Knowledge (XXG)

Cherenkov radiation

Source 📝

2246:, developed in the 1980s. In a RICH detector, a cone of Cherenkov light is produced when a high-speed charged particle traverses a suitable medium, often called radiator. This light cone is detected on a position sensitive planar photon detector, which allows reconstructing a ring or disc, whose radius is a measure for the Cherenkov emission angle. Both focusing and proximity-focusing detectors are in use. In a focusing RICH detector, the photons are collected by a spherical mirror and focused onto the photon detector placed at the focal plane. The result is a circle with a radius independent of the emission point along the particle track. This scheme is suitable for low refractive index radiators—i.e. gases—due to the larger radiator length needed to create enough photons. In the more compact proximity-focusing design, a thin radiator volume emits a cone of Cherenkov light which traverses a small distance—the proximity gap—and is detected on the photon detector plane. The image is a ring of light whose radius is defined by the Cherenkov emission angle and the proximity gap. The ring thickness is determined by the thickness of the radiator. An example of a proximity gap RICH detector is the High Momentum Particle Identification Detector (HMPID), a detector currently under construction for ALICE ( 1207:). This means that, when a charged particle (usually electrons) passes through a medium at a speed greater than the phase velocity of light in that medium, that particle emits trailing radiation from its progress through the medium rather than in front of it (as is the case in normal materials with, both permittivity and permeability positive). One can also obtain such reverse-cone Cherenkov radiation in non-metamaterial periodic media where the periodic structure is on the same scale as the wavelength, so it cannot be treated as an effectively homogeneous metamaterial. 549: 318: 496: 1973:
emission, where the detected signal can be imaged at the entry and exit surfaces of the tissue. The Cherenkov light emitted from patient's tissue during radiation therapy is a very low light level signal but can be detected by specially designed cameras that synchronize their acquisition to the linear accelerator pulses. The ability to see this signal shows the shape of the radiation beam as it is incident upon the tissue in real time.
31: 1982: 1925: 569: 249:. The light was observed using a camera imaging system called a CDose, which is specially designed to view light emissions from biological systems. For decades, patients had reported phenomena such as "flashes of bright or blue light" when receiving radiation treatments for brain cancer, but the effects had never been experimentally observed. 1916:. Radioactive atoms such as phosphorus-32 are readily introduced into biomolecules by enzymatic and synthetic means and subsequently may be easily detected in small quantities for the purpose of elucidating biological pathways and in characterizing the interaction of biological molecules such as affinity constants and dissociation rates. 560:
nuclei. On the other hand, the phenomenon can be explained both qualitatively and quantitatively if one takes into account the fact that an electron moving in a medium does radiate light even if it is moving uniformly provided that its velocity is greater than the velocity of light in the medium."
559:
In their original work on the theoretical foundations of Cherenkov radiation, Tamm and Frank wrote, "This peculiar radiation can evidently not be explained by any common mechanism such as the interaction of the fast electron with individual atom or as radiative scattering of electrons on atomic
1972:
External beam radiation therapy has been shown to induce a substantial amount of Cherenkov light in the tissue being treated, due to electron beams or photon beams with energy in the 6 MV to 18 MV ranges. The secondary electrons induced by these high energy x-rays result in the Cherenkov light
1883:
is directly related to the velocity of the disruption. The Cherenkov angle is zero at the threshold velocity for the emission of Cherenkov radiation. The angle takes on a maximum as the particle speed approaches the speed of light. Hence, observed angles of incidence can be used to compute the
1546: 1936:
More recently, Cherenkov light has been used to image substances in the body. These discoveries have led to intense interest around the idea of using this light signal to quantify and/or detect radiation in the body, either from internal sources such as injected
3620:
Jarvis, Lesley A; Zhang, Rongxiao; Gladstone, David J; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D; Glaser, Adam K; Jermyn, Michael; Pogue, Brian W (2014). "Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time".
3165:
Tendler, Irwin I.; Hartford, Alan; Jermyn, Michael; LaRochelle, Ethan; Cao, Xu; Borza, Victor; Alexander, Daniel; Bruza, Petr; Hoopes, Jack; Moodie, Karen; Marr, Brian P.; Williams, Benjamin B.; Pogue, Brian W.; Gladstone, David J.; Jarvis, Lesley A. (2020).
1864:) would be observed. However, X-rays can be generated at special frequencies just below the frequencies corresponding to core electronic transitions in a material, as the index of refraction is often greater than 1 just below a resonant frequency (see 1168: 487:
field is asymmetric along the direction of motion of the particle, as the particles of the medium do not have enough time to recover to their "normal" randomized states. This results in overlapping waveforms (as in the animation) and
1758:
that have characteristic spectral peaks, Cherenkov radiation is continuous. Around the visible spectrum, the relative intensity per unit frequency is approximately proportional to the frequency. That is, higher frequencies (shorter
1397: 2238:
of the medium) by looking at whether this particle emits Cherenkov light in a certain medium. Knowing particle momentum, one can separate particles lighter than a certain threshold from those heavier than the threshold.
438:, that is the velocity of the charged particle is less than that of the speed of light in the medium, then the polarization field which forms around the moving particle is usually symmetric. The corresponding emitted 2148:
The simplest type of particle identification device based on a Cherenkov radiation technique is the threshold counter, which answers whether the velocity of a charged particle is lower or higher than a certain value
2043:
with enormous velocities. The Cherenkov radiation emitted in the atmosphere by these charged particles is used to determine the direction and energy of the cosmic ray or gamma ray, which is used for example in the
393:). When any charged particle passes through a medium, the particles of the medium will polarize around it in response. The charged particle excites the molecules in the polarizable medium and on returning to their 545:, one can also obtain a variety of other anomalous Cherenkov effects, such as radiation in a backwards direction (see below) whereas ordinary Cherenkov radiation forms an acute angle with the particle velocity. 990: 222:
observed a pale blue light in a highly concentrated radium solution in 1910, but did not investigate its source. In 1926, the French radiotherapist Lucien Mallet described the luminous radiation of
928: 650: 1767:
spectrum—it is only with sufficiently accelerated charges that it even becomes visible; the sensitivity of the human eye peaks at green, and is very low in the violet portion of the spectrum.
1036: 812: 2099:
Astrophysics observatories using the Cherenkov technique to measure air showers are key to determining the properties of astronomical objects that emit very-high-energy gamma rays, such as
3561: 859: 170:. Cherenkov saw a faint bluish light around a radioactive preparation in water during experiments. His doctorate thesis was on luminescence of uranium salt solutions that were excited by 397:, the molecules re-emit the energy given to them to achieve excitation as photons. These photons form the spherical wavefronts which can be seen originating from the moving particle. If 740: 1842:
varies with frequency (and hence with wavelength) in such a way that the intensity cannot continue to increase at ever shorter wavelengths, even for very relativistic particles (where
1817: 1340:
Radiation with the same properties of typical Cherenkov radiation can be created by structures of electric current that travel faster than light. By manipulating density profiles in
553: 3109:
Malaca, Bernardo; Pardal, Miguel; Ramsey, Dillon; Pierce, Jacob R.; Weichman, Kale; Andryiash, Igor A.; Mori, Warren B.; Palastro, John P.; Fonseca, Ricardo; Vieira, Jorge (2023).
1086: 481: 436: 2900:
Genevet, P.; Wintz, D.; Ambrosio, A.; She, A.; Blanchard, R.; Capasso, F. (2015). "Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial".
1274: 1199:(materials with a subwavelength microstructure that gives them an effective "average" property very different from their constituent materials, in this case having negative 1637: 766: 601: 518:
waves generated by the aircraft travel at the speed of sound, which is slower than the aircraft, and cannot propagate forward from the aircraft, instead forming a conical
1670: 2188: 1330: 1081: 3268:
Liu, H.; Zhang, X.; Xing, B.; Han, P.; Gambhir, S. S.; Cheng, Z. (21 May 2010). "Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging".
