Knowledge (XXG)

Chemogenomics

Source 📝

182:. Compounds contained in traditional medicines are usually more soluble than synthetic compounds, have “privileged structures” (chemical structures that are more frequently found to bind in different living organisms), and have more comprehensively known safety and tolerance factors. Therefore, this makes them especially attractive as a resource for lead structures in when developing new molecular entities. Databases containing chemical structures of compounds used in alternative medicine along with their phenotypic effects, in silico analysis may be of use to assist in determining MOA for example, by predicting ligand targets that were relevant to known phenotypes for traditional medicines. In a case study for TCM, the therapeutic class of ‘toning and replenishing medicine” was evaluated. Therapeutic actions (or phenotypes) for that class include anti-inflammatory, antioxidant, neuroprotective, hypoglycemic activity, immunomodulatory, antimetastatic, and hypotensive. 139:
phenotypes by searching for molecules that interact specifically with a given protein. Both of these approaches require a suitable collection of compounds and an appropriate model system for screening the compounds and looking for the parallel identification of biological targets and biologically active compounds. The biologically active compounds that are discovered through forward or reverse chemogenomics approaches are known as modulators because they bind to and modulate specific molecular targets, thus they could be used as ‘targeted therapeutics’.
17: 148:
tools to look for the protein responsible for the phenotype. For example, a loss-of-function phenotype could be an arrest of tumor growth. Once compounds that lead to a target phenotype have been identified, identifying the gene and protein targets should be the next step. The main challenge of forward chemogenomics strategy lies in designing phenotypic assays that lead immediately from screening to target identification.
1254: 157:
identify or confirm the role of the enzyme in the biological response. Reverse chemogenomics used to be virtually identical to the target-based approaches that have been applied in drug discovery and molecular pharmacology over the past decade. This strategy is now enhanced by parallel screening and by the ability to perform lead optimization on many targets that belong to one target family.
1242: 412: 416: 210:
Chemogenomics profiling can be used to identify totally new therapeutic targets, for example new antibacterial agents. The study capitalized on the availability of an existing ligand library for an enzyme called murD that is used in the peptidoglycan synthesis pathway. Relying on the chemogenomics
138:
Currently, there are two experimental chemogenomic approaches: forward (classical) chemogenomics and reverse chemogenomics. Forward chemogenomics attempt to identify drug targets by searching for molecules which give a certain phenotype on cells or animals, while reverse chemogenomics aim to validate
156:
In reverse chemogenomics, small compounds that perturb the function of an enzyme in the context of an in vitro enzymatic test will be identified. Once the modulators have been identified, the phenotype induced by the molecule is analyzed in a test on cells or on whole organisms. This method will
147:
In forward chemogenomics, which is also known as classical chemogenomics, a particular phenotype is studied and small compound interacting with this function are identified. The molecular basis of this desired phenotype is unknown. Once the modulators have been identified, they will be used as
240:
biosynthesis genes, they identified ylr143w as the strain with the highest cofitness to the all other strains lacking known diphthamide biosynthesis genes. Subsequent experimental assays confirmed that YLR143W was required for diphthamide synthesis and was the missing diphthamide synthetase.
110:
A common method to construct a targeted chemical library is to include known ligands of at least one and preferably several members of the target family. Since a portion of ligands that were designed and synthesized to bind to one family member will also bind to additional family members, the
239:
cofitness data. Cofitness data is data representing the similarity of growth fitness under various conditions between any two different deletion strains. Under the assumption that strains lacking the diphthamide synthetase gene should have high cofitness with strain lacking other diphthamide
190:(an insulin signaling regulator) were identified as targets which link to the hypoglycemic phenotype suggested. The case study for Ayurveda involved anti-cancer formulations. In this case, the target prediction program enriched for targets directly connected to cancer progression such as 201:
Beyond TCM and Ayurveda, chemogenomics can be applied early in drug discovery to determine a compound's mechanism of action and take advantage of genomic biomarkers of toxicity and efficacy for application to Phase I and II clinical trials.
