Knowledge (XXG)

Charge radius

Source 📝

142:, the composite particle must be modeled as a sphere of negative rather than positive electric charge for the interpretation of electron scattering experiments. In these cases, the square of the charge radius of the particle is defined to be negative, with the same absolute value with units of length squared equal to the positive squared charge radius that it would have had if it was identical in all other respects but each quark in the particle had the opposite electric charge (with the charge radius itself having a value that is an imaginary number with units of length). It is customary when charge radius takes an imaginary numbered value to report the negative valued square of the charge radius, rather than the charge radius itself, for a particle. 149:. The heuristic explanation for why the squared charge radius of a neutron is negative, despite its overall neutral electric charge, is that this is the case because its negatively charged down quarks are, on average, located in the outer part of the neutron, while its positively charged up quark is, on average, located towards the center of the neutron. This asymmetric distribution of charge within the particle gives rise to a small negative squared charge radius for the particle as a whole. But, this is only the simplest of a variety of theoretical models, some of which are more elaborate, that are used to explain this property of a neutron. 326: 988:
Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F. D.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Dhawan, S.; Diepold, M.; Fernandes, L. M. P.; Giesen, A.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C. -Y.; Knowles, P.; Kottmann, F.; Le Bigot, E. -O.; Liu, Y.
71:
of the nucleus imagine a fairly uniform density of nucleons, theoretically giving a more recognizable surface to a nucleus than an atom, the latter being composed of highly diffuse electron clouds with density gradually reducing away from the centre. For individual protons and neutrons or small
594:
See, e.g., J. Byrne, "The mean square charge radius of the neutron", Neutron News Vol. 5, Issue 4, pg. 15-17 (1994) (comparing different theoretical explanations for the neutron's observed negative squared charge radius to the data) DOI:10.1080/10448639408217664
180: 989:-W.; Lopes, J. A. M.; Ludhova, L.; Monteiro, C. M. B.; Mulhauser, F.; Nebel, T.; Rabinowitz, P.; Dos Santos, J. M. F.; Schaller, L. A. (2013). "Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen". 394:
foil, with some of the particles being scattered through angles of more than 90°, that is coming back to the same side of the foil as the α-source. Rutherford put an upper limit on the radius of the gold nucleus of 34
503:
recommended values for the proton and deuteron root-mean-square charge radii. Furthermore, spectroscopic measurements can be made both with regular hydrogen (consisting of a proton and an electron) or
95:
Fundamentally important are realizable experimental procedures to measure some aspect of size, whatever that may mean in the quantum realm of atoms and nuclei. Foremost, the nucleus can be
