Knowledge (XXG)

Homotopy category of chain complexes

Source 📝

414: 636: 1578: 1091: 342: 1303: 1400: 224: 1224: 936: 845: 803: 403: 761: 721: 1152: 645:
by this relation. It is clear that this results in an additive category if one notes that this is the same as taking the quotient by the subgroup of null-homotopic maps.
1441: 514: 456: 533: 1485: 975: 1639: 1618: 103:
does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus,
1234: 236: 49:
is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of
1679: 1674: 1472: 1243: 1358: 466:. It is clear from the definition that the maps of complexes which are null-homotopic form a group under addition. 1405:
is not distinguished since the cone of the identity map is not isomorphic to the complex 0 (however, the zero map
170: 1161: 897: 808: 766: 1317: 347: 80: 1352:
as well, that category is not triangulated with respect to these distinguished triangles; for example,
734: 694: 1602: 1096: 484:. Its morphisms are "maps of complexes modulo homotopy": that is, we define an equivalence relation 28: 1408: 490: 1653: 1635: 1614: 891: 855: 124: 92: 43: 1451:). Furthermore, the rotation of a distinguished triangle is obviously not distinguished in 947: 939: 76: 61: 1649: 1584:
is the category of complexes whose morphisms do not have to respect the differentials). If
1645: 1610: 887: 883: 50: 631:{\displaystyle \operatorname {Hom} _{K(A)}(A,B)=\operatorname {Hom} _{Kom(A)}(A,B)/\sim } 435: 1634:. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. 1627: 859: 1668: 481: 1573:{\displaystyle \operatorname {Hom} _{Ho(C)}(X,Y)=H^{0}\operatorname {Hom} _{C}(X,Y)} 894:. (The converse is false in general.) This shows that there is a canonical functor 648:
The following variants of the definition are also widely used: if one takes only
32: 17: 1657: 851: 413: 642: 1086:{\displaystyle A:...\to A^{n+1}{\xrightarrow {d_{A}^{n}}}A^{n+2}\to ...} 890:, which are zero in homology. In particular a homotopy equivalence is a 476:
is then defined as follows: its objects are the same as the objects of
1370: 1255: 1027: 1324:, i.e. homotopy equivalent) to the triangles above, for arbitrary 763:, such that the two compositions are homotopic to the identities: 1320:, if one defines distinguished triangles to be isomorphic (in 337:{\displaystyle f^{n}-g^{n}=d_{B}^{n-1}h^{n}+h^{n+1}d_{A}^{n},} 83:, and unlike the latter its formation does not require that 131:
is based on the following definition: if we have complexes
1580:. (This boils down to the homotopy of chain complexes if 672:) complexes instead of unbounded ones, one speaks of the 91:
turns into isomorphisms any maps of complexes that are
