 3420: 3416: 3370: 3369: 3365: 3321: 3320: 3316: 3279:Cerebral Cortex 3272: 3271: 3267: 3219: 3218: 3214: 3170: 3169: 3165: 3140:10.1038/nn.3502 3121: 3120: 3116: 3062: 3061: 3057: 3003: 3002: 2998: 2944: 2943: 2939: 2910:(10): 557–560. 2901: 2900: 2896: 2842: 2841: 2837: 2783: 2782: 2778: 2726: 2725: 2721: 2667: 2666: 2662: 2637:10.1038/nn.2687 2618: 2617: 2610: 2572: 2571: 2564: 2526: 2525: 2516: 2464: 2463: 2459: 2407: 2406: 2402: 2340: 2339: 2335: 2283: 2282: 2278: 2226: 2225: 2221: 2169: 2168: 2159: 2134:10.1038/nn.2120 2115: 2114: 2110: 2087:10.1038/nn.2247 2072: 2071: 2064: 2041:10.1038/nn.2495 2026: 2025: 2018: 1966: 1965: 1961: 1917: 1916: 1907: 1878:(10): 785–792. 1869: 1868: 1864: 1828: 1827: 1823: 1786:Current Biology 1779: 1778: 1771: 1717: 1716: 1712: 1674: 1673: 1666: 1606: 1605: 1601: 1573: 1568: 1567: 1563: 1511: 1510: 1506: 1454: 1453: 1449: 1397: 1396: 1389: 1359: 1358: 1354: 1302: 1301: 1297: 1253: 1252: 1248: 1194: 1193: 1184: 1154: 1153: 1149: 1140: 1136: 1084: 1083: 1079: 1027: 1026: 1022: 984: 983: 979: 933: 932: 928: 882: 881: 877: 833: 832: 828: 782: 781: 772: 726: 725: 718: 714: 676:. Transfected 636:decision making 582:electroporation 570: 559:(iChloC, iC++, 533: 531:Ion selectivity 513: 504: 495: 487:Point mutations 467: 393:C. elegans 373:Gero MiesenbΓΆck 368:C. elegans 337:Karl Deisseroth 318: 278:action spectrum 266: 191: 181: 92: 41:in unicellular 17: 12: 11: 5: 5207: 5205: 5197: 5196: 5191: 5186: 5176: 5175: 5169: 5168: 5166: 5165: 5152: 5149: 5148: 5146: 5145: 5139: 5137: 5133: 5132: 5130: 5129: 5124: 5119: 5114: 5108: 5106: 5102: 5101: 5099: 5098: 5093: 5088: 5083: 5078: 5067: 5065: 5061: 5060: 5055: 5053: 5052: 5045: 5038: 5030: 5024: 5023: 5018: 5013: 5008: 5003: 4996: 4995:External links 4993: 4991: 4990: 4946: 4917:(2): 205–218. 4902: 4871: 4869: 4866: 4864: 4863: 4834:(24): e99649. 4814: 4757: 4708: 4689: 4648: 4621:(6): 667–675. 4605: 4556: 4507: 4450: 4435: 4399: 4350: 4291: 4234: 4205:(3): 338–346. 4199:Nature Methods 4185: 4128: 4077: 4018: 3961: 3904: 3839: 3800:(4): 822–829. 3777: 3717: 3657: 3600: 3569: 3512: 3485:(4): 513–518. 3465: 3414: 3363: 3334:(8): 825–833. 3328:Nature Methods 3314: 3265: 3224:(March 2015). 3212: 3183:(3): 338–346. 3177:Nature Methods 3163: 3114: 3055: 2996: 2937: 2894: 2835: 2776: 2719: 2660: 2631:(1): 100–107. 2608: 2587:10.1038/nn1891 2581:(5): 663–668. 2562: 2535:(2): 139–141. 2529:Nature Methods 2514: 2457: 2400: 2368:10.1.1.368.668 2333: 2276: 2219: 2157: 2128:(6): 631–633. 2108: 2081:(2): 229–234. 2062: 2035:(3): 387–392. 2016: 1959: 1905: 1872:Nature Methods 1862: 1841:(1): 141–152. 1821: 1769: 1710: 1689:10.1038/nn1525 1664: 1599: 1561: 1504: 1467:(7): 967–974. 1447: 1387: 1368:(3): 686–694. 1352: 1295: 1260:The Plant Cell 1246: 1182: 1163:(3): 711–717. 1147: 1134: 1077: 1040:(2): 924–931. 1020: 977: 926: 875: 846:(4): 572–630. 