321:{\displaystyle R_{\rm {d}}={\sqrt {r_{\rm {d}}^{2}+{\frac {3}{4}}\left({\frac {m_{\rm {e}}}{m_{\rm {d}}}}\right)^{2}\left({\frac {\lambda _{\rm {C}}}{2\pi }}\right)^{2}}},} 715: 92:. It could be difficult to decide whether to include the surrounding Yukawa meson field as part of the proton or nucleon size or to regard it as a separate entity. 1148: 1119: 938: 707: 511:
consisting of a proton and a negative muon). An inconsistency between proton charge radius measurements made using different techniques was known as the
766: 484:: the nonzero size of the nucleus causes a shift in the electronic energy levels which shows up as a change in the frequency of the 569:
Charge Radius and a CP Violating Asymmetry Together with a Search for CP Violating E1 Direct Photon Emission in the Rare Decay
365: 103:
experiments: the electrons "see" a range of cross-sections, for which a mean can be taken. The qualification of "rms" (
1189: 585:(determining that the neutral kaon has a negative mean squared charge radius of -0.077 ± 0.007(stat) ± 0.011(syst)fm). 1179: 174:
in an electromagnetic field and which is appropriate for treating spectroscopic data. The two radii are related by
946: 171: 51:
by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with
1184: 383: 493: 108: 489: 72:
nuclei, the concepts of size and boundary can be less clear. A single nucleon needs to be regarded as a "
608: 1063: 998: 955: 911: 868: 775: 724: 665: 620: 512: 89: 465: 100: 52: 63:
The problem of defining a radius for the atomic nucleus has some similarity to that of defining a
1087: 1032: 884: 858: 681: 655: 442: 353: 85: 596: 138:. In the case of an anti-matter baryon (e.g. an anti-proton), and some particles with zero net 1079: 1024: 803: 379: 73: 68: 646:
Friar, J. L.; Martorell, J.; Sprung, D. W. L. (1997), "Nuclear sizes and the isotope shift",
1071: 1014: 1006: 971: 963: 919: 876: 815: 783: 740: 732: 673: 628: 104: 96: 23: 156:
and higher nuclei, it is conventional to distinguish between the scattering charge radius,
504: 139: 111:, proportional to the square of the radius, which is determining for electron scattering. 84:, and a so-called "sea" of quark-antiquark pairs. Also, the nucleon is surrounded by its 1067: 1002: 959: 915: 872: 779: 728: 669: 624: 1174: 806:(1911), "The Scattering of α and β Particles by Matter and the Structure of the Atom", 761: 375: 29: 923: 1168: 1091: 1051: 888: 485: 387: 77: 64: 685: 880: 461: 1036: 1140: 1111: 757: 508: 403: 371: 1075: 819: 632: 396: 37: 677: 460:
Modern direct measurements are based on precision measurements of the atomic
1010: 967: 481: 402:
Later studies found an empirical relation between the charge radius and the
1083: 1028: 788: 170:, which includes the Darwin–Foldy term to account for the behaviour of the 902:
Sick, Ingo; Trautmann, Dirk (1998), "On the rms radius of the deuteron",
477: 473: 153: 48: 1052:"How big is the proton? Particle-size puzzle leaps closer to resolution" 863: 660: 581:", Phys. Rev. Lett. 96:101801 (2006) DOI: 10.1103/PhysRevLett.96.101801 1019: 939:"CODATA recommended values of the fundamental physical constants: 2002" 708:"CODATA recommended values of the fundamental physical constants: 1998" 582: 146: 123: 499:
Both scattering data and spectroscopic data are used to determine the
736: 500: 469: 145:
The best known particle with a negative squared charge radius is the
119: 115: 33: 163:(obtained from scattering data), and the bound-state charge radius, 345:
are the masses of the electron and the deuteron respectively while
135: 81: 43: 445:
of the proton. This gives a charge radius for the gold nucleus (
391: 131: 127: 114:
This definition of charge radius is often applied to composite
597:
https://www.tandfonline.com/doi/abs/10.1080/10448639408217664
356:
of the electron. For the proton, the two radii are the same.
370:
The first estimate of a nuclear charge radius was made by
99:
as a sphere of positive charge for the interpretation of
515:, but more recent measurements show consistent results. 468:. There is most interest in knowing the charge radii of 1145:
The NIST Reference on Constants, Units, and Uncertainty
1116:
The NIST Reference on Constants, Units, and Uncertainty
476:, as these can be compared with the spectrum of atomic 386:, UK. The famous experiment involved the scattering of 849:
Sick, Ingo (2003), "On the rms-radius of the proton",
764:(1909), "On a Diffuse Reflection of the α-Particles", 67:; neither has well defined boundaries. However, basic 183: 565:See, e.g., Abouzaid, et al., "A Measurement of the 320: 1141:"2022 CODATA Value: deuteron rms charge radius" 716:Journal of Physical and Chemical Reference Data 464:in hydrogen and deuterium, and measurements of 1112:"2022 CODATA Value: proton rms charge radius" 833:Blatt, John M.; Weisskopf, Victor F. (1952), 441:of 1.2–1.5 fm can be interpreted as the 36:distribution. The proton radius is about one 8: 701: 699: 697: 695: 47:. It can be measured by the scattering of 1018: 937:Mohr, Peter J.; Taylor, Barry N. (2005). 862: 787: 706:Mohr, Peter J.; Taylor, Barry N. (1999). 659: 307: 286: 285: 279: 268: 255: 254: 243: 242: 236: 221: 212: 206: 205: 199: 189: 188: 182: 611:(1958), "Neutron–Electron Interaction", 558: 7: 583:https://arxiv.org/abs/hep-ex/0508010 382:at the Physical Laboratories of the 134:, that are made up of more than one 16:Measure of the size of atomic nuclei 518:The CODATA recommended values are: 107:) arises because it is the nuclear 767:Proceedings of the Royal Society A 287: 256: 244: 207: 190: 14: 837:, New York: Wiley, pp. 14–16 466:scattering of electrons by nuclei 378:in 1909, under the direction of 28:is a measure of the size of an 881:10.1016/j.physletb.2003.09.092 1: 924:10.1016/S0375-9474(98)00334-0 434:where the empirical constant 1050:Castelvecchi (2019-11-07). 835:Theoretical Nuclear Physics 1206: 1076:10.1038/d41586-019-03432-4 363: 65:radius for the entire atom 947:Reviews of Modern Physics 820:10.1080/14786440508637080 633:10.1103/RevModPhys.30.471 488:. Such comparisons are a 452:) of about 7.69 fm. 366:Geiger–Marsden experiment 172:anomalous magnetic moment 678:10.1103/PhysRevA.56.4579 384:University of Manchester 1011:10.1126/science.1230016 968:10.1103/RevModPhys.77.1 494:quantum electrodynamics 789:10.1098/rspa.1909.0054 410:, for heavier nuclei ( 322: 323: 513:proton radius puzzle 181: 90:strong nuclear force 88:responsible for the 1068:2019Natur.575..269C 1003:2013Sci...339..417A 960:2005RvMP...77....1M 916:1998NuPhA.637..559S 873:2003PhLB..576...62S 780:1909RSPSA..82..495G 729:1999JPCRD..28.1713M 670:1997PhRvA..56.4579F 625:1958RvMP...30..471F 456:Modern measurements 217: 101:electron scattering 53:atomic spectroscopy 32:, particularly the 1190:Physical constants 443:Compton wavelength 354:Compton wavelength 318: 201: 69:liquid drop models 1180:Nuclear chemistry 1062:(7782): 269–270. 