3560:
Spinelli, Antonello Enrico; Ferdeghini, Marco; Cavedon, Carlo; Zivelonghi, Emanuele; Calandrino, Riccardo; Fenzi, Alberto; Sbarbati, Andrea; Boschi, Federico (2013).
1608: 2008:
decay. The glow continues after the chain reaction stops, dimming as the shorter-lived products decay. Similarly, Cherenkov radiation can characterize the remaining
1294: 2064:. Cherenkov radiation emitted in tanks filled with water by those charged particles reaching earth is used for the same goal by the Extensive Air Shower experiment 367: 1763:) are more intense in Cherenkov radiation. This is why visible Cherenkov radiation is observed to be brilliant blue. In fact, most Cherenkov radiation is in the 4309: 2232: 2208: 1840: 1738: 1718: 1694: 1588: 1568: 1241: 694: 670: 387: 4294: 2065: 533:
of light. The phase velocity can be altered dramatically by using a periodic medium, and in that case one can even achieve Cherenkov radiation with
933: 442:
may be bunched up, but they do not coincide or cross, and there are therefore no interference effects to consider. In the reverse situation, i.e.
234: 4405: 4263: 2012:
of spent fuel rods. This phenomenon is used to verify the presence of spent nuclear fuel in spent fuel pools for nuclear safeguards purposes.
1541:{\displaystyle {\frac {d^{2}E}{dx\,d\omega }}={\frac {q^{2}}{4\pi }}\mu (\omega )\omega {\left(1-{\frac {c^{2}}{v^{2}n^{2}(\omega )}}\right)}} 3781: 2661: 2626: 2530: 2503: 2451: 3681:"Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery" 4289: 4258: 4203: 877: 329:
The effect can be intuitively described in the following way. From classical physics, it is known that accelerating charged particles emit
606: 1352:
and emit optical shocks at the Cherenkov angle. Electrons are still subluminal, hence the electrons that compose the structure at a time
3922: 3080:
Bugaev, S. P.; Kanavets, V. I.; Klimov, A. I.; Koshelev, V. I.; Cherepenin, V. A. (1983). "Relativistic multiwave Cerenkov generator".
997: 774: 4238: 3868: 3526: 2406: 2443:
93 (1967) 385. V sbornike: Pavel Alekseyevich Čerenkov: Chelovek i Otkrytie pod redaktsiej A. N. Gorbunova i E. P. Čerenkovoj, M.,
821: 4304: 2247: 2243: 2120: 1640: 1204: 2133:
of an electrically charged elementary particle by the properties of the Cherenkov light it emits in a certain medium. If the
2954: 1049:. The latter is designed to introduce a gradient of phase retardation along the trajectory of the fast travelling particle ( 334: 4370: 2958: 2422: 2376: 2081: 522:. In a similar way, a charged particle can generate a "shock wave" of visible light as it travels through an insulator. 1866: 4400: 4390: 4126: 3082: 1892: 548: 238: 283:), the speed in a material may be significantly less, as it is perceived to be slowed by the medium. For example, in 1243:. In such a system, this effect can be derived from conservation of the energy and momentum where the momentum of a 4358: 4213: 4186: 3861: 3850: 2427: 163: 4395: 4243: 4096: 3510: 815: 330: 95: 39: 2984:
Macleod, Alexander J.; Noble, Adam; Jaroszynski, Dino A. (2019). "Cherenkov radiation from the quantum vacuum".
703: 538: 4181: 3955: 2069: 1755: 673: 138:, the sharp sound heard when faster-than-sound movement occurs. The phenomenon is named after Soviet physicist 4091: 1928:
Cherenkov light emission imaged from the chest wall of a patient undergoing whole breast irradiation, using 6
1773: 317: 3806:
Smith, S. J.; Purcell, E. M. (1953). "Visible Light from Localized Surface Charges Moving across a Grating".
863:
The left corner of the triangle represents the location of the superluminal particle at some initial moment (
4121: 3915: 870:). The right corner of the triangle is the location of the particle at some later time t. In the given time 2290: 1391: 130:
in that medium. A classic example of Cherenkov radiation is the characteristic blue glow of an underwater
4410: 4362: 4273: 3947: 3305:
Liu, Hongguang; Ren, Gang; Liu, Shuanglong; Zhang, Xiaofen; Chen, Luxi; Han, Peizhen; Cheng, Zhen (2010).
2837: 2306: 1912:
Cherenkov radiation is widely used to facilitate the detection of small amounts and low concentrations of
155: 2763: 1856:
frequencies, the refractive index becomes less than 1 (note that in media, the phase velocity may exceed
1223:
decreases and the velocity of charged particles can exceed the phase velocity while remaining lower than
1045:
Cherenkov radiation can also radiate in an arbitrary direction using properly engineered one dimensional
445: 400: 4366: 4101: 2902: 2301: 2251: 2092:, a former solar tower refurbished to work as a non-imaging Cherenkov observatory, which was located in 1173: 35: 2033: 4223: 4111: 4068: 4018: 3817: 3715: 3576: 3461: 3318: 3234: 3091: 3003: 2911: 2829: 2563: 2321: 1896: 1872: 484: 322: 303: 3680: 2842: 2707: 2677: 1250: 4340: 4299: 4218: 1938: 1860:
without violating relativity) and hence no X-ray emission (or shorter wavelength emissions such as
1752: 1613: 1341: 1301: 1216: 1083:), reversing or steering Cherenkov emission at arbitrary angles given by the generalized relation: 745: 178:
of the radiation and came to the conclusion that the bluish glow was not a fluorescent phenomenon.
2552:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2448: 579: 4335: 4156: 4136: 4116: 4000: 3908: 3731: 3602: 3250: 3140: 3122: 3062: 3027: 2993: 2935: 2863: 2597: 2267: 2116: 1387: 273: 186: 1646: 495: 2152: 1306: 1052: 314:(can be polarized electrically) medium with a speed greater than light's speed in that medium. 4228: 4106: 4043: 4008: 3777: 3638: 3594: 3542: 3522: 3487: 3430: 3403: 3344: 3287: 3205: 3187: 3019: 2927: 2855: 2820: 2783: 2737: 2657: 2632: 2622: 2589: 2581: 2559: 2526: 2499: 2444: 2402: 2311: 2284: 2100: 2061: 1997: 1989: 1942: 1163:{\displaystyle \cos \theta ={\frac {1}{n\beta }}+{\frac {n}{k_{0}}}\cdot {\frac {d\phi }{dx}}} 489: 230: 215: 214:
in 1904, but both had been quickly dismissed following the relativity theory's restriction of
211: 2468: 1593: 1176:. The angle stays the same, meaning that subsequent waves generated between the initial time 4233: 3825: 3723: 3658:"Technical Note: Time-gating to medical linear accelerator pulses: Stray radiation detector" 3657: 3630: 3584: 3532: 3514: 3477: 3469: 3393: 3383: 3334: 3326: 3279: 3242: 3195: 3179: 3132: 3054: 3011: 2919: 2847: 2775: 2727: 2719: 2571: 2235: 2126: 2077: 2005: 1820: 1673: 1279: 1172:
Note that since this ratio is independent of time, one can take arbitrary times and achieve
697: 542: 390: 207: 119: 99: 51: 3223:
Bolotovskii, B. M. (2009). "Vavilov – Cherenkov radiation: Its discovery and application".
4345: 4330: 4146: 4058: 4048: 3808: 3270: 3225: 2455: 2273: 2040: 1888: 1880: 1697: 182: 139: 131: 111: 3883: 3727: 3703: 2678:"For the first time, scientists capture light flashes from human eye during radiotherapy" 344: 3821: 3792: 3719: 3580: 3465: 3362:
Zhong, Jianghong; Qin, Chenghu; Yang, Xin; Zhu, Shuping; Zhang, Xing; Tian, Jie (2011).
3322: 3307:"Optical imaging of reporter gene expression using a positron-emission-tomography probe" 3238: 3168:"Experimentally Observed Cherenkov Light Generation in the Eye During Radiation Therapy" 3095: 3007: 2915: 2833: 2708:"Experimentally Observed Cherenkov Light Generation in the Eye During Radiation Therapy" 2567: 2495:
Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age
492:
leads to an observed cone-like light signal at a characteristic angle: Cherenkov light.