1488: 1411: 1361: 1246: 1164: 1099: 978: 900: 811: 769: 737: 697: 536: 493: 438: 350: 239: 173: 1572: 1435: 1394: 1297: 1218: 1146: 1085: 930: 839: 797: 755: 715: 630: 508: 450: 397: 336: 218: 1443:is a homotopy equivalence, so that this triangle 1298:{\displaystyle A{\xrightarrow {f}}B\to C(f)\to A} 1588:has cones and shifts in a suitable sense, then 1395:{\displaystyle X{\xrightarrow {id}}X\to 0\to } 858:induce homotopic (in the above sense) maps of 731:. In detail, this means there is another map 850:The name "homotopy" comes from the fact that 8: 1336:. The same is true for the bounded variants 219:{\displaystyle h^{n}\colon A^{n}\to B^{n-1}} 1455:, but (less obviously) is distinguished in 1546: 1536: 1493: 1487: 1410: 1365: 1360: 1250: 1245: 1204: 1199: 1183: 1169: 1163: 1132: 1119: 1098: 1059: 1046: 1032: 1022: 1010: 977: 899: 878:induce the same maps on homology because 831: 810: 789: 768: 736: 696: 620: 581: 541: 535: 492: 437: 386: 367: 349: 325: 320: 304: 291: 275: 270: 257: 244: 238: 204: 191: 178: 172: 1478:is defined to have the same objects as 1219:{\displaystyle d_{A}^{n}:=-d_{A}^{n+1}} 1632:An introduction to homological algebra 1467:More generally, the homotopy category 7: 1348:. Although triangles make sense in 931:{\displaystyle K(A)\rightarrow D(A)} 471:homotopy category of chain complexes 87:is abelian. Philosophically, while 1459:. See the references for details. 840:{\displaystyle g\circ f\sim Id_{A}} 798:{\displaystyle f\circ g\sim Id_{B}} 398:{\displaystyle f-g=d_{B}h+hd_{A}.} 25: 1592:is a triangulated category, too. 756:{\displaystyle g:B\rightarrow A} 716:{\displaystyle f:A\rightarrow B} 412: 1482:, but morphisms are defined by 1147:{\displaystyle (A)^{n}=A^{n+1}} 674:bounded-below homotopy category 1607:Methods of Homological Algebra 1567: 1555: 1526: 1514: 1506: 1500: 1427: 1424: 1415: 1389: 1383: 1292: 1286: 1280: 1277: 1271: 1265: 1179: 1173: 1116: 1112: 1106: 1100: 1071: 1042: 1036: 1003: 988: 982: 925: 919: 913: 910: 904: 747: 707: 617: 605: 597: 591: 571: 559: 551: 545: 230:a map of complexes) such that 197: 1: 1605:; Gelfand, Sergei I. (2003), 1473:differential graded category 107:is more understandable than 79:; unlike the former it is a 1237:. There are natural maps 1229:For the cone of a morphism 723:which is an isomorphism in 1696: 1436:{\displaystyle C(id)\to 0} 1158:where the differential is 969:is the following complex 954:The triangulated structure 1312:. The homotopy category 1308:This diagram is called a 870:Two chain homotopic maps 676:etc. They are denoted by 509:{\displaystyle f\sim g\ } 408:This can be depicted as: 127:. The homotopy category 42:of chain complexes in an 167:is a collection of maps 1574: 1437: 1396: 1299: 1220: 1148: 1087: 932: 841: 799: 757: 717: 632: 510: 452: 399: 338: 220: 1603:Manin, Yuri Ivanovich 1575: 1438: 1397: 1318:triangulated category 1300: 1221: 1149: 1088: 933: 842: 800: 758: 718: 633: 511: 453: 400: 339: 221: 81:triangulated category 1609:, Berlin, New York: 1486: 1409: 1359: 1244: 1162: 1097: 976: 898: 809: 767: 735: 729:homotopy equivalence 695: 670:A=0 for |n|>>0 534: 491: 436: 348: 237: 171: 1680:Additive categories 1675:Homological algebra 1377: 1259: 1215: 1188: 1052: 1051: 451:{\displaystyle f-g} 330: 286: 29:homological