997:(6118): 417–420. 380:Ernest Rutherford 313: 301: 262: 229: 86:Yukawa pion field 1197: 1160: 1159: 1157: 1156: 1137: 1131: 1130: 1128: 1127: 1108: 1102: 1101: 1099: 1098: 1047: 1041: 1040: 1022: 985: 979: 978: 976: 970:. Archived from 943: 934: 928: 926: 899: 893: 891: 866: 846: 840: 838: 830: 824: 822: 800: 794: 792: 791: 774:(557): 495–500, 754: 748: 747: 745: 739:. Archived from 737:10.1063/1.556049 723:(6): 1713–1852. 712: 703: 690: 688: 663: 643: 637: 635: 605: 599: 592: 586: 580: 563: 549: 546: 544: 540: 532: 529: 527: 451: 414: > 20): 327: 325: 324: 319: 314: 312: 311: 306: 302: 300: 292: 291: 290: 280: 273: 272: 267: 263: 261: 260: 259: 249: 248: 247: 237: 230: 222: 216: 211: 210: 200: 195: 194: 193: 105:root mean square 46: 1205: 1204: 1200: 1199: 1198: 1196: 1195: 1194: 1185:Nuclear physics 1165: 1164: 1163: 1154: 1152: 1139: 1138: 1134: 1125: 1123: 1110: 1109: 1105: 1096: 1094: 1049: 1048: 1044: 987: 986: 982: 974: 941: 936: 935: 931: 901: 900: 896: 864:nucl-ex/0310008 848: 847: 843: 832: 831: 827: 814:(125): 669–88, 802: 801: 797: 756: 755: 751: 743: 710: 705: 704: 693: 661:nucl-th/9707016 645: 644: 640: 613:Rev. Mod. Phys. 607: 606: 602: 593: 589: 578: 570: 564: 560: 556: 547: 542: 538: 536: 530: 525: 523: 505:muonic hydrogen 458: 446: 440: 427: 368: 362: 351: 344: 337: 293: 281: 275: 274: 250: 238: 232: 231: 184: 179: 178: 169: 162: 140:electric charge 76:" bag of three 61: 41: 17: 12: 11: 5: 1203: 1201: 1193: 1192: 1187: 1182: 1177: 1167: 1166: 1162: 1161: 1132: 1103: 1042: 980: 977:on 2017-10-01. 929: 894: 857:(1–2): 62–67, 841: 825: 810:, 6th Series, 804:Rutherford, E. 795: 749: 746:on 2017-10-01. 691: 654:(6): 4579–86, 638: 600: 587: 574: 557: 555: 552: 551: 550: 533: 486:spectral lines 457: 454: 438: 432: 431: 425: 376:Ernest Marsden 364:Main article: 361: 358: 349: 342: 335: 329: 328: 317: 310: 305: 299: 296: 289: 284: 278: 271: 266: 258: 253: 246: 241: 235: 228: 225: 220: 215: 209: 204: 198: 192: 187: 167: 160: 78:valence quarks 74:color confined 60: 57: 30:atomic nucleus 15: 13: 10: 9: 6: 4: 3: 2: 1202: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1172: 1170: 1150: 1146: 1142: 1136: 1133: 1121: 1117: 1113: 1107: 1104: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1046: 1043: 1038: 1034: 1030: 1026: 1021: 1016: 1012: 1008: 1004: 1000: 996: 992: 984: 981: 973: 969: 965: 961: 957: 953: 949: 948: 940: 933: 930: 925: 921: 917: 913: 910:(4): 559–75, 909: 905: 904:Nucl. Phys. A 898: 895: 890: 886: 882: 878: 874: 870: 865: 860: 856: 852: 851:Phys. Lett. B 845: 842: 836: 829: 826: 821: 817: 813: 809: 805: 799: 796: 790: 785: 781: 777: 773: 769: 768: 763: 759: 753: 750: 742: 738: 734: 730: 726: 722: 718: 717: 709: 702: 700: 698: 696: 692: 687: 683: 679: 675: 671: 667: 662: 657: 653: 649: 642: 639: 634: 630: 626: 622: 619:(2): 471–81, 618: 614: 610: 604: 601: 598: 591: 588: 584: 577: 573: 568: 562: 559: 553: 534: 521: 520: 519: 516: 514: 510: 506: 502: 497: 495: 491: 487: 483: 479: 475: 471: 467: 463: 462:energy levels 455: 453: 449: 444: 437: 430: 424: 420: 417: 416: 415: 413: 409: 405: 400: 398: 393: 389: 385: 381: 377: 373: 367: 359: 357: 355: 348: 341: 334: 315: 308: 303: 297: 294: 282: 276: 269: 264: 251: 239: 233: 226: 223: 218: 213: 202: 196: 185: 177: 176: 175: 173: 166: 159: 155: 150: 148: 143: 141: 137: 133: 129: 125: 121: 117: 112: 110: 109:cross-section 106: 102: 98: 93: 91: 87: 83: 79: 75: 70: 66: 58: 56: 54: 50: 45: 39: 35: 31: 27: 26:charge radius 25: 19: 1153:. Retrieved 1144: 1135: 1124:. Retrieved 1115: 1106: 1095:. Retrieved 1059: 1055: 1045: 994: 990: 983: 972:the original 954:(1): 1–107. 