1177: 107:. The completion of the human genome project has provided an abundance of potential targets for therapeutic intervention. Chemogenomics strives to study the intersection of all possible drugs on all of these potential targets. 131:, chemogenomics techniques are able to modify the function of a protein rather than the gene. Also, chemogenomics is able to observe the interaction as well as reversibility in real-time. For example, the modification of a 235:(eEF-2). The first two steps of the biosynthesis pathway leading to dipthine have been known, but the enzyme responsible for the amidation of dipthine to diphthamide remained a mystery. The researchers capitalized on 546:
Bhattacharjee B, Simon RM, Gangadharaiah C, Karunakar P (Jun 2013). "Chemogenomics profiling of drug targets of peptidoglycan biosynthesis pathway in Leptospira interrogans by virtual screening approaches".
476:
Mohd Fauzi F, Koutsoukas A, Lowe R, Joshi K, Fan TP, Glen RC, Bender A (Mar 2013). "Chemogenomics approaches to rationalizing the mode-of-action of traditional Chinese and Ayurvedic medicines".
71:
and drug targets. Typically some members of a target library have been well characterized where both the function has been determined and compounds that modulate the function of those targets (
99:. By identifying screening hits that modulate the activity of the less well characterized members of the target family, the function of these novel targets can be elucidated. Furthermore, the 127:
functions. The interaction between a small compound and a protein induces a phenotype. Once the phenotype is characterized, we could associate a protein to a molecular event. Compared with
231:
was determined, chemogenomics was used to discover the enzyme responsible for the final step in its synthesis. Dipthamide is a posttranslationally modified histidine residue found on the
219:
inhibitors in experimental assays since peptidoglycan synthesis is exclusive to bacteria. Structural and molecular docking studies revealed candidate ligands for murC and murE ligases.
866: 745: 1172: 215:(murC, murE, murF, murA, and murG) to identify new targets for the known ligands. Ligands identified would be expected to be broad-spectrum 1214: 667: 648: 95:) have been identified. Other members of the target family may have unknown function with no known ligands and hence are classified as 899: 738: 183: 1283: 1246: 1192: 511:
Engelberg A (Sep 2004). "Iconix Pharmaceuticals, Inc.--removing barriers to efficient drug discovery through chemogenomics".
582:
Cheung-Ong K, Song KT, Ma Z, Shabtai D, Lee AY, Gallo D, Heisler LE, Brown GW, Bierbach U, Giaever G, Nislow C (Nov 2012).
1220: 731: 175: 135:
can be observed only after addition of a specific compound and can be interrupted after its withdrawal from the medium.
376:
Caron PR, Mullican MD, Mashal RD, Wilson KP, Su MS, Murcko MA (Aug 2001). "Chemogenomic approaches to drug discovery".
111:
compounds contained in a targeted chemical library should collectively bind to a high percentage of the target family.
1136: 821: 100: 52: 584:"Comparative chemogenomics to examine the mechanism of action of dna-targeted platinum-acridine anticancer agents" 1226: 264: 36: 1298: 1182: 1027: 959: 236: 1293: 1167: 1039: 76: 1208: 1124: 927: 892: 806: 305: 296:
Bredel M, Jacoby E (Apr 2004). "Chemogenomics: an emerging strategy for rapid target and drug discovery".
1187: 1141: 826: 269: 72: 947: 932: 274: 310: 1157: 1131: 989: 976: 937: 841: 831: 755: 1111: 922: 331: 1288: 1162: 971: 885: 816: 694: 663: 644: 613: 564: 528: 493: 458: 393: 323: 254: 191: 211:
similarity principle, the researchers mapped the murD ligand library to other members of the
1086: 1081: 851: 846: 811: 796: 686: 603: 595: 556: 520: 485: 450: 385: 358: 315: 249: 80: 56: 40: 1101: 1091: 1076: 1012: 771: 96: 88: 16: 1258: 1096: 999: 942: 836: 801: 608: 583: 259: 212: 171: 120: 104: 44: 389: 362: 1277: 1071: 981: 861: 786: 714:
GLASS: A comprehensive database for experimentally-validated GPCR-ligand associations
637: 216: 335: 1061: 1022: 954: 856: 454: 1034: 966: 791: 723: 228: 123:
by using active compounds, which function as ligands, as probes to characterize
92: 48: 690: 1119: 1066: 1056: 1051: 781: 21: 677:
Weill N (2011). "Chemogenomic approaches for the exploration of GPCR space".