826: 770: 715: 713: 710: 606:photostimulate 569: 566: 532: 529: 512: 509: 503: 500: 494: 491: 466: 463: 413:Volvox carteri 388:point mutation 317: 314: 265: 262: 180: 177: 120:Peter Hegemann 91: 88: 45:, controlling 39:photoreceptors 15: 13: 10: 9: 6: 4: 3: 2: 5206: 5195: 5192: 5190: 5187: 5185: 5182: 5181: 5179: 5164: 5163: 5154: 5153: 5150: 5144: 5141: 5140: 5138: 5134: 5128: 5125: 5123: 5120: 5118: 5115: 5113: 5110: 5109: 5107: 5103: 5097: 5094: 5092: 5089: 5087: 5084: 5082: 5081:Halorhodopsin 5079: 5076: 5072: 5069: 5068: 5066: 5062: 5058: 5051: 5046: 5044: 5039: 5037: 5032: 5031: 5028: 5022: 5019: 5017: 5014: 5012: 5009: 5007: 5004: 5002: 4999: 4998: 4994: 4986: 4982: 4977: 4972: 4968: 4964: 4960: 4956: 4952: 4947: 4942: 4938: 4933: 4928: 4924: 4920: 4916: 4912: 4908: 4903: 4898: 4894: 4890: 4886: 4882: 4878: 4873: 4872: 4867: 4859: 4855: 4850: 4845: 4841: 4837: 4833: 4829: 4825: 4818: 4815: 4810: 4806: 4801: 4796: 4792: 4788: 4784: 4780: 4776: 4772: 4768: 4761: 4758: 4753: 4749: 4744: 4739: 4735: 4731: 4727: 4723: 4719: 4712: 4709: 4704: 4700: 4693: 4690: 4685: 4681: 4676: 4671: 4667: 4663: 4659: 4652: 4649: 4644: 4640: 4636: 4632: 4628: 4624: 4620: 4616: 4609: 4606: 4601: 4597: 4592: 4587: 4583: 4579: 4575: 4571: 4567: 4560: 4557: 4552: 4548: 4543: 4538: 4534: 4530: 4526: 4522: 4518: 4511: 4508: 4503: 4499: 4494: 4489: 4485: 4481: 4477: 4473: 4469: 4465: 4461: 4454: 4451: 4446: 4442: 4438: 4432: 4428: 4424: 4419: 4414: 4410: 4403: 4400: 4395: 4391: 4386: 4381: 4377: 4373: 4369: 4365: 4361: 4354: 4351: 4346: 4342: 4337: 4332: 4327: 4322: 4318: 4314: 4310: 4306: 4302: 4295: 4292: 4287: 4283: 4278: 4273: 4269: 4265: 4261: 4257: 4253: 4249: 4245: 4238: 4235: 4230: 4226: 4221: 4216: 4212: 4208: 4204: 4200: 4196: 4189: 4186: 4181: 4177: 4172: 4167: 4163: 4159: 4155: 4151: 4147: 4143: 4139: 4132: 4129: 4124: 4120: 4116: 4112: 4108: 4104: 4100: 4096: 4092: 4088: 4081: 4078: 4073: 4069: 4064: 4059: 4054: 4049: 4045: 4041: 4037: 4033: 4029: 4022: 4019: 4014: 4010: 4005: 4000: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3965: 3962: 3957: 3953: 3948: 3943: 3939: 3935: 3931: 3927: 3923: 3919: 3915: 3908: 3905: 3900: 3896: 3891: 3886: 3882: 3878: 3874: 3870: 3866: 3862: 3858: 3854: 3850: 3843: 3840: 3835: 3831: 3826: 3821: 3816: 3811: 3807: 3803: 3799: 3795: 3791: 3784: 3782: 3778: 3773: 3769: 3764: 3759: 3755: 3751: 3747: 3743: 3739: 3735: 3731: 3724: 3722: 3718: 3713: 3709: 3705: 3701: 3696: 3691: 3687: 3683: 3679: 3675: 3671: 3664: 3662: 3658: 3653: 3649: 3644: 3639: 3635: 3631: 3627: 3623: 3619: 3615: 3611: 3604: 3601: 3596: 3592: 3588: 3584: 3580: 3573: 3570: 3565: 3561: 3556: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3516: 3513: 3508: 3504: 3500: 3496: 3492: 3488: 3484: 3480: 3476: 3469: 3466: 3461: 3457: 3452: 3447: 3442: 3437: 3433: 3429: 3425: 3418: 3415: 3410: 3406: 3401: 3396: 3391: 3386: 3382: 3378: 3374: 3367: 3364: 3359: 3355: 3350: 3345: 3341: 3337: 3333: 3329: 3325: 3318: 3315: 3310: 3306: 3301: 3296: 3292: 3288: 3284: 3280: 3276: 3269: 3266: 3261: 3257: 3252: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3216: 3213: 3208: 3204: 3199: 3194: 3190: 3186: 3182: 3178: 3174: 3167: 3164: 3159: 3155: 3150: 3145: 3141: 3137: 3133: 3129: 3125: 3118: 3115: 3110: 3106: 3101: 3096: 3091: 3086: 3082: 3078: 3074: 3070: 3066: 3059: 3056: 3051: 3047: 3042: 3037: 3032: 3027: 3023: 3019: 3015: 3011: 3007: 3000: 2997: 2992: 2988: 2983: 2978: 2973: 2968: 2964: 2960: 2957:(12): e8185. 