951: 945: 932: 907: 903: 897: 854: 850: 844: 834: 828: 811: 807: 798: 771: 765: 752: 741:the original 720: 714: 651: 648:Phys. Rev. A 647: 641: 616: 612: 609:Foldy, L. L. 603: 590: 575: 571: 566: 561: 517: 498: 459: 447: 435: 433: 428: 422: 418: 411: 407: 401: 369: 346: 339: 332: 330: 164: 157: 151: 144: 113: 94: 62: 22: 20: 18: 1020:10316/79993 762:Marsden, E. 509:exotic atom 404:mass number 397:femtometres 388:α-particles 372:Hans Geiger 1169:Categories 1155:2024-05-18 1151:. May 2024 1126:2024-05-18 1122:. May 2024 1097:2021-11-04 808:Phil. Mag. 758:Geiger, H. 554:References 535:deuteron: 524:8.4075(64) 118:such as a 80:, binding 59:Definition 38:femtometre 1092:207938065 889:119339313 545:10 m 528:10 m 482:deuterium 474:deuterons 298:π 283:λ 154:deuterons 49:electrons 1084:31719693 1029:23349284 686:16441189 522:proton: 478:hydrogen 42:10  1064:Bibcode 999:Bibcode 991:Science 956:Bibcode 912:Bibcode 869:Bibcode 776:Bibcode 725:Bibcode 666:Bibcode 621:Bibcode 548:‍ 531:‍ 496:(QED). 470:protons 360:History 352:is the 147:neutron 124:neutron 116:hadrons 97:modeled 1090:  1082:  1056:Nature 1037:346658 1035:  1027:  887:  684:  579:→ ππee 501:CODATA 331:where 120:proton 82:gluons 34:proton 1175:Radii 1088:S2CID 1033:S2CID 975:(PDF) 942:(PDF) 885:S2CID 859:arXiv 744:(PDF) 711:(PDF) 682:S2CID 656:arXiv 537:2.127 450:= 197 136:quark 130:, or 44:metre 1149:NIST 1120:NIST 1080:PMID 1025:PMID 541:(27) 507:(an 490:test 480:and 472:and 392:gold 374:and 338:and 152:For 132:kaon 128:pion 21:The 1072:doi 1060:575 1015:hdl 1007:doi 995:339 964:doi 920:doi 908:637 877:doi 855:576 816:doi 784:doi 733:doi 674:doi 629:doi 492:of 390:by 24:rms 1171:: 1147:. 1143:. 1118:. 1114:. 1086:. 1078:. 1070:. 1058:. 1054:. 1031:. 1023:. 1013:. 1005:. 993:. 962:. 952:77 950:. 944:. 918:, 906:, 883:, 875:, 867:, 853:, 812:21 782:, 772:82 770:, 760:; 731:. 721:28 719:. 713:. 694:^ 680:, 672:, 664:, 652:56 650:, 627:, 617:30 615:, 539:78 421:≈ 406:, 399:. 126:, 122:, 55:. 40:= 1158:. 1129:. 1100:. 1074:: 1066:: 1039:. 1017:: 1009:: 1001:: 966:: 958:: 927:. 922:: 914:: 892:. 879:: 871:: 861:: 839:. 823:. 818:: 793:. 786:: 778:: 735:: 727:: 689:. 676:: 668:: 658:: 636:. 631:: 623:: 576:L 572:K 567:K 543:× 526:× 448:A 439:0 436:r 429:A 426:0 423:r 419:R 412:A 408:A 350:C 347:λ 343:d 340:m 336:e 333:m 316:, 309:2 304:) 295:2 288:C 277:( 270:2 265:) 257:d 252:m 245:e 240:m 234:( 227:4 224:3 219:+ 214:2 208:d 203:r 197:= 191:d 186:R 168:d 165:R 161:d 158:r

Index

rms
atomic nucleus
proton
femtometre
metre
electrons
atomic spectroscopy
radius for the entire atom
liquid drop models
color confined
valence quarks
gluons
Yukawa pion field
strong nuclear force
modeled
electron scattering
root mean square
cross-section
hadrons
proton
neutron
pion
kaon
quark
electric charge
neutron
deuterons
anomalous magnetic moment
Compton wavelength
Geiger–Marsden experiment

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.