4193: 4151: 4141: 4063: 4053: 4023: 3798: 3773: 3766: 3537: 3518: 3482: 3449: 3398: 3363: 3339: 3306: 3200: 3167: 2732: 2706:
Tendler, Irwin I.; Hartford, Alan; Jermyn, Michael; Pogue, Brian W. (25 October 2019).
2439: 2345: 2287:, about conjectural propagation of information or matter faster than the speed of light 2278: 2217: 2211: 2193: 2001: 1848: 1825: 1741: 1723: 1703: 1679: 1573: 1553: 1349: 1345: 1297: 1226: 1220: 679: 655: 576:
In the figure on the geometry, the particle (red arrow) travels in a medium with speed
530: 526: 372: 338: 263: 242: 159: 127: 115: 2812: 2281:, radiation produced when charged particles are decelerated by other charged particles 30: 4384: 4268: 4028: 4013: 3735: 3254: 3144: 3110: 3066: 2142: 2009: 1958: 3031: 2939: 2881:
Tamm, I.E.; Frank, I.M. (1937), "Coherent radiation of fast electrons in a medium",
2867: 2601: 1195:
A reverse Cherenkov effect can be experienced using materials called negative-index
4248: 4208: 4073: 3606: 3246: 3015: 2368: 2025: 1748: 1200: 1196: 1046: 394: 246: 151: 17: 3702:
Branger, E; Grape, S; Jacobsson Svärd, S; Jansson, P; Andersson Sundén, E (2017).
572:
The geometry of the Cherenkov radiation shown for the ideal case of no dispersion.
200:
Cherenkov radiation as conical wavefronts had been theoretically predicted by the
3900: 3634: 3183: 2962: 2779: 2723: 2651: 2520: 2493: 1887:
Cherenkov radiation can be generated in the eye by charged particles hitting the
930:
whereas the emitted electromagnetic waves are constricted to travel the distance
771:
We define the ratio between the speed of the particle and the speed of light as
3990: 1981: 1950: 1946: 1913: 1764: 219: 3136: 1924: 158:
winner, who was the first to detect it experimentally under the supervision of
4038: 3985: 3855: 3844: 3589: 3058: 3045:
Wang, Zhong-Yue (2016). "Generalized momentum equation of quantum mechanics".
2340: 2296: 2093: 2029: 1966: 1962: 1954: 1760: 1215:
The Cherenkov effect can occur in vacuum. In a slow-wave structure, like in a
1187:
will form similar triangles with coinciding right endpoints to the one shown.
519: 508: 504: 311: 194: 175: 135: 107: 3191: 2636: 2585: 174:
instead of less energetic visible light, as done commonly. He discovered the
4325: 4198: 4033: 3980: 3970: 3931: 3829: 2851: 2684:. American Association for the Advancement of Science (AAAS). 7 January 2020 1861: 439: 190: 181:
A theory of this effect was later developed in 1937 within the framework of
171: 123: 3642: 3598: 3546: 3491: 3473: 3407: 3348: 3291: 3283: 3209: 3111:"Coherence and superradiance from a plasma-based quasiparticle accelerator" 3023: 2931: 2923: 2859: 2787: 2741: 2593: 2576: 2547: 2088:. Other projects operated in the past applying related techniques, such as 3434: 3421:
Sinoff, C. L (1991). "Radical irradiation for carcinoma of the prostate".
3388: 2616: 1941:
or from external beam radiotherapy in oncology. Radioisotopes such as the
1332:. This type of radiation (VCR) is used to generate high-power microwaves. 3975: 3960: 3450:"In vivo Cerenkov luminescence imaging: A new tool for molecular imaging" 2762:
Blumenthal, Deborah T.; Corn, Benjamin W.; Shtraus, Natan (August 2015).
2134: 2130: 2073: 2057: 2037: 511: 321:
Cherenkov radiation during Scheduled Refueling and Maintenance Outage of
307: 204: 103: 3423:
South African Medical Journal = Suid-Afrikaanse Tydskrif vir Geneeskunde
1996:
Cherenkov radiation is used to detect high-energy charged particles. In
306:. Cherenkov radiation results when a charged particle, most commonly an 298:
can accelerate to a velocity higher than this (although still less than
4253: 3448:
Mitchell, G. S; Gill, R. K; Boucher, D. L; Li, C; Cherry, S. R (2011).
2316: 2085: 2053: 201: 3330: 2425:(1934). "Visible emission of clean liquids by action of γ radiation". 2129:
for particle identification. One could measure (or put limits on) the
568: 2104: 2089: 1244: 295: 268: 223: 337:
these waves will form spherical wavefronts which propagate with the
3127: 2998: 2811:
Luo, C.; Ibanescu, M.; Johnson, S. G.; Joannopoulos, J. D. (2003).
2522:
Radioactivity: Introduction and History, From the Quantum to Quarks
4078: 3965: 1986: 1980: 1923: 1853: 567: 547: 515: 494: 316: 284: 29: 3748: 3505:
Das, S.; Thorek, D. L. J.; Grimm, J. (2014). "Cerenkov Imaging".
2137:
of the particle is measured independently, one could compute the
2255: 2138: 2049: 2045: 1969:
have been imaged in humans for diagnostic value demonstration.
341:
of that medium (i.e. the speed of light in that medium given by
302:, the speed of light in vacuum) during nuclear reactions and in 3904: 3704:"On Cherenkov light production by irradiated nuclear fuel rods" 2621:(1st ed.). New Delhi: New Age International. p. 189. 1920:
Medical imaging of radioisotopes and external beam radiotherapy
1884:
direction and speed of a Cherenkov radiation-producing charge.
2021: 1929: 3685:
International Journal of Radiation Oncology, Biology, Physics
3623:
International Journal of Radiation Oncology, Biology, Physics
3172:
International Journal of Radiation Oncology, Biology, Physics
2712:
International Journal of Radiation Oncology, Biology, Physics
985:{\displaystyle x_{\text{em}}=v_{\text{em}}t={\frac {c}{n}}t.} 54: 27:
Electromagnetic radiation from a charged particle in a medium
1365:
are different from the electrons in the structure at a time
3764:
Landau, L. D.; Liftshitz, E. M.; Pitaevskii, L. P. (1984).
3454:
Philosophical Transactions of the Royal Society of London A
2072:
and other projects. Similar methods are used in very large
1570:
emitted from Cherenkov radiation, per unit length traveled
69: 66: 57: 3749:
The High Momentum Particle Identification Detector at CERN
75: 1879:
As in sonic booms and bow shocks, the angle of the shock
2270:, similar radiation produced by fast uncharged particles 700:
of the medium. If the medium is water, the condition is
554:
University of Massachusetts Lowell Radiation Laboratory
3507:
Emerging Applications of Molecular Imaging to Oncology
1965:
have measurable Cherenkov emission and isotopes F and
1770:
There is a cut-off frequency above which the equation
1550:
The Frank–Tamm formula describes the amount of energy
2242:
The most advanced type of a detector is the RICH, or
2220: 2196: 2155: 2125:
Cherenkov radiation is commonly used in experimental
1828: 1776: 1726: 1706: 1682: 1649: 1616: 1596: 1576: 1556: 1400: 1390:
of Cherenkov radiation by a particle is given by the
1309: 1282: 1253: 1229: 1089: 1055: 1000: 936: 923:{\displaystyle x_{\text{p}}=v_{\text{p}}t=\beta \,ct} 880: 824: 777: 748: 706: 682: 658: 609: 582: 537:
minimum particle velocity, a phenomenon known as the
448: 403: 375: 347: 78: 72: 2955:"Topsy turvy: The first true "left handed" material" 1676:
of the material the charged particle moves through.