2956: 2952: 2948: 2941: 2938: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2898: 2895: 2890: 2886: 2881: 2876: 2871: 2866: 2862: 2858: 2854: 2850: 2846: 2839: 2836: 2831: 2827: 2822: 2817: 2812: 2807: 2803: 2799: 2795: 2791: 2787: 2780: 2777: 2772: 2768: 2763: 2758: 2754: 2750: 2746: 2742: 2738: 2734: 2730: 2723: 2720: 2715: 2711: 2706: 2701: 2696: 2691: 2687: 2683: 2679: 2675: 2671: 2664: 2661: 2656: 2652: 2647: 2642: 2638: 2634: 2630: 2626: 2622: 2615: 2613: 2609: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2567: 2563: 2558: 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2523: 2521: 2519: 2515: 2510: 2506: 2501: 2496: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2461: 2458: 2453: 2449: 2444: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2404: 2401: 2396: 2392: 2387: 2382: 2378: 2374: 2369: 2364: 2360: 2356: 2352: 2348: 2344: 2337: 2334: 2329: 2325: 2320: 2315: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2280: 2277: 2272: 2268: 2263: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2223: 2220: 2215: 2211: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2177: 2173: 2166: 2164: 2162: 2158: 2153: 2149: 2144: 2139: 2135: 2131: 2127: 2123: 2119: 2112: 2109: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2069: 2067: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2021: 2017: 2012: 2008: 2003: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1963: 1960: 1955: 1951: 1946: 1941: 1937: 1933: 1929: 1925: 1921: 1914: 1912: 1910: 1906: 1901: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1866: 1863: 1858: 1854: 1849: 1844: 1840: 1836: 1832: 1825: 1822: 1817: 1813: 1808: 1803: 1799: 1795: 1791: 1787: 1783: 1776: 1774: 1770: 1765: 1761: 1756: 1751: 1746: 1741: 1737: 1733: 1729: 1725: 1721: 1714: 1711: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1671: 1669: 1665: 1660: 1656: 1651: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1587: 1583: 1579: 1572: 1565: 1562: 1557: 1553: 1548: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1508: 1505: 1500: 1496: 1492: 1488: 1483: 1478: 1474: 1470: 1466: 1462: 1458: 1451: 1448: 1443: 1439: 1434: 1429: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1394: 1392: 1388: 1383: 1379: 1375: 1371: 1367: 1363: 1356: 1353: 1348: 1344: 1339: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1299: 1296: 1291: 1287: 1282: 1277: 1273: 1269: 1265: 1261: 1257: 1250: 1247: 1242: 1238: 1233: 1228: 1223: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1189: 1187: 1183: 1178: 1174: 1170: 1166: 1162: 1158: 1151: 1148: 1144: 1138: 1135: 1130: 1126: 1121: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1081: 1078: 1073: 1069: 1064: 1059: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1024: 1021: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 981: 978: 973: 969: 965: 961: 957: 953: 949: 945: 941: 937: 930: 927: 922: 918: 914: 910: 906: 902: 898: 894: 890: 886: 879: 876: 871: 867: 862: 857: 853: 849: 845: 841: 837: 830: 827: 822: 818: 813: 808: 803: 798: 794: 790: 786: 779: 777: 775: 771: 766: 762: 758: 754: 750: 746: 742: 738: 734: 730: 723: 721: 717: 711: 709: 707: 703: 699: 695: 691: 685: 682: 