algebra 1628:Weibel, Charles A. 1570: 1433: 1392: 1295: 1216: 1195: 1165: 1144: 1083: 1028: 928: 856:topological spaces 837: 795: 753: 713: 662:A=0 for n>>0 654:A=0 for n<<0 628: 506: 448: 395: 334: 316: 266: 216: 93:quasi-isomorphisms 1641:978-0-521-55987-4 1620:978-3-540-43583-9 1447:distinguished in 1378: 1260: 1053: 892:quasi-isomorphism 505: 420:We also say that 125:additive category 44:additive category 37:homotopy category 16:(Redirected from 1687: 1661: 1623: 1579: 1577: 1576: 1571: 1551: 1550: 1541: 1540: 1510: 1509: 1442: 1440: 1439: 1434: 1401: 1399: 1398: 1393: 1379: 1366: 1304: 1302: 1301: 1296: 1261: 1251: 1225: 1223: 1222: 1217: 1214: 1203: 1187: 1182: 1153: 1151: 1150: 1145: 1143: 1142: 1124: 1123: 1092: 1090: 1089: 1084: 1070: 1069: 1054: 1050: 1045: 1023: 1021: 1020: 940:derived category 937: 935: 934: 929: 846: 844: 843: 838: 836: 835: 804: 802: 801: 796: 794: 793: 762: 760: 759: 754: 722: 720: 719: 714: 688:, respectively. 637: 635: 634: 629: 624: 601: 600: 555: 554: 520:is homotopic to 515: 513: 512: 507: 503: 457: 455: 454: 449: 416: 404: 402: 401: 396: 391: 390: 372: 371: 343: 341: 340: 335: 329: 324: 315: 314: 296: 295: 285: 274: 262: 261: 249: 248: 225: 223: 222: 217: 215: 214: 196: 195: 183: 182: 62:derived category 21: 1695: 1694: 1690: 1689: 1688: 1686: 1685: 1684: 1665: 1664: 1642: 1626: 1621: 1611:Springer-Verlag 1601: 1598: 1542: 1532: 1489: 1484: 1483: 1465: 1407: 1406: 1357: 1356: 1242: 1241: 1160: 1159: 1128: 1115: 1095: 1094: 1055: 1006: 974: 973: 956: 896: 895: 868: 860:singular chains 827: 807: 806: 785: 765: 764: 733: 732: 693: 692: 577: 537: 532: 531: 489: 488: 482:chain complexes 434: 433: 430:chain homotopic 382: 363: 346: 345: 300: 287: 253: 240: 235: 234: 200: 187: 174: 169: 168: 117: 51:chain complexes 23: 22: 15: 12: 11: 5: 1693: 1691: 1683: 1682: 1677: 1667: 1666: 1663: 1662: 1640: 1624: 1619: 1597: 1594: 1569: 1566: 1563: 1560: 1557: 1554: 1549: 1545: 1539: 1535: 1531: 1528: 1525: 1522: 1519: 1516: 1513: 1508: 1505: 1502: 1499: 1496: 1492: 1464: 1463:Generalization 1461: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1403: 1402: 1391: 1388: 1385: 1382: 1376: 1373: 1369: 1364: 1306: 1305: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1258: 1254: 1249: 1213: 1210: 1207: 1202: 1198: 1194: 1191: 1186: 1181: 1178: 1175: 1172: 1168: 1156: 1155: 1141: 1138: 1135: 1131: 1127: 1122: 1118: 1114: 1111: 1108: 1105: 1102: 1082: 1079: 1076: 1073: 1068: 1065: 1062: 1058: 1049: 1044: 1041: 1038: 1035: 1031: 1026: 1019: 1016: 1013: 1009: 1005: 1002: 999: 996: 993: 990: 987: 984: 981: 955: 952: 927: 924: 921: 918: 915: 912: 909: 906: 903: 867: 864: 834: 830: 826: 823: 820: 817: 814: 792: 788: 784: 781: 778: 775: 772: 752: 749: 746: 743: 740: 712: 709: 706: 703: 700: 639: 638: 627: 623: 619: 616: 613: 610: 607: 604: 599: 596: 593: 590: 587: 584: 580: 576: 573: 570: 567: 564: 561: 558: 553: 550: 547: 544: 540: 525: 524: 502: 499: 496: 464:homotopic to 0 460:null-homotopic 