645:{\displaystyle {\frac {c}{n}}<v_{\text{p}}<c,} 63: 4318: 4282: 4169: 3999: 3946: 3939: 2437:Reprinted in Selected Papers of Soviet Physicists, 2401:(3rd ed.). New York: Wiley. pp. 637–638. 60: 3765: 2226: 2202: 2182: 2141:of the particle by its momentum and velocity (see 1834: 1811: 1732: 1712: 1688: 1664: 1631: 1602: 1582: 1562: 1540: 1324: 1288: 1268: 1235: 1162: 1075: 1030: 984: 922: 853: 806: 760: 734: 688: 664: 644: 595: 475: 430: 381: 361: 241:discovered Cherenkov light being generated in the 2764:"Flashes of light-radiation therapy to the brain" 1031:{\displaystyle \cos \theta ={\frac {1}{n\beta }}} 807:{\displaystyle \beta ={\frac {v_{\text{p}}}{c}}.} 210:in papers published between 1888 and 1889 and by 2548:"Oliver Heaviside: an accidental time traveller" 226:irradiating water having a continuous spectrum. 1932:beam from a linear accelerator in radiotherapy. 541:. In a more complex periodic medium, such as a 34:Cherenkov radiation glowing in the core of the 3916: 854:{\displaystyle v_{\text{em}}={\frac {c}{n}}.} 8: 3857:Nuclear Reactor starting up (alternate link) 2293:, giving the spectrum of Cherenkov radiation 2004:(high-energy electrons) are released as the 3376:International Journal of Biomedical Imaging 1348:are created and may travel faster than the 3943: 3923: 3909: 3901: 2953:Schewe, P. F.; Stein, B. (24 March 2004). 2701: 2699: 2250:), one of the six experiments at the LHC ( 1891:, giving the impression of flashes, as in 818:(denoted by blue arrows) travel at speed 735:{\displaystyle 0.75c<v_{\text{p}}<c} 525:The velocity that must be exceeded is the 3588: 3536: 3481: 3397: 3387: 3338: 3199: 3126: 2997: 2841: 2813:"Cerenkov Radiation in Photonic Crystals" 2731: 2575: 2219: 2195: 2172: 2160: 2154: 1827: 1792: 1775: 1725: 1705: 1681: 1648: 1615: 1595: 1575: 1555: 1514: 1504: 1493: 1487: 1475: 1444: 1438: 1425: 1408: 1401: 1399: 1344:setups, structures up to nanocoulombs of 1308: 1281: 1252: 1228: 1140: 1129: 1120: 1102: 1088: 1062: 1054: 1013: 999: 966: 954: 941: 935: 913: 898: 885: 879: 838: 829: 823: 790: 784: 776: 747: 720: 705: 681: 657: 627: 610: 608: 587: 581: 465: 453: 447: 420: 408: 402: 374: 351: 346: 134:. Its cause is similar to the cause of a 2806: 2804: 1812:{\displaystyle \cos \theta =1/(n\beta )} 197:, who also shared the 1958 Nobel Prize. 166:in 1934. Therefore, it is also known as 3794:Cerenkov Radiation and Its Applications 2369:"Cerenkov – Search | ScienceDirect.com" 2332: 2046:Imaging Atmospheric Cherenkov Technique 1316: 1260: 4264:Wireless electronic devices and health 3364:"Cerenkov Luminescence Tomography for 7: 4290:List of civilian radiation accidents 4259:Wireless device radiation and health 4254:Biological dose units and quantities 4204:Electromagnetic radiation and health 3869:"Cherenkov's Particles as Magnetons" 2145:), and hence identify the particle. 874:, the particle travels the distance 229:In 2019, a team of researchers from 154:scientist Pavel Cherenkov, the 1958 3768:Electrodynamics of Continuous Media 476:{\displaystyle v_{\text{p}}>c/n} 431:{\displaystyle v_{\text{p}}<c/n} 4239:Radioactivity in the life sciences 3519:10.1016/B978-0-12-411638-2.00006-9 3513:. Vol. 124. pp. 213–34. 2082:Sudbury Neutrino Observatory (SNO) 1908:Detection of labelled biomolecules 1895:and possibly some observations of 1720:is the speed of the particle, and 25: 2519:L'Annunziata, Michael F. (2016). 2469:"The Nobel Prize in Physics 1958" 994:So the emission angle results in 189:theory by Cherenkov's colleagues 150:The radiation is named after the 3083:Soviet Technical Physics Letters 1819:can no longer be satisfied. The 499:Animation of Cherenkov radiation 50: 3679:Jarvis, L. A. (April 1, 2021). 3047:Optical and Quantum Electronics 2653:The Physics of Nuclear Reactors 2498:. JHU Press. pp. 125–126. 2379:from the original on 2024-01-22 2248:A Large Ion Collider Experiment 2244:ring-imaging Cherenkov detector 2121:Ring imaging Cherenkov detector 3728:10.1088/1748-0221/12/06/T06001 3247:10.3367/UFNe.0179.200911c.1161 3016:10.1103/PhysRevLett.122.161601 2525:. Elsevier. pp. 547–548. 1806: 1797: 1659: 1653: 1626: 1620: 1526: 1520: 1469: 1463: 1269:{\displaystyle p=\hbar \beta } 114:) at a speed greater than the 1: 4406:Experimental particle physics 3656:Ashraf, M.R. (Dec 14, 2018). 2959:American Institute of Physics 2036:, it may produce an electron– 1632:{\displaystyle \mu (\omega )} 761:{\displaystyle n\approx 1.33} 3635:10.1016/j.ijrobp.2014.01.046 3569:Journal of Biomedical Optics 3311:Journal of Biomedical Optics 3184:10.1016/j.ijrobp.2019.10.031 2780:10.1016/j.radonc.2015.07.034 2724:10.1016/j.ijrobp.2019.10.031 2397:Jackson, John David (1999). 2111:Particle physics experiments 596:{\displaystyle v_{\text{p}}} 4127:Cosmic background radiation 3562:"First human Cerenkography" 3511:Advances in Cancer Research 1893:cosmic ray visual phenomena 552:Cherenkov radiation in the 239:Norris Cotton Cancer Center 218:particles until the 1970s. 168:Vavilov–Cherenkov radiation 4427: 4356: 4214:Lasers and aviation safety 3708:Journal of Instrumentation 3137:10.1038/s41566-023-01311-z 2428:Doklady Akademii Nauk SSSR 2114: 2052:), by experiments such as 1665:{\displaystyle n(\omega )} 4354: 4244:Radioactive contamination 4097:Electromagnetic radiation 4087: 3867:Radović, Andrija (2002). 3590:10.1117/1.JBO.18.2.020502 3059:10.1007/s11082-015-0261-8 2768:Radiotherapy and Oncology 2656:. Springer. p. 191. 2618:Classical electrodynamics 2454:October 22, 2007, at the 2399:Classical electrodynamics 2346:Dictionary.com Unabridged 2183:{\displaystyle v_{0}=c/n} 1985:Cherenkov radiation in a 1325:{\displaystyle p=\hbar k} 1076:{\displaystyle d\phi /dx} 768:for water at 20 °C. 529:of light rather than the 490:constructive interference 96:electromagnetic radiation 40:Idaho National Laboratory 4357:See also the categories 4295:1996 Costa Rica accident 3956:Acoustic radiation force 3882:(4): 1–5. Archived from 3846:Nuclear Reactor start up 3710:(Submitted manuscript). 