679: 675: 671: 667: 662: 660: 656: 655:halorhodopsin 652: 647: 645: 641: 637: 633: 632:mental events 629: 625: 621: 620: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 575: 567: 565: 562: 558: 554: 548: 546: 545:hyperpolarize 542: 538: 530: 528: 526: 521: 519: 510: 508: 501: 499: 492: 490: 488: 484: 480: 476: 472: 464: 462: 460: 456: 452: 446: 444: 440: 439: 434: 430: 426: 425: 421: 416: 414: 408: 406: 402: 398: 394: 389: 385: 381: 376: 374: 370: 369: 363: 361: 357: 352: 348: 347: 342: 338: 333: 331: 327: 323: 315: 313: 311: 307: 303: 299: 295: 291: 287: 283: 279: 270: 263: 261: 259: 255: 251: 247: 243: 239: 235: 231: 228: 224: 220: 219: 214: 210: 206: 202: 194: 190: 185: 178: 176: 173: 171: 167: 166: 161: 157: 153: 149: 145: 141: 137: 133: 129: 123: 121: 117: 116: 111: 108: 107:Chlorophyceae 103: 101: 96: 89: 87: 85: 81: 77: 73: 72: 67: 63: 59: 56: 55:intracellular 52: 48: 44: 40: 37: 33: 29: 25: 21: 5184:Ion channels 5161: 5070: 5057:Optogenetics 5011:Hegemann lab 4961:(1): 23–33. 4958: 4954: 4914: 4910: 4880: 4876: 4831: 4827: 4817: 4774: 4770: 4760: 4725: 4721: 4711: 4702: 4692: 4665: 4661: 4651: 4618: 4614: 4608: 4576:(1): 23–33. 4573: 4569: 4559: 4527:(1): 23–33. 4524: 4520: 4510: 4467: 4463: 4453: 4408: 4402: 4370:(1): 23–34. 4367: 4363: 4353: 4308: 4304: 4294: 4251: 4247: 4237: 4202: 4198: 4188: 4145: 4141: 4131: 4090: 4086: 4080: 4035: 4031: 4021: 3978: 3974: 3964: 3921: 3917: 3907: 3856: 3852: 3842: 3797: 3793: 3737: 3733: 3677: 3673: 3617: 3613: 3603: 3578: 3572: 3529: 3525: 3515: 3482: 3478: 3468: 3431: 3427: 3417: 3380: 3376: 3366: 3331: 3327: 3317: 3285:(1): 23–34. 3282: 3278: 3268: 3233: 3229: 3215: 3180: 3176: 3166: 3131: 3127: 3117: 3072: 3068: 3058: 3013: 3009: 2999: 2954: 2950: 2940: 2907: 2903: 2897: 2852: 2848: 2838: 2793: 2789: 2779: 2736: 2732: 2722: 2677: 2673: 2663: 2628: 2624: 2578: 2574: 2532: 2528: 2474: 2470: 2460: 2417: 2413: 2403: 2350: 2346: 2336: 2293: 2289: 2279: 2236: 2232: 2222: 2179: 2175: 2125: 2121: 2111: 2078: 2074: 2032: 2028: 1976: 1972: 1962: 1930:(1): 19–25. 1927: 1923: 1875: 1871: 1865: 1838: 1834: 1824: 1789: 1785: 1727: 1723: 1713: 1680: 1676: 1616: 1612: 1602: 1577: 1564: 1521: 1517: 1507: 1464: 1460: 1450: 1407: 1403: 1365: 1361: 1355: 1312: 1308: 1298: 1263: 1259: 1249: 1204: 1200: 1160: 1156: 1150: 1137: 1094: 1090: 1080: 1037: 1033: 1023: 990: 986: 980: 939: 935: 929: 888: 884: 878: 843: 839: 829: 792: 788: 732: 728: 686: 683: 663: 658: 648: 624:Optogenetics 617: 613: 609: 578:transfection 571: 568:Applications 560: 549: 537:depolarizing 534: 524: 522: 514: 505: 496: 471:optogenetics 468: 447: 436: 422: 417: 412: 409: 404: 392: 379: 377: 366: 364: 344: 334: 326:optogenetics 319: 297: 293: 289: 281: 275: 250:metabotropic 216: 198: 174: 168:oocytes and 163: 159: 155: 151: 147: 143: 139: 131: 124: 113: 109: 104: 93: 69: 66:optogenetics 19: 18: 5016:Spudich lab 4883:: 167–189. 4777:(1): 1750. 4254:(1): 4527. 4038:(3): e299. 3859:(1): 7844. 3532:(1): 7844. 