524: 1178:
Matrix-assisted laser desorption ionization-time of flight mass spectrometer
1046: 713: 132: 698: 617: 568: 560: 532: 497: 462: 397: 327: 227:
Thirty years after the posttranslationally modified histidine derivative
908: 179: 128: 124: 64: 1007: 599: 489: 441:
Wuster A, Madan Babu M (May 2008). "Chemogenomics and biotechnology".
84: 60: 319: 718: 639:
Chemogenomics in drug discovery: a medicinal chemistry perspective
232: 187: 349:
Namchuk M (2002). "Finding the molecules to fuel chemogenomics".
766: 195: 68: 881: 727: 198:. These target-phenotype links can help identify novel MOAs. 877: 67:, etc.) with the ultimate goal of identification of novel 103:
for these targets can be used as a starting point for
1201: 1150: 1110: 998: 915: 635:Folkers G, Kubinyi H, MĂźller G, Mannhold R (2004). 636: 436: 434: 291: 289: 893: 739: 194:and synergistic targets like the efflux pump 8: 867:Quantitative structure–activity relationship 478:Journal of Chemical Information and Modeling 24:robot retrieves assay plates from incubators 1173:Matrix-assisted laser desorption ionization 1241: 900: 886: 878: 746: 732: 724: 607: 549:Journal of Microbiology and Biotechnology 309: 170:Chemogenomics has been used to identify 15: 660:Chemogenomics: methods and applications 285: 223:Identifying genes in biological pathway 1215:European Molecular Biology Laboratory 679:Current Topics in Medicinal Chemistry 7: 119:Chemogenomics integrates target and 378:Current Opinion in Chemical Biology 14: 184:Sodium-glucose transport proteins 1253: 1252: 1240: 1193:Chromosome conformation capture 233:translation elongation factor 2 1: 1221:National Institutes of Health 455:10.1016/j.tibtech.2008.01.004 390:10.1016/S1367-5931(00)00229-5 363:10.1016/S1477-3627(02)02206-7 662:. Totowa, NJ: Humana Press. 206:Identifying new drug targets 176:traditional Chinese medicine 1137:Structure-based drug design 1315: 691:10.2174/156802611796391212 166:Determining mode of action 1236: 1227:Wellcome Sanger Institute 762: 413:"Chemogenomic techniques" 265:High-throughput screening 192:steroid-5-alpha-reductase 1183:Microfluidic-based tools 1028:Human Connectome Project 960:Human Microbiome Project 525:10.1517/14622416.5.6.741 237:Saccharomyces cerevisiae 1284:Computational chemistry 1168:Electrospray ionization 1040:Human Epigenome Project 822:Lipinski's rule of five 643:. Weinheim: Wiley-VCH. 443:Trends in Biotechnology 298:Nature Reviews Genetics 1209:DNA Data Bank of Japan 1125:Human proteome project 928:Computational genomics 561:10.4014/jmb.1206.06050 25: 1188:Isotope affinity tags 1142:Expression proteomics 827:Lipophilic efficiency 270:Personalized medicine 152:Reverse chemogenomics 143:Forward chemogenomics 19: 948:Human Genome Project 933:Comparative genomics 588:ACS Chemical Biology 275:Phenotypic screening 35:, is the systematic 1158:2-D electrophoresis 1132:Call-map proteomics 990:Structural genomics 977:Population genomics 938:Functional genomics 842:New chemical entity 832:Mechanism of action 756:medicinal chemistry 47:against individual 1112:Structural biology 923:Cognitive genomics 41:chemical libraries 26: 1268: 1267: 1163:Mass spectrometer 972:Personal genomics 875: 874: 817:Ligand efficiency 669:978-1-60761-273-5 658:Jacoby E (2009). 