2070:Pierre Auger Observatory 2016:Astrophysics experiments 1191:Reverse Cherenkov effect 1041:Arbitrary emission angle 674:speed of light in vacuum 503:A common analogy is the 4269:Radiation heat-transfer 4122:Gravitational radiation 3830:10.1103/PhysRev.92.1069 2986:Physical Review Letters 2852:10.1126/science.1079549 2650:Marguet, Serge (2017). 2546:Nahin, Paul J. (2018). 2307:Non-radiation condition 2076:detectors, such as the 1867:Kramers–Kronig relation 1603:{\displaystyle \omega } 245:of patients undergoing 4310:1990 Zaragoza accident 4305:1984 Moroccan accident 4274:Linear energy transfer 3948:Non-ionizing radiation 3791:Jelley, J. V. (1958). 3474:10.1098/rsta.2011.0271 3317:(6): 060505–060505–3. 3284:10.1002/smll.200902408 2924:10.1038/nnano.2015.137 2577:10.1098/rsta.2017.0448 2228: 2204: 2184: 1993: 1933: 1836: 1813: 1734: 1714: 1690: 1666: 1633: 1604: 1584: 1564: 1542: 1326: 1290: 1289:{\displaystyle \beta } 1270: 1237: 1164: 1077: 1032: 986: 924: 855: 808: 762: 736: 690: 666: 646: 597: 573: 556: 500: 477: 432: 383: 363: 326: 42: 4300:1987 Goiânia accident 4102:Synchrotron radiation 4092:Earth's energy budget 4074:Radioactive materials 4069:Particle accelerators 3876:Journal of Theoretics 2903:Nature Nanotechnology 2883:Dokl. Akad. Nauk SSSR 2615:Sengupta, P. (2000). 2492:Nahin, P. J. (1988). 2447:, 1999, s. 149–153. ( 2302:List of light sources 2252:Large Hadron Collider 2229: 2205: 2185: 1984: 1927: 1897:criticality accidents 1837: 1814: 1735: 1715: 1691: 1667: 1634: 1605: 1585: 1565: 1543: 1327: 1291: 1271: 1238: 1165: 1078: 1033: 987: 925: 856: 809: 763: 737: 691: 667: 647: 598: 571: 551: 498: 478: 433: 384: 364: 320: 304:particle accelerators 36:Advanced Test Reactor 33: 4371:Radiation protection 4224:Radiation protection 4112:Black-body radiation 4019:Background radiation 3934:(physics and health) 2322:Transition radiation 2218: 2194: 2153: 2020:When a high-energy ( 1939:radiopharmaceuticals 1873:Anomalous dispersion 1826: 1774: 1724: 1704: 1680: 1647: 1614: 1594: 1574: 1554: 1398: 1336:Collective Cherenkov 1307: 1280: 1251: 1227: 1087: 1053: 998: 934: 878: 822: 775: 746: 704: 680: 656: 607: 580: 539:Smith–Purcell effect 446: 401: 373: 345: 323:Arkansas Nuclear One 310:, travels through a 4341:Radiation hardening 4283:Radiation incidents 4219:Medical radiography 4178:Radiation syndrome 4132:Cherenkov radiation 3822:1953PhRv...92.1069S 3720:2017JInst..12.6001B 3581:2013JBO....18b0502S 3466:2011RSPTA.369.4605M 3389:10.1155/2011/641618 3370:Radiopharmaceutical 3323:2010JBO....15f0505L 3239:2009PhyU...52.1099B 3096:1983PZhTF...9.1385B 3008:2019PhRvL.122p1601M 2916:2015NatNa..10..804G 2834:2003Sci...299..368L 2568:2018RSPTA.37670448N 2032:interacts with the 1852:is close to 1). At 1674:index of refraction 1342:plasma acceleration 1302:de Broglie relation 1217:traveling-wave tube 362:{\displaystyle c/n} 235:Dartmouth-Hitchcock 106:) passes through a 46:Cherenkov radiation 18:Cherenkov Radiation 4401:Special relativity 4391:Physical phenomena 4336:Radioactive source 4157:Radiation exposure 4137:Askaryan radiation 4117:Particle radiation 4001:Ionizing radiation 2291:Frank–Tamm formula 2268:Askaryan radiation 2224: 2200: 2180: 2117:Cherenkov detector 2101:supernova remnants 2034:Earth's atmosphere 1998:open pool reactors 1994: 1934: 1832: 1809: 1730: 1710: 1686: 1662: 1629: 1600: 1590:and per frequency 1580: 1560: 1538: 1392:Frank–Tamm formula 1388:frequency spectrum 1322: 1300:) rather than the 1286: 1266: 1233: 1160: 1073: 1028: 982: 920: 851: 804: 758: 732: 686: 662: 642: 593: 574: 557: 501: 473: 428: 379: 359: 335:Huygens' principle 327: 274:universal constant 187:special relativity 92:Cerenkov radiation 43: 4378: 4377: 4359:Radiation effects 4229:Radiation therapy 4165: 4164: 4107:Thermal radiation 4044:Neutron radiation 4009:Radioactive decay 3783:978-0-08-030275-1 3460:(1955): 4605–19. 3331:10.1117/1.3514659 3233:(11): 1099–1110. 2663:978-3-319-59559-7 2628:978-81-224-1249-9 2560:The Royal Society 2532:978-0-444-63489-4 2505:978-0-8018-6909-9 2312:Radioluminescence 2285:Faster-than-light 2227:{\displaystyle n} 2203:{\displaystyle c} 1835:{\displaystyle n} 1733:{\displaystyle c} 1713:{\displaystyle v} 1700:of the particle, 1689:{\displaystyle q} 1583:{\displaystyle x} 1563:{\displaystyle E} 1530: 1458: 1433: 1236:{\displaystyle c} 1174:similar triangles 1158: 1135: 1115: 1026: 974: 957: 944: 901: 888: 846: 832: 799: 793: 723: 689:{\displaystyle n} 665:{\displaystyle c} 630: 618: 590: 456: 411: 382:{\displaystyle n} 281:= 299,792,458 m/s 212:Arnold Sommerfeld 164:Lebedev Institute 86:) (also known as 16:(Redirected from 4418: 4396:Particle physics 4319:Related articles 4234:Radiation damage 4059:Nuclear reactors 3944: 3925: 3918: 3911: 3902: 3897: 3895: 3894: 3888: 3873: 3858: 3847: 3833: 3802: 3787: 3771: 3751: 3746: 3740: 3739: 3699: 3693: 3692: 3676: 3670: 3669: 3653: 3647: 3646: 3617: 3611: 3610: 3592: 3566: 3557: 3551: 3550: 3540: 3502: 3496: 3495: 3485: 3445: 3439: 3438: 3418: 3412: 3411: 3401: 3391: 3359: 3353: 3352: 3342: 3302: 3296: 3295: 3265: 3259: 3258: 3220: 3214: 3213: 3203: 3162: 3156: 3155: 3153: 3151: 3130: 3115:Nature Photonics 3106: 3100: 3099: 3077: 3071: 3070: 3042: 3036: 3035: 3001: 2981: 2975: 2974: 2972: 2970: 2961:. Archived from 2950: 2944: 2943: 2897: 2891: 2890: 2878: 2872: 2871: 2845: 2828:(5605): 368–71. 