651:optogenetic 598:vertebrates 518:motoneurons 397:Roger Tsien 395:. In 2009, 322:genetically 238:Schiff base 213:chromophore 203:. They are 43:green algae 5178:Categories 5006:Boyden lab 712:References 511:Wavelength 475:C-terminal 443:two-photon 356:vertebrate 335:At first, 254:ionotropic 230:derivative 95:Phototaxis 47:phototaxis 28:rhodopsins 5122:Glutamate 4413:CiteSeerX 3881:2041-1723 3740:: 14807. 3712:206554245 3595:237576843 3222:Svoboda K 2932:205404606 2363:CiteSeerX 1641:2041-1723 1619:(1): 65. 1594:253259023 1499:249886382 765:206506942 702:Parkinson 614:correlate 610:recording 602:vitamin A 360:rhodopsin 341:mammalian 234:vitamin A 209:rhodopsin 179:Structure 100:rhodopsin 5021:Kato lab 4985:16600853 4941:17442243 4897:18444900 4858:30396994 4809:29717130 4752:24509078 4703:BBC News 4684:34031601 4635:18432197 4600:16600853 4551:16600853 4502:19151697 4445:13992150 4394:35203089 4345:18697934 4286:34312384 4229:24509633 4180:26113638 4115:17410168 4072:17375185 4032:PLOS ONE 4013:18094685 3956:18682213 3899:36543773 3834:26699459 3772:26443033 3704:24674867 3652:36383037 3564:36543773 3499:21399632 3460:30026684 3409:27011354 3358:24952910 3309:35203089 3260:25762684 3207:24509633 3158:23995068 3109:25201989 3050:21504945 2991:19997631 2951:PLOS ONE 2924:24054067 2889:20543137 2830:19706471 2771:18621808 2714:17483470 2655:21076426 2603:14275254 2595:17435752 2557:17721823 2549:17195846 2509:20473285 2452:20613723 2395:19299587 2328:19389999 2271:17943086 2214:21796121 2152:18432196 2103:15125498 2095:19079251 2049:20081849 2011:19254539 1954:20621963 1900:15096826 1892:16990810 1857:15820685 1816:16360690 1764:16306259 1697:16116447 1659:38167346 1650:10761956 1556:30158696 1491:35726059 1442:26113638 1382:18037436 1347:22266941 1290:18552201 1241:14615590 1177:12565839 1145:AF461397 1129:10049347 821:12060707 757:12089443 706:epilepsy 670:synapses 586:gene gun 541:protists 493:Kinetics 401:kinetics 346:in vitro 343:neurons 264:Function 227:aldehyde 84:protists 5162:Commons 5127:Vesicle 5117:Voltage 5112:Calcium 4976:1459045 4932:3634585 4849:6293277 4800:5931537 4779:Bibcode 4743:3934189 4643:6798764 4591:1459045 4542:1459045 4493:2745650 4472:Bibcode 4385:9758582 4336:2575337 4313:Bibcode 4277:8313717 4256:Bibcode 4220:3943671 4171:4764398 4150:Bibcode 4142:Science 4123:4415339 4095:Bibcode 4063:1808431 4040:Bibcode 4004:3425380 3983:Bibcode 3947:2891506 3926:Bibcode 3890:9772239 3861:Bibcode 3825:4743797 3802:Bibcode 3763:4595828 3742:Bibcode 3682:Bibcode 3674:Science 3643:9733931 3622:Bibcode 3579:bioRxiv 3555:9772239 3534:Bibcode 3507:5907240 3451:6041400 3434:: 451. 3400:4846379 3349:4117813 3300:9758582 3251:4355205 3198:3943671 3149:3793847 3100:4183338 3077:Bibcode 3041:3088623 3018:Bibcode 2982:2780714 2959:Bibcode 2880:2900666 2857:Bibcode 2821:2736443 2798:Bibcode 2762:2553121 2741:Bibcode 2705:1876585 2682:Bibcode 2646:3011044 2500:3177305 2479:Bibcode 2443:3552484 2422:Bibcode 2386:6744370 2355:Bibcode 2347:Science 2319:5262197 2298:Bibcode 2290:Science 2262:6744371 2241:Bibcode 2205:4155501 2184:Bibcode 2143:2692303 2057:7457755 2002:2717302 1981:Bibcode 1945:2995811 1794:Bibcode 1755:1292990 1732:Bibcode 1705:6809511 1621:Bibcode 1578:bioRxiv 1547:6340299 1526:Bibcode 1482:9854242 1433:4764398 1412:Bibcode 1404:Science 1338:4160518 1317:Bibcode 1281:2483371 1209:Bibcode 1120:1300143 1099:Bibcode 1072:8789109 1063:1224992 1042:Bibcode 1015:4309593 995:Bibcode 972:4165365 944:Bibcode 921:4263301 913:6493336 893:Bibcode 870:7010112 737:Bibcode 729:Science 634:, e.g. 594:retinal 574:neurons 438:Cre-lox 424:in vivo 420:rodents 351:retinal 330:neurons 223:retinal 172:(HEK). 