447: 444: 441: 418: 417: 406: 405: 394: 389: 385: 381: 378: 375: 370: 366: 362: 359: 356: 353: 333: 328: 323: 319: 313: 310: 307: 303: 299: 294: 290: 284: 281: 278: 273: 269: 265: 260: 256: 252: 247: 243: 213: 210: 207: 203: 199: 194: 190: 186: 181: 177: 157:chain homotopy 116: 113: 24: 18:Chain homotopy 14: 13: 10: 9: 6: 4: 3: 2: 1692: 1681: 1678: 1676: 1673: 1672: 1670: 1659: 1655: 1651: 1647: 1643: 1637: 1633: 1629: 1625: 1622: 1616: 1612: 1608: 1604: 1600: 1599: 1595: 1593: 1591: 1587: 1583: 1564: 1561: 1558: 1552: 1547: 1543: 1537: 1533: 1529: 1523: 1520: 1517: 1511: 1503: 1497: 1494: 1490: 1481: 1477: 1474: 1470: 1462: 1460: 1458: 1454: 1450: 1446: 1430: 1421: 1418: 1412: 1386: 1380: 1374: 1371: 1367: 1362: 1355: 1354: 1353: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1289: 1283: 1274: 1268: 1262: 1256: 1252: 1247: 1240: 1239: 1238: 1236: 1232: 1227: 1211: 1208: 1205: 1200: 1196: 1192: 1189: 1184: 1176: 1170: 1166: 1139: 1136: 1133: 1129: 1125: 1120: 1109: 1103: 1080: 1077: 1074: 1066: 1063: 1060: 1056: 1047: 1039: 1033: 1029: 1024: 1017: 1014: 1011: 1007: 1000: 997: 994: 991: 985: 979: 972: 971: 970: 968: 965:of a complex 964: 961: 953: 951: 949: 945: 941: 922: 916: 907: 901: 893: 889: 885: 881: 877: 873: 865: 863: 861: 857: 853: 848: 832: 828: 824: 821: 818: 815: 812: 790: 786: 782: 779: 776: 773: 770: 750: 744: 741: 738: 730: 726: 710: 704: 701: 698: 689: 687: 683: 679: 675: 671: 667: 663: 659: 658:bounded-above 655: 651: 650:bounded-below 646: 644: 625: 621: 614: 611: 608: 602: 594: 588: 585: 582: 578: 574: 568: 565: 562: 556: 548: 542: 538: 530: 529: 528: 523: 519: 500: 497: 494: 487: 486: 485: 483: 479: 475: 472: 467: 465: 461: 445: 442: 439: 431: 427: 423: 415: 411: 410: 409: 392: 387: 383: 379: 376: 373: 368: 364: 360: 357: 354: 351: 331: 326: 321: 317: 311: 308: 305: 301: 297: 292: 288: 282: 279: 276: 271: 267: 263: 258: 254: 250: 245: 241: 233: 232: 231: 229: 211: 208: 205: 201: 192: 188: 184: 179: 175: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 126: 122: 114: 112: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 63: 59: 55: 52: 48: 45: 41: 38: 34: 30: 19: 1631: 1606: 1589: 1585: 1581: 1479: 1475: 1468: 1466: 1456: 1452: 1448: 1444: 1404: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1313: 1309: 1307: 1235:mapping cone 1233:we take the 1230: 1228: 1157: 966: 962: 959: 957: 943: 879: 875: 871: 869: 849: 728: 727:is called a 724: 690: 685: 681: 677: 673: 669: 665: 661: 657: 653: 649: 647: 640: 526: 521: 517: 477: 473: 470: 468: 463: 459: 429: 425: 421: 419: 407: 227: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 120: 118: 108: 104: 100: 96: 88: 84: 72: 68: 64: 57: 53: 46: 39: 36: 26: 1093:(note that 691:A morphism 527:and define 115:Definitions 33:mathematics 1669:Categories 1596:References 888:boundaries 641:to be the 432:, or that 344:or simply 1553:⁡ 1512:⁡ 1428:→ 1390:→ 1384:→ 1281:→ 1266:→ 1193:− 1072:→ 1004:→ 914:→ 852:homotopic 822:∼ 816:∘ 780:∼ 774:∘ 748:→ 708:→ 626:∼ 603:⁡ 557:⁡ 498:∼ 480:, namely 443:− 355:− 280:− 251:− 209:− 198:→ 185:: 139:and maps 1658:36131259 1630:(1994). 