2817: 2808: 2799: 2798: 2796: 2794: 2759: 2753: 2752: 2750: 2748: 2735: 2703: 2694: 2693: 2691: 2689: 2674: 2668: 2667: 2647: 2641: 2640: 2612: 2606: 2605: 2579: 2543: 2537: 2536: 2516: 2510: 2509: 2489: 2483: 2482: 2480: 2479: 2465: 2459: 2436: 2423:Cherenkov, P. A. 2419: 2413: 2412: 2394: 2388: 2387: 2385: 2384: 2365: 2359: 2358: 2356: 2354: 2337: 2236:refractive index 2233: 2231: 2230: 2225: 2209: 2207: 2206: 2201: 2189: 2187: 2186: 2181: 2176: 2165: 2164: 2127:particle physics 2078:Super-Kamiokande 2006:fission products 1977:Nuclear reactors 1841: 1839: 1838: 1833: 1821:refractive index 1818: 1816: 1815: 1810: 1796: 1739: 1737: 1736: 1731: 1719: 1717: 1716: 1711: 1695: 1693: 1692: 1687: 1671: 1669: 1668: 1663: 1638: 1636: 1635: 1630: 1609: 1607: 1606: 1601: 1589: 1587: 1586: 1581: 1569: 1567: 1566: 1561: 1547: 1545: 1544: 1539: 1537: 1536: 1532: 1531: 1529: 1519: 1518: 1509: 1508: 1498: 1497: 1488: 1459: 1457: 1449: 1448: 1439: 1434: 1432: 1417: 1413: 1412: 1402: 1377: 1364: 1331: 1329: 1328: 1323: 1295: 1293: 1292: 1287: 1275: 1273: 1272: 1267: 1242: 1240: 1239: 1234: 1182: 1169: 1167: 1166: 1161: 1159: 1157: 1149: 1141: 1136: 1134: 1133: 1121: 1116: 1114: 1103: 1082: 1080: 1079: 1074: 1066: 1037: 1035: 1034: 1029: 1027: 1025: 1014: 991: 989: 988: 983: 975: 967: 959: 958: 955: 946: 945: 942: 929: 927: 926: 921: 903: 902: 899: 890: 889: 886: 869: 860: 858: 857: 852: 847: 839: 834: 833: 830: 813: 811: 810: 805: 800: 795: 794: 791: 785: 767: 765: 764: 759: 741: 739: 738: 733: 725: 724: 721: 698:refractive index 695: 693: 692: 687: 671: 669: 668: 663: 651: 649: 648: 643: 632: 631: 628: 619: 611: 602: 600: 599: 594: 592: 591: 588: 543:photonic crystal 482: 480: 479: 474: 469: 458: 457: 454: 437: 435: 434: 429: 424: 413: 412: 409: 391:refractive index 388: 386: 385: 380: 368: 366: 365: 360: 355: 290: 282: 208:Oliver Heaviside 126:in a medium) of 110:medium (such as 100:charged particle 85: 84: 81: 80: 77: 74: 71: 68: 65: 62: 59: 56: 21: 4426: 4425: 4421: 4420: 4419: 4417: 4416: 4415: 4381: 4380: 4379: 4374: 4373: 4350: 4346:Havana syndrome 4331:Nuclear physics 4314: 4278: 4171: 4161: 4147:Unruh radiation 4083: 4064:Nuclear weapons 4049:Nuclear fission 3995: 3935: 3929: 3892: 3890: 3886: 3871: 3866: 3856: 3845: 3841: 3836: 3809:Physical Review 3805: 3790: 3784: 3763: 3759: 3754: 3747: 3743: 3701: 3700: 3696: 3691:(5): 1627–1637. 3678: 3677: 3673: 3668:(2): 1044–1048. 3662:Medical Physics 3655: 3654: 3650: 3619: 3618: 3614: 3564: 3559: 3558: 3554: 3529: 3504: 3503: 3499: 3447: 3446: 3442: 3420: 3419: 3415: 3361: 3360: 3356: 3304: 3303: 3299: 3278:(10): 1087–91. 3267: 3266: 3262: 3226:Physics-Uspekhi 3222: 3221: 3217: 3164: 3163: 3159: 3149: 3147: 3108: 3107: 3103: 3079: 3078: 3074: 3044: 3043: 3039: 2983: 2982: 2978: 2968: 2966: 2952: 2951: 2947: 2899: 2898: 2894: 2880: 2879: 2875: 2843:10.1.1.540.8969 2815: 2810: 2809: 2802: 2792: 2790: 2761: 2760: 2756: 2746: 2744: 2705: 2704: 2697: 2687: 2685: 2676: 2675: 2671: 2664: 2649: 2648: 2644: 2629: 2614: 2613: 2609: 2545: 2544: 2540: 2533: 2518: 2517: 2513: 2506: 2491: 2490: 2486: 2477: 2475: 2467: 2466: 2462: 2456:Wayback Machine 2421: 2420: 2416: 2409: 2396: 2395: 2391: 2382: 2380: 2367: 2366: 2362: 2352: 2350: 2339: 2338: 2334: 2330: 2264: 2216: 2215: 2192: 2191: 2156: 2151: 2150: 2123: 2113: 2018: 1979: 1922: 1910: 1905: 1889:vitreous humour 1824: 1823: 1772: 1771: 1722: 1721: 1702: 1701: 1698:electric charge 1678: 1677: 1645: 1644: 1612: 1611: 1592: 1591: 1572: 1571: 1552: 1551: 1510: 1500: 1499: 1489: 1480: 1476: 1450: 1440: 1418: 1404: 1403: 1396: 1395: 1384: 1382:Characteristics 1376: 1366: 1363: 1353: 1338: 1305: 1304: 1278: 1277: 1249: 1248: 1225: 1224: 1213: 1193: 1183:and final time 1177: 1150: 1142: 1125: 1107: 1085: 1084: 1051: 1050: 1043: 1018: 996: 995: 950: 937: 932: 931: 894: 881: 876: 875: 864: 825: 820: 819: 786: 773: 772: 744: 743: 716: 702: 701: 678: 677: 654: 653: 623: 605: 604: 583: 578: 577: 566: 449: 444: 443: 404: 399: 398: 371: 370: 343: 342: 288: 287:it is only 0.75 277: 260: 255: 253:Physical origin 148: 140:Pavel Cherenkov 132:nuclear reactor 112:distilled water 98:emitted when a 53: 49: 28: 23: 22: 15: 12: 11: 5: 4424: 4422: 4414: 4413: 4408: 4403: 4398: 4393: 4383: 4382: 4376: 4375: 4355: 4352: 4351: 4349: 4348: 4343: 4338: 4333: 4328: 4322: 4320: 4316: 4315: 4313: 4312: 4307: 4302: 4297: 4292: 4286: 4284: 4280: 4279: 4277: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4226: 4221: 4216: 4211: 4206: 4201: 4196: 4194:Health physics 4191: 4190: 4189: 4184: 4175: 4173: 4167: 4166: 4163: 4162: 4160: 4159: 4154: 4152:Dark radiation 4149: 4144: 4142:Bremsstrahlung 4139: 4134: 4129: 4124: 4119: 4114: 4109: 4104: 4099: 4094: 4088: 4085: 4084: 4082: 4081: 4076: 4071: 4066: 4061: 4056: 4054:Nuclear fusion 4051: 4046: 4041: 4036: 4031: 4026: 4024:Alpha particle 4021: 4016: 4011: 4005: 4003: 3997: 3996: 3994: 3993: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3952: 3950: 3941: 3937: 3936: 3930: 3928: 3927: 3920: 3913: 3905: 3899: 3898: 3864: 3853: 3840: 3839:External links 3837: 3835: 3834: 3803: 3799:Pergamon Press 3788: 3782: 3774:Pergamon Press 3760: 3758: 3755: 3753: 3752: 3741: 3694: 3671: 3648: 3629:(3): 615–622. 3612: 3552: 3527: 3497: 3440: 3413: 3354: 3297: 3260: 3215: 3178:(2): 422–429. 3157: 3101: 3072: 3037: 2992:(16): 161601. 2976: 2945: 2910:(9): 804–809. 2892: 2873: 2800: 2774:(2): 331–333. 2754: 2718:(2): 422–429. 