165:Xenopus 136:GenBank 90:History 62:calcium 58:acidity 36:sensory 4983:  4973:  4955:Neuron 4939:  4929:  4911:Neuron 4895:  4856:  4846:  4807:  4797:  4750:  4740:  4682:  4641:  4633:  4598:  4588:  4570:Neuron 4549:  4539:  4521:Neuron 4500:  4490:  4464:Nature 4443:  4433:  4415:  4392:  4382:  4343:  4333:  4284:  4274:  4227:  4217:  4178:  4168:  4121:  4113:  4087:Nature 4070:  4060:  4011:  4001:  3975:Nature 3954:  3944:  3897:  3887:  3879:  3832:  3822:  3770:  3760:  3710:  3702:  3650:  3640:  3593:  3562:  3552:  3505:  3497:  3458:  3448:  3407:  3397:  3356:  3346:  3307:  3297:  3258:  3248:  3205:  3195:  3156:  3146:  3107:  3097:  3048:  3038:  2989:  2979:  2930:  2922:  2887:  2877:  2828:  2818:  2769:  2759:  2712:  2702:  2653:  2643:  2601:  2593:  2555:  2547:  2507:  2497:  2471:Nature 2450:  2440:  2414:Nature 2393:  2383:  2365:  2326:  2316:  2269:  2259:  2233:Nature 2212:  2202:  2176:Nature 2150:  2140:  2101:  2093:  2055:  2047:  2009:  1999:  1952:  1942:  1898:  1890:  1855:  1814:  1762:  1752:  1703:  1695:  1657:  1647:  1639:  1592:  1554:  1544:  1518:Nature 1497:  1489:  1479:  1440:  1430:  1380:  1345:  1335:  1309:Nature 1288:  1278:  1239:  1232:283525 1229:  1175:  1127:  1117:  1070:  1060:  1013:  987:Nature 970:  964:628427 962:  936:Nature 919:  911:  885:Nature 868:  861:373196 858:  819:  812:124360 809:  763:  755:  628:causal 619:caused 473:. The 405:  380:  302:cation 298:  292:to 13- 286:photon 160:acop-2 156:acop-1 76:cloned 4639:S2CID 4441:S2CID 4119:S2CID 3708:S2CID 3591:S2CID 3503:S2CID 3377:eLife 2928:S2CID 2599:S2CID 2553:S2CID 2099:S2CID 2053:S2CID 1896:S2CID 1701:S2CID 1590:S2CID 1574:(PDF) 1495:S2CID 1011:S2CID 968:S2CID 917:S2CID 761:S2CID 666:axons 600:) as 588:) or 328:) of 290:trans 282:trans 218:trans 207:like 144:cop-4 140:cop-3 80:algae 4981:PMID 4937:PMID 4893:PMID 4854:PMID 4805:PMID 4748:PMID 4680:PMID 4631:PMID 4596:PMID 4547:PMID 4498:PMID 4431:ISBN 4390:PMID 4341:PMID 4282:PMID 4225:PMID 4176:PMID 4111:PMID 4068:PMID 4009:PMID 3952:PMID 3895:PMID 3877:ISSN 3830:PMID 3768:PMID 3700:PMID 3648:PMID 3560:PMID 3495:PMID 3456:PMID 3405:PMID 3354:PMID 3305:PMID 3256:PMID 3203:PMID 3154:PMID 3105:PMID 3046:PMID 2987:PMID 2920:PMID 2885:PMID 2826:PMID 2767:PMID 2710:PMID 2651:PMID 2591:PMID 2545:PMID 2505:PMID 2448:PMID 2391:PMID 2324:PMID 2267:PMID 2210:PMID 2148:PMID 2091:PMID 2045:PMID 2007:PMID 1950:PMID 1888:PMID 1853:PMID 1835:Cell 1812:PMID 1760:PMID 1693:PMID 1655:PMID 1637:ISSN 1552:PMID 1487:PMID 1438:PMID 1378:PMID 1343:PMID 1286:PMID 1237:PMID 1173:PMID 1125:PMID 1068:PMID 960:PMID 909:PMID 866:PMID 817:PMID 753:PMID 668:and 433:fMRI 386:. A 225:(an 215:all- 193:3ug9 158:and 152:csoB 150:and 148:csoA 142:and 112:and 82:and 4971:PMC 4963:doi 4927:PMC 4919:doi 4885:doi 4844:PMC 4836:doi 4795:PMC 4787:doi 4738:PMC 