650:978-3-527-30987-0 600:10.1021/cb300320d 490:10.1021/ci3005513 419:on 23 August 2013 255:Chemical genetics 213:mur ligase family 57:nuclear receptors 33:chemical genomics 1306: 1256: 1255: 1244: 1243: 1087:Pharmacogenomics 1082:Pharmacogenetics 902: 895: 888: 879: 852:Pharmacokinetics 847:Pharmacodynamics 812:Enzyme inhibitor 797:Drug development 748: 741: 734: 725: 719:Kubinyi's slides 702: 673: 654: 642: 622: 621: 611: 594:(11): 1892–901. 579: 573: 572: 543: 537: 536: 513:Pharmacogenomics 508: 502: 501: 473: 467: 466: 438: 429: 428: 426: 424: 415:. Archived from 408: 402: 401: 373: 367: 366: 346: 340: 339: 313: 293: 250:Chemical biology 97:orphan receptors 51:families (e.g., 1314: 1313: 1309: 1308: 1307: 1305: 1304: 1303: 1299:Cheminformatics 1274: 1273: 1271: 1269: 1264: 1232: 1197: 1146: 1106: 1102:Transcriptomics 1092:Systems biology 1077:Paleopolyploidy 1013:Cheminformatics 994: 911: 906: 876: 871: 772:Bioavailability 758: 752: 710: 705: 685:(15): 1944–55. 676: 670: 657: 651: 634: 630: 628:Further reading 625: 581: 580: 576: 545: 544: 540: 510: 509: 505: 475: 474: 470: 440: 439: 432: 422: 420: 410: 409: 405: 375: 374: 370: 348: 347: 343: 320:10.1038/nrg1317 311:10.1.1.411.9671 295: 294: 287: 283: 246: 225: 208: 168: 163: 154: 145: 117: 75:in the case of 45:small molecules 12: 11: 5: 1312: 1310: 1302: 1301: 1296: 1294:Drug discovery 1291: 1286: 1276: 1275: 1266: 1265: 1263: 1262: 1250: 1237: 1234: 1233: 1231: 1230: 1224: 1218: 1212: 1205: 1203: 1199: 1198: 1196: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1160: 1154: 1152: 1151:Research tools 1148: 1147: 1145: 1144: 1139: 1134: 1129: 1128: 1127: 1116: 1114: 1108: 1107: 1105: 1104: 1099: 1097:Toxicogenomics 1094: 1089: 1084: 1079: 1074: 1069: 1064: 1059: 1054: 1049: 1044: 1043: 1042: 1032: 1031: 1030: 1020: 1015: 1010: 1004: 1002: 1000:Bioinformatics 996: 995: 993: 992: 987: 979: 974: 969: 964: 963: 962: 952: 951: 950: 943:Genome project 940: 935: 930: 925: 919: 917: 913: 912: 907: 905: 904: 897: 890: 882: 873: 872: 870: 869: 864: 859: 854: 849: 844: 839: 837:Mode of action 834: 829: 824: 819: 814: 809: 807:Drug targeting 804: 802:Drug discovery 799: 794: 789: 784: 779: 774: 769: 763: 760: 759: 753: 751: 750: 743: 736: 728: 722: 721: 716: 709: 708:External links 706: 704: 703: 674: 668: 655: 649: 631: 629: 626: 624: 623: 574: 538: 503: 468: 430: 403: 368: 357:(4): 125–129. 341: 284: 282: 279: 278: 277: 272: 267: 262: 260:Drug discovery 257: 252: 245: 242: 224: 221: 207: 204: 172:mode of action 167: 164: 162: 159: 153: 150: 144: 141: 121:drug discovery 116: 113: 105:drug discovery 20:Chemogenomics 13: 10: 9: 6: 4: 3: 2: 1311: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1281: 1279: 1272: 1261: 1260: 1251: 1249: 1248: 1239: 1238: 1235: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1206: 1204: 1202:Organizations 1200: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1155: 1153: 1149: 1143: 1140: 1138: 1135: 1133: 1130: 1126: 1123: 1122: 1121: 1118: 1117: 1115: 1113: 1109: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1072:Nutrigenomics 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1041: 1038: 1037: 1036: 1033: 1029: 1026: 1025: 1024: 1021: 1019: 1018:Chemogenomics 1016: 1014: 1011: 1009: 1006: 1005: 1003: 1001: 997: 991: 988: 986: 984: 980: 978: 975: 973: 970: 968: 965: 961: 958: 957: 956: 953: 949: 946: 945: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 920: 918: 914: 910: 903: 898: 896: 891: 889: 884: 883: 880: 868: 865: 863: 862:Pharmacophore 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 787:Drug delivery 785: 783: 780: 778: 777:Chemogenomics 775: 773: 770: 768: 765: 764: 761: 757: 749: 744: 742: 737: 735: 730: 729: 726: 720: 717: 715: 712: 711: 707: 700: 696: 692: 688: 684: 680: 675: 671: 665: 661: 656: 652: 646: 641: 640: 633: 632: 627: 619: 615: 610: 605: 601: 597: 593: 589: 585: 578: 575: 570: 566: 562: 558: 555:(6): 779–84. 