2695: 2669: 2662: 2642: 2627: 2607: 2538: 2531: 2511: 2504: 2484: 2473:NobelPrize.org 2460: 2440:Usp. Fiz. Nauk 2414: 2407: 2389: 2373:Science Direct 2360: 2331: 2329: 2326: 2325: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2288: 2282: 2279:Bremsstrahlung 2276: 2271: 2263: 2260: 2223: 2212:speed of light 2199: 2179: 2175: 2171: 2168: 2163: 2159: 2112: 2109: 2017: 2014: 2002:beta particles 1978: 1975: 1921: 1918: 1909: 1906: 1904: 1901: 1831: 1808: 1805: 1802: 1799: 1795: 1791: 1788: 1785: 1782: 1779: 1742:speed of light 1729: 1709: 1685: 1661: 1658: 1655: 1652: 1628: 1625: 1622: 1619: 1599: 1579: 1559: 1535: 1528: 1525: 1522: 1517: 1513: 1507: 1503: 1496: 1492: 1486: 1483: 1479: 1474: 1471: 1468: 1465: 1462: 1456: 1453: 1447: 1443: 1437: 1431: 1428: 1424: 1421: 1416: 1411: 1407: 1383: 1380: 1374: 1361: 1350:speed of light 1337: 1334: 1321: 1318: 1315: 1312: 1298:phase constant 1285: 1265: 1262: 1259: 1256: 1232: 1221:phase velocity 1212: 1209: 1192: 1189: 1156: 1153: 1148: 1145: 1139: 1132: 1128: 1124: 1119: 1113: 1110: 1106: 1101: 1098: 1095: 1092: 1072: 1069: 1065: 1061: 1058: 1042: 1039: 1024: 1021: 1017: 1012: 1009: 1006: 1003: 981: 978: 973: 970: 965: 962: 953: 949: 940: 919: 916: 912: 909: 906: 897: 893: 884: 850: 845: 842: 837: 828: 803: 798: 789: 783: 780: 757: 754: 751: 731: 728: 719: 715: 712: 709: 685: 661: 641: 638: 635: 626: 622: 617: 614: 586: 565: 564:Emission angle 562: 531:group velocity 527:phase velocity 472: 468: 464: 461: 452: 427: 423: 419: 416: 407: 378: 358: 354: 350: 339:phase velocity 333:waves and via 325:Unit 2 (ANO-2) 264:speed of light 259: 256: 254: 251: 243:vitreous humor 160:Sergey Vavilov 147: 144: 116:phase velocity 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4423: 4412: 4411:Light sources 4409: 4407: 4404: 4402: 4399: 4397: 4394: 4392: 4389: 4388: 4386: 4372: 4368: 4364: 4363:Radioactivity 4360: 4353: 4347: 4344: 4342: 4339: 4337: 4334: 4332: 4329: 4327: 4324: 4323: 4321: 4317: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4287: 4285: 4281: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4188: 4185: 4183: 4180: 4179: 4177: 4176: 4174: 4168: 4158: 4155: 4153: 4150: 4148: 4145: 4143: 4140: 4138: 4135: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4093: 4090: 4089: 4086: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4029:Beta particle 4027: 4025: 4022: 4020: 4017: 4015: 4014:Cluster decay 4012: 4010: 4007: 4006: 4004: 4002: 3998: 3992: 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3953: 3951: 3949: 3945: 3942: 3940:Main articles 3938: 3933: 3926: 3921: 3919: 3914: 3912: 3907: 3906: 3903: 3889:on 2016-03-04 3885: 3881: 3877: 3870: 3865: 3863: 3859: 3854: 3852: 3848: 3843: 3842: 3838: 3831: 3827: 3823: 3819: 3815: 3811: 3810: 3804: 3800: 3796: 3795: 3789: 3785: 3779: 3775: 3770: 3769: 3762: 3761: 3756: 3750: 3745: 3742: 3737: 3733: 3729: 3725: 3721: 3717: 3714:(6): T06001. 3713: 3709: 3705: 3698: 3695: 3690: 3686: 3682: 3675: 3672: 3667: 3663: 3659: 3652: 3649: 3644: 3640: 3636: 3632: 3628: 3624: 3616: 3613: 3608: 3604: 3600: 3596: 3591: 3586: 3582: 3578: 3575:(2): 020502. 3574: 3570: 3563: 3556: 3553: 3548: 3544: 3539: 3534: 3530: 3528:9780124116382 3524: 3520: 3516: 3512: 3508: 3501: 3498: 3493: 3489: 3484: 3479: 3475: 3471: 3467: 3463: 3459: 3455: 3451: 3444: 3441: 3436: 3432: 3428: 3424: 3417: 3414: 3409: 3405: 3400: 3395: 3390: 3385: 3381: 3377: 3373: 3371: 3367: 3358: 3355: 3350: 3346: 3341: 3336: 3332: 3328: 3324: 3320: 3316: 3312: 3308: 3301: 3298: 3293: 3289: 3285: 3281: 3277: 3273: 3272: 3264: 3261: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3227: 3219: 3216: 3211: 3207: 3202: 3197: 3193: 3189: 3185: 3181: 3177: 3173: 3169: 3161: 3158: 3146: 3142: 3138: 3134: 3129: 3124: 3120: 3116: 3112: 3105: 3102: 3097: 3093: 3090:: 1385–1389. 3089: 3085: 3084: 3076: 3073: 3068: 3064: 3060: 3056: 3052: 3048: 3041: 3038: 3033: 3029: 3025: 3021: 3017: 3013: 3009: 3005: 3000: 2995: 2991: 2987: 2980: 2977: 2965:on 2009-01-31 2964: 2960: 2956: 2949: 2946: 2941: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2904: 2896: 2893: 2888: 2884: 2877: 2874: 2869: 2865: 2861: 2857: 2853: 2849: 2844: 2839: 2835: 2831: 2827: 2823: 2822: 2814: 2807: 2805: 2801: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2758: 2755: 2743: 2739: 2734: 2729: 2725: 2721: 2717: 2713: 2709: 2702: 2700: 2696: 2683: 2679: 2673: 2670: 2665: 2659: 2655: 2654: 2646: 2643: 2638: 2634: 2630: 2624: 2620: 2619: 2611: 2608: 2603: 2599: 2595: 2591: 2587: 2583: 2578: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2542: 2539: 2534: 2528: 2524: 2523: 2515: 2512: 2507: 2501: 2497: 2496: 2488: 2485: 2474: 2470: 2464: 2461: 2457: 2453: 2450: 2446: 2442: 2441: 2434: 2430: 2429: 2424: 2418: 2415: 2410: 2408:0-471-30932-X 2404: 2400: 2393: 2390: 2378: 2374: 2370: 2364: 2361: 2349:(Online). n.d 2348: 2347: 2342: 2336: 2333: 2327: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2292: 2289: 2286: 2283: 2280: 2277: 2275: 2272: 2269: 2266: 2265: 2261: 2259: 2257: 2253: 2249: 2245: 2240: 2237: 2221: 2213: 2197: 2177: 2173: 2169: 2166: 2161: 2157: 2146: 2144: 2143:four-momentum 2140: 2136: 2132: 2128: 2122: 2118: 2110: 2108: 2106: 2102: 2097: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2042: 2039: 2035: 2031: 2027: 2023: 2015: 2013: 2011: 2010:radioactivity 2007: 2003: 1999: 1991: 1988: 1983: 1976: 1974: 1970: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1931: 1926: 1919: 1917: 1915: 1907: 1902: 1900: 1898: 1894: 1890: 1885: 1882: 1877: 1875: 1874: 1869: 1868: 1863: 1859: 1855: 1851: 1850: 1845: 1829: 1822: 1803: 1800: 1793: 1789: 1786: 1783: 1780: 1777: 1768: 1766: 1762: 1757: 1754: 1750: 1745: 1743: 1727: 1707: 1699: 1683: 1675: 1656: 1650: 1642: 1623: 1617: 1597: 1577: 1557: 1548: 1533: 1523: 1515: 1511: 1505: 1501: 1494: 1490: 1484: 1481: 1477: 1472: 1466: 1460: 1454: 1451: 1445: 1441: 1435: 1429: 1426: 1422: 1419: 1414: 1409: 1405: 1393: 1389: 1381: 1379: 1373: 1369: 1360: 1356: 1351: 1347: 1343: 1335: 1333: 1319: 1313: 1310: 1303: 1299: 1283: 1263: 1257: 1254: 1246: 1230: 1222: 1218: 1210: 1208: 1206: 1203:and negative 1202: 1198: 1197:metamaterials 1190: 1188: 1186: 1180: 1175: 1170: 1154: 1151: 1146: 1143: 1137: 1130: 1126: 1122: 1117: 1111: 1108: 