4730:doi 4726:124 4670:doi 4623:doi 4586:PMC 4578:doi 4537:PMC 4529:doi 4488:PMC 4480:doi 4468:457 4423:doi 4380:PMC 4372:doi 4331:PMC 4321:doi 4309:105 4272:PMC 4264:doi 4215:PMC 4207:doi 4166:PMC 4158:doi 4146:349 4103:doi 4091:446 4058:PMC 4048:doi 3999:PMC 3991:doi 3979:451 3942:PMC 3934:doi 3885:PMC 3869:doi 3820:PMC 3810:doi 3798:113 3758:PMC 3750:doi 3690:doi 3678:344 3638:PMC 3630:doi 3583:doi 3550:PMC 3542:doi 3487:doi 3446:PMC 3436:doi 3395:PMC 3385:doi 3344:PMC 3336:doi 3295:PMC 3287:doi 3246:PMC 3238:doi 3193:PMC 3185:doi 3144:PMC 3136:doi 3095:PMC 3085:doi 3073:111 3036:PMC 3026:doi 3014:108 2977:PMC 2967:doi 2912:doi 2875:PMC 2865:doi 2853:107 2816:PMC 2806:doi 2794:106 2757:PMC 2749:doi 2700:PMC 2690:doi 2678:104 2641:PMC 2633:doi 2583:doi 2537:doi 2495:PMC 2487:doi 2475:465 2438:PMC 2430:doi 2418:466 2381:PMC 2373:doi 2351:324 2314:PMC 2306:doi 2294:324 2257:PMC 2249:doi 2237:450 2200:PMC 2192:doi 2180:477 2138:PMC 2130:doi 2083:doi 2037:doi 1997:PMC 1989:doi 1940:PMC 1932:doi 1880:doi 1843:doi 1839:121 1802:doi 1750:PMC 1740:doi 1728:102 1685:doi 1645:PMC 1629:doi 1582:doi 1542:PMC 1534:doi 1522:561 1477:PMC 1469:doi 1428:PMC 1420:doi 1408:349 1370:doi 1366:375 1333:PMC 1325:doi 1313:482 1276:PMC 1268:doi 1227:PMC 1217:doi 1205:100 1165:doi 1161:301 1115:PMC 1107:doi 1058:PMC 1050:doi 1003:doi 991:351 952:doi 940:271 901:doi 889:311 856:PMC 848:doi 807:PMC 797:doi 745:doi 733:296 700:of 294:cis 232:of 189:PDB 128:EST 5180:: 4979:. 4969:. 4959:50 4957:. 4953:. 4935:. 4925:. 4915:54 4913:. 4909:. 4891:. 4881:59 4879:. 4852:. 4842:. 4832:37 4830:. 4826:. 4803:. 4793:. 4785:. 4773:. 4769:. 4746:. 4736:. 4724:. 4720:. 4701:. 4678:. 4666:27 4664:. 4660:. 4637:. 4629:. 4619:11 4617:. 4594:. 4584:. 4574:50 4572:. 4568:. 4545:. 4535:. 4525:50 4523:. 4519:. 4496:. 4486:. 4478:. 4466:. 4462:. 4439:. 4429:. 4421:. 4388:. 4378:. 4368:33 4366:. 4362:. 4339:. 4329:. 4319:. 4307:. 4303:. 4280:. 4270:. 4262:. 4252:12 4250:. 4246:. 4223:. 4213:. 4203:11 4201:. 4197:. 4174:. 4164:. 4156:. 4144:. 4140:. 4117:. 4109:. 4101:. 4089:. 4066:. 4056:. 4046:. 4034:. 4030:. 4007:. 3997:. 3989:. 3977:. 3973:. 3950:. 3940:. 3932:. 3922:18 3920:. 3916:. 3893:. 3883:. 3875:. 3867:. 3857:13 3855:. 3851:. 3828:. 3818:. 3808:. 3796:. 3792:. 3780:^ 3766:. 3756:. 3748:. 3736:. 3732:. 3720:^ 3706:. 3698:. 3688:. 3676:. 3672:. 3660:^ 3646:. 3636:. 3628:. 3616:. 3612:. 3589:. 3558:. 3548:. 3540:. 3530:13 3528:. 3524:. 3501:. 3493:. 3483:14 3481:. 3477:. 3454:. 3444:. 3432:12 3430:. 3426:. 3403:. 3393:. 3383:. 3379:. 3375:. 3352:. 3342:. 3332:11 3330:. 3326:. 3303:. 3293:. 3283:33 3281:. 3277:. 3254:. 3244:. 3234:35 3232:. 3228:. 3201:. 3191:. 3181:11 3179:. 3175:. 3152:. 3142:. 3132:16 3130:. 3126:. 3103:. 3093:. 3083:. 3071:. 3067:. 3044:. 3034:. 3024:. 3012:. 3008:. 2985:. 2975:. 2965:. 2953:. 2949:. 2926:. 2918:. 2908:36 2906:. 2883:. 2873:. 2863:. 2851:. 2847:. 2824:. 2814:. 2804:. 2792:. 2788:. 2765:. 2755:. 2747:. 2737:95 2735:. 2731:. 2708:. 2698:. 2688:. 2676:. 2672:. 2649:. 2639:. 2629:14 2627:. 2623:. 2611:^ 2597:. 2589:. 2579:10 2577:. 2565:^ 2551:. 2543:. 2531:. 2517:^ 2503:. 2493:. 2485:. 2473:. 2469:. 2446:. 