1368:→ 1310:triangle 1253:→ 1025:→ 854:maps of 643:quotient 60:and the 1650:1269324 948:abelian 938:to the 880:(f − g) 866:Remarks 666:bounded 77:abelian 1656:  1648:  1638:  1617:  1453:Kom(A) 1350:Kom(A) 884:cycles 882:sends 664:), or 504:  478:Kom(A) 123:be an 97:Kom(A) 54:Kom(A) 35:, the 1590:Ho(C) 1471:of a 1469:Ho(C) 1316:is a 960:shift 159:from 147:from 71:when 1654:OCLC 1636:ISBN 1615:ISBN 1457:K(A) 1449:K(A) 1346:K(A) 1344:and 1342:K(A) 1338:K(A) 1332:and 1322:K(A) 1314:K(A) 958:The 942:(if 874:and 805:and 725:K(A) 686:K(A) 684:and 682:K(A) 678:K(A) 474:K(A) 469:The 428:are 424:and 155:, a 129:K(A) 119:Let 109:D(A) 105:K(A) 101:K(A) 89:D(A) 65:D(A) 40:K(A) 1544:Hom 1491:Hom 1226:. 950:). 946:is 886:to 656:), 579:Hom 539:Hom 516:if 462:or 458:is 228:not 163:to 151:to 95:in 75:is 67:of 56:of 31:in 27:In 1671:: 1652:. 1646:MR 1644:. 1613:, 1445:is 1340:, 1328:, 1190::= 1154:), 862:. 847:. 680:, 143:, 135:, 111:. 99:, 1660:. 1586:C 1582:C 1568:) 1565:Y 1562:, 1559:X 1556:( 1548:C 1538:0 1534:H 1530:= 1527:) 1524:Y 1521:, 1518:X 1515:( 1507:) 1504:C 1501:( 1498:o 1495:H 1480:C 1476:C 1431:0 1425:) 1422:d 1419:i 1416:( 1413:C 1387:0 1381:X 1375:d 1372:i 1363:X 1334:f 1330:B 1326:A 1293:] 1290:1 1287:[ 1284:A 1278:) 1275:f 1272:( 1269:C 1263:B 1257:f 1248:A 1231:f 1212:1 1209:+ 1206:n 1201:A 1197:d 1185:n 1180:] 1177:1 1174:[ 1171:A 1167:d 1140:1 1137:+ 1134:n 1130:A 1126:= 1121:n 1117:) 1113:] 1110:1 1107:[ 1104:A 1101:( 1081:. 1078:. 1075:. 1067:2 1064:+ 1061:n 1057:A 1048:n 1043:] 1040:1 1037:[ 1034:A 1030:d 1018:1 1015:+ 1012:n 1008:A 1001:. 998:. 995:. 992:: 989:] 986:1 983:[ 980:A 967:A 963:A 944:A 926:) 923:A 920:( 917:D 911:) 908:A 905:( 902:K 876:g 872:f 833:A 829:d 825:I 819:f 813:g 791:B 787:d 783:I 777:g 771:f 751:A 745:B 742:: 739:g 711:B 705:A 702:: 699:f 668:( 660:( 652:( 622:/ 618:) 615:B 612:, 609:A 606:( 598:) 595:A 592:( 589:m 586:o 583:K 575:= 572:) 569:B 566:, 563:A 560:( 552:) 549:A 546:( 543:K 522:g 518:f 501:g 495:f 446:g 440:f 426:g 422:f 393:. 388:A 384:d 380:h 377:+ 374:h 369:B 365:d 361:= 358:g 352:f 332:, 327:n 322:A 318:d 312:1 309:+ 306:n 302:h 298:+ 293:n 289:h 283:1 277:n 272:B 268:d 264:= 259:n 255:g 246:n 242:f 226:( 212:1 206:n 202:B 193:n 189:A 180:n 176:h 165:g 161:f 153:B 149:A 145:g 141:f 137:B 133:A 121:A 85:A 73:A 69:A 58:A 47:A 20:)

Index

Chain homotopy
homological algebra
mathematics
additive category
chain complexes
derived category
abelian
triangulated category
quasi-isomorphisms
additive category

chain complexes
quotient
homotopic
topological spaces
singular chains
cycles
boundaries
quasi-isomorphism
derived category
abelian
mapping cone
triangulated category
differential graded category
Manin, Yuri Ivanovich
Springer-Verlag
ISBN
978-3-540-43583-9
Weibel, Charles A.
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.