554: 550: 542: 539: 534: 530: 526: 522: 518: 514: 507: 504: 499: 495: 491: 487: 484:(3): 661–73. 483: 479: 472: 469: 464: 460: 456: 452: 448: 444: 437: 435: 431: 418: 414: 407: 404: 399: 395: 391: 387: 384:(4): 464–70. 383: 379: 372: 369: 364: 360: 356: 352: 345: 342: 337: 333: 329: 325: 321: 317: 312: 307: 304:(4): 262–75. 303: 299: 292: 290: 286: 280: 276: 273: 271: 268: 266: 263: 261: 258: 256: 253: 251: 248: 247: 243: 241: 238: 234: 230: 222: 220: 218: 217:Gram-negative 214: 205: 203: 199: 197: 193: 189: 185: 181: 177: 173: 165: 160: 158: 151: 149: 142: 140: 136: 134: 130: 126: 122: 114: 112: 108: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 29:Chemogenomics 23: 18: 1270: 1257: 1245: 1067:Microbiomics 1062:Metabolomics 1023:Connectomics 1017: 982: 955:Metagenomics 857:Pharmacology 776: 682: 678: 659: 638: 591: 587: 577: 552: 548: 541: 519:(6): 741–4. 516: 512: 506: 481: 477: 471: 449:(5): 252–8. 446: 442: 421:. Retrieved 417:the original 411:Ambroise Y. 406: 381: 377: 371: 354: 350: 344: 301: 297: 226: 209: 200: 169: 161:Applications 155: 146: 137: 118: 109: 93:ion channels 39:of targeted 32: 28: 27: 1035:Epigenomics 967:Pangenomics 792:Drug design 229:diphthamide 49:drug target 1278:Categories 1120:Proteomics 1057:Lipidomics 1052:Immunomics 782:Drug class 754:Topics in 281:References 178:(TCM) and 174:(MOA) for 81:inhibitors 1047:Glycomics 306:CiteSeerX 133:phenotype 77:receptors 65:proteases 37:screening 1289:Genomics 1259:Category 985:genomics 909:Genomics 699:21470168 618:22928710 569:23676922 533:15335294 498:23351136 463:18346803 398:11470611 336:11952369 328:15131650 244:See also 180:Ayurveda 129:genetics 125:proteome 115:Strategy 89:blockers 1008:Biochip 609:3500413 423:28 July 351:Targets 85:enzymes 73:ligands 61:kinases 22:Staubli 916:Fields 697:  666:  647:  616:  606:  567:  531:  496:  461:  396:  334:  326:  308:  1223:(USA) 983:Socio 332:S2CID 188:PTP1B 87:, or 69:drugs 53:GPCRs 31:, or 1247:List 1229:(UK) 1217:(EU) 1211:(JP) 767:ADME 695:PMID 664:ISBN 645:ISBN 614:PMID 565:PMID 529:PMID 494:PMID 459:PMID 425:2013 394:PMID 324:PMID 196:P-gp 186:and 101:hits 687:doi 604:PMC 596:doi 557:doi 521:doi 486:doi 451:doi 386:doi 359:doi 316:doi 91:of 83:of 43:of 1280:: 693:. 683:11 681:. 612:. 602:. 590:. 586:. 563:. 553:23 551:. 527:. 515:. 492:. 482:53 480:. 457:. 447:26 445:. 433:^ 392:. 380:. 353:. 330:. 322:. 314:. 300:. 288:^ 79:, 63:, 59:, 55:, 901:e 894:t 887:v 747:e 740:t 733:v 701:. 689:: 672:. 653:. 620:. 598:: 592:7 571:. 559:: 535:. 523:: 517:5 500:. 488:: 465:. 453:: 427:. 400:. 388:: 382:5 365:. 361:: 355:1 338:. 318:: 302:5

Index


Staubli
screening
chemical libraries
small molecules
drug target
GPCRs
nuclear receptors
kinases
proteases
drugs
ligands
receptors
inhibitors
enzymes
blockers
ion channels
orphan receptors
hits
drug discovery
drug discovery
proteome
genetics
phenotype
mode of action
traditional Chinese medicine
Ayurveda
Sodium-glucose transport proteins
PTP1B
steroid-5-alpha-reductase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