2436:. 2428:. 2416:. 2412:. 2389:. 2379:. 2371:. 2361:. 2349:. 2345:. 2322:. 2312:. 2304:. 2292:. 2288:. 2265:. 2255:. 2247:. 2235:. 2231:. 2208:. 2198:. 2190:. 2178:. 2174:. 2160:^ 2146:. 2136:. 2126:11 2124:. 2120:. 2097:. 2089:. 2079:12 2077:. 2065:^ 2051:. 2043:. 2033:13 2031:. 2019:^ 2005:. 1995:. 1987:. 1977:96 1975:. 1971:. 1948:. 1938:. 1928:96 1926:. 1922:. 1908:^ 1894:. 1886:. 1874:. 1851:. 1837:. 1833:. 1810:. 1800:. 1790:15 1788:. 1784:. 1772:^ 1758:. 1748:. 1738:. 1726:. 1722:. 1699:. 1691:. 1679:. 1667:^ 1653:. 1643:. 1635:. 1627:. 1617:15 1615:. 1611:. 1588:. 1580:. 1576:. 1550:. 1540:. 1532:. 1520:. 1516:. 1493:. 1485:. 1475:. 1465:25 1463:. 1459:. 1436:. 1426:. 1418:. 1406:. 1402:. 1390:^ 1376:. 1364:. 1341:. 1331:. 1323:. 1311:. 1307:. 1284:. 1274:. 1264:20 1262:. 1258:. 1235:. 1225:. 1215:. 1203:. 1199:. 1185:^ 1171:. 1159:. 1123:. 1113:. 1105:. 1095:76 1093:. 1089:. 1066:. 1056:. 1048:. 1038:70 1036:. 1032:. 1009:. 1001:. 989:. 966:. 958:. 950:. 938:. 915:. 907:. 899:. 887:. 864:. 854:. 844:44 842:. 838:. 815:. 805:. 793:99 791:. 787:. 773:^ 759:. 751:. 743:. 731:. 719:^ 708:. 659:Gt 646:. 584:, 580:, 561:Gt 260:. 102:. 86:. 60:, 53:, 5077:) 5073:( 5049:e 5042:t 5035:v 4987:. 4965:: 4943:. 4921:: 4899:. 4887:: 4860:. 4838:: 4811:. 4789:: 4781:: 4775:9 4754:. 4732:: 4705:. 4686:. 4672:: 4645:. 4625:: 4602:. 4580:: 4553:. 4531:: 4504:. 4482:: 4474:: 4447:. 4425:: 4396:. 4374:: 4347:. 4323:: 4315:: 4288:. 4266:: 4258:: 4231:. 4209:: 4182:. 4160:: 4152:: 4125:. 4105:: 4097:: 4074:. 4050:: 4042:: 4036:2 4015:. 3993:: 3985:: 3958:. 3936:: 3928:: 3901:. 3871:: 3863:: 3836:. 3812:: 3804:: 3774:. 3752:: 3744:: 3738:5 3714:. 3692:: 3684:: 3654:. 3632:: 3624:: 3618:8 3597:. 3585:: 3566:. 3544:: 3536:: 3509:. 3489:: 3462:. 3438:: 3411:. 3387:: 3381:5 3360:. 3338:: 3311:. 3289:: 3262:. 3240:: 3209:. 3187:: 3160:. 3138:: 3111:. 3087:: 3079:: 3052:. 3028:: 3020:: 2993:. 2969:: 2961:: 2955:4 2934:. 2914:: 2891:. 2867:: 2859:: 2832:. 2808:: 2800:: 2773:. 2751:: 2743:: 2716:. 2692:: 2684:: 2657:. 2635:: 2605:. 2585:: 2559:. 2539:: 2533:4 2511:. 2489:: 2481:: 2454:. 2432:: 2424:: 2397:. 2375:: 2357:: 2330:. 2308:: 2300:: 2273:. 2251:: 2243:: 2216:. 2194:: 2186:: 2154:. 2132:: 2105:. 2085:: 2059:. 2039:: 2013:. 1991:: 1983:: 1956:. 1934:: 1902:. 1882:: 1876:3 1859:. 1845:: 1818:. 1804:: 1796:: 1766:. 1742:: 1734:: 1707:. 1687:: 1681:8 1661:. 1631:: 1623:: 1596:. 1584:: 1558:. 1536:: 1528:: 1501:. 1471:: 1444:. 1422:: 1414:: 1384:. 1372:: 1349:. 1327:: 1319:: 1292:. 1270:: 1243:. 1219:: 1211:: 1179:. 1167:: 1131:. 1109:: 1101:: 1074:. 1052:: 1044:: 1017:. 1005:: 997:: 974:. 954:: 946:: 923:. 903:: 895:: 872:. 850:: 823:. 799:: 767:. 747:: 739:: 221:- 26:(

Index

retinylidene proteins
rhodopsins
light-gated ion channels
sensory
photoreceptors
green algae
phototaxis
electrical excitability
intracellular
acidity
calcium
optogenetics
Chlamydomonas reinhardtii
cloned
algae
protists
Phototaxis
rhodopsin
Chlorophyceae
Chlamydomonas reinhardtii
Peter Hegemann
EST
GenBank
Xenopus
human kidney cells

PDB
3ug9
retinylidene proteins
seven-transmembrane proteins

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