1104: 1099: 1096: 1093: 1090: 1070: 1067: 1063: 1059: 1056: 1048: 1047:metamaterials 1040: 1038: 1022: 1019: 1015: 1010: 1007: 1004: 1001: 992: 979: 976: 971: 968: 963: 960: 951: 947: 938: 917: 914: 910: 907: 904: 895: 891: 882: 873: 867: 861: 848: 843: 840: 835: 826: 817: 801: 796: 787: 781: 778: 769: 755: 752: 749: 729: 726: 717: 713: 710: 707: 699: 683: 675: 659: 639: 636: 633: 624: 620: 615: 612: 584: 570: 563: 561: 555: 550: 546: 544: 540: 536: 532: 528: 523: 521: 517: 513: 510: 506: 497: 493: 491: 486: 470: 466: 462: 459: 450: 441: 425: 421: 417: 414: 405: 396: 392: 376: 356: 352: 348: 340: 336: 332: 324: 319: 315: 313: 309: 305: 301: 297: 293: 286: 280: 275: 271: 270: 265: 257: 252: 250: 248: 244: 240: 236: 232: 227: 225: 221: 217: 213: 209: 206: 203: 198: 196: 192: 188: 184: 179: 177: 173: 169: 165: 161: 157: 153: 145: 143: 141: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 83: 47: 41: 37: 32: 19: 4367:Radiobiology 4249:Radiobiology 4209:Laser safety 4131: 3891:. Retrieved 3884:the original 3879: 3875: 3813: 3807: 3793: 3772:. New York: 3767: 3744: 3711: 3707: 3697: 3688: 3684: 3674: 3665: 3661: 3651: 3626: 3622: 3615: 3572: 3568: 3555: 3506: 3500: 3457: 3453: 3443: 3426: 3422: 3416: 3379: 3375: 3369: 3365: 3357: 3314: 3310: 3300: 3275: 3269: 3263: 3230: 3224: 3218: 3175: 3171: 3160: 3148:. Retrieved 3118: 3114: 3104: 3087: 3081: 3075: 3050: 3046: 3040: 2989: 2985: 2979: 2967:. Retrieved 2963:the original 2948: 2907: 2901: 2895: 2886: 2882: 2876: 2825: 2819: 2791:. Retrieved 2771: 2767: 2757: 2745:. Retrieved 2715: 2711: 2686:. Retrieved 2682:EurekaAlert! 2681: 2672: 2652: 2645: 2617: 2610: 2562:: 20170448. 2555: 2551: 2541: 2521: 2514: 2494: 2487: 2476:. Retrieved 2472: 2463: 2438: 2432: 2426: 2417: 2398: 2392: 2381:. Retrieved 2372: 2363: 2351:. Retrieved 2344: 2335: 2241: 2147: 2124: 2098: 2026:gamma photon 2019: 1995: 1990:reactor pool 1971: 1935: 1914:biomolecules 1911: 1886: 1878: 1871: 1865: 1857: 1847: 1843: 1769: 1749:fluorescence 1746: 1641:permeability 1549: 1385: 1371: 1367: 1358: 1354: 1339: 1214: 1205:permeability 1201:permittivity 1194: 1184: 1178: 1171: 1044: 993: 871: 865: 862: 814:The emitted 770: 575: 558: 534: 524: 502: 485:polarization 395:ground state 328: 299: 291: 278: 266: 261: 247:radiotherapy 228: 216:superluminal 199: 180: 167: 149: 102:(such as an 91: 87: 45: 44: 3991:Ultraviolet 3986:Radio waves 3816:(4): 1069. 2341:"Cherenkov" 1765:ultraviolet 1761:wavelengths 1744:in vacuum. 1219:(TWT), the 816:light waves 603:such that 520:shock front 231:Dartmouth's 220:Marie Curie 156:Nobel Prize 120:propagation 4385:Categories 4172:and health 4170:Radiation 4039:Cosmic ray 3893:2015-09-30 3797:. London: 3429:(8): 514. 3150:28 October 3128:2301.11082 2999:1810.05027 2969:1 December 2478:2021-05-06 2383:2024-01-22 2297:Light echo 2274:Blue noise 2115:See also: 2094:New Mexico 2030:cosmic ray 1862:gamma rays 1247:should be 509:supersonic 505:sonic boom 440:wavefronts 312:dielectric 262:While the 195:Ilya Frank 176:anisotropy 172:gamma rays 136:sonic boom 118:(speed of 108:dielectric 4326:Half-life 4199:Dosimetry 4034:Gamma ray 3981:Microwave 3971:Starlight 3932:Radiation 3736:125858461 3255:122316009 3192:0360-3016 3145:256274794 3121:: 39–45. 3067:124732329 2838:CiteSeerX 2793:1 October 2747:1 October 2688:1 October 2637:233979329 2586:1471-2962 2328:Citations 1957:emitters 1945:emitters 1804:β 1784:θ 1781:⁡ 1657:ω 1624:ω 1618:μ 1598:ω 1524:ω 1485:− 1473:ω 1467:ω 1461:μ 1455:π 1430:ω 1317:ℏ 1284:β 1264:β 1261:ℏ 1211:In vacuum 1147:ϕ 1138:⋅ 1112:β 1097:θ 1094:⁡ 1060:ϕ 1023:β 1008:θ 1005:⁡ 911:β 779:β 753:≈ 191:Igor Tamm 124:wavefront 3976:Sunlight 3961:Infrared 3643:24685442 3599:23334715 3547:25287690 3492:22006909 3408:21747821 3372:Imaging" 3349:21198146 3292:20473988 3210:31669563 3032:84845048 3024:31075012 2940:18907930 2932:26149237 2868:16382089 2860:12532010 2788:26253952 2742:31669563 2602:53111930 2594:30373938 2558:(2134). 2452:Archived 2377:Archived 2262:See also 2190:, where 2135:momentum 2131:velocity 2074:neutrino 2058:H.E.S.S. 2038:positron 1943:positron 1753:emission 742:, since 512:aircraft 308:electron 205:polymath 183:Einstein 104:electron 88:Čerenkov 4187:chronic 3862:YouTube 3851:YouTube 3818:Bibcode 3757:Sources 3716:Bibcode 3607:3503642 3577:Bibcode 3538:4329979 3483:3263789 3462:Bibcode 3435:2020899 3399:3124671 3382:: 1–6. 3340:3003718 3319:Bibcode 3235:Bibcode 3201:7161418 3092:Bibcode 3004:Bibcode 2912:Bibcode 2830:Bibcode 2821:Science 2733:7161418 2564:Bibcode 2317:Tachyon 2234:is the 2210:is the 2105:blazars 2086:IceCube 2054:VERITAS 1756:spectra 1747:Unlike 1740:is the 1696:is the 1672:is the 1639:is the 696:is the 289:‍ 202:English 162:at the 146:History 4369:, and 3780:  3734:  3641:  3605:  3597:  3545:  3535:  3525:  3490:  3480:  3433:  3406:  3396:  3347:  3337:  3290:  3253:  3208:  3198:  3190:  3143:  3065:  3030:  3022:  2938:  2930:  2866:  2858:  2840:  2786:  2740:  2730:  2660:  2635:  2625:  2600:  2592:  2584:  2529:  2502:  2435:: 451. 2405:  2353:26 May 2214:, and 2090:STACEE 2080:, the 2068:, the 1346:charge 1245:photon 676:, and 652:where 514:. The 483:, the 389:, the 369:, for 296:Matter 269:vacuum 258:Basics 224:radium 152:Soviet 4182:acute 4079:X-ray 3966:Light 3887:(PDF) 3872:(PDF) 3732:S2CID 3603:S2CID 3565:(PDF) 3368:Vivo 3271:Small 3251:S2CID 3141:S2CID 3123:arXiv 3063:S2CID 3053:(2). 3028:S2CID 2994:arXiv 2936:S2CID 2889:: 107 2864:S2CID 2816:(PDF) 2598:S2CID 2445:Nauka 2254:) at 2062:MAGIC 1987:TRIGA 1854:X-ray 1370:> 516:sound 507:of a 285:water 272:is a 128:light 122:of a 94:) is 3778:ISBN 3639:PMID 3595:PMID 3543:PMID 3523:ISBN 3488:PMID 3431:PMID 3404:PMID 3380:2011 3345:PMID 3288:PMID 3206:PMID 3188:ISSN 3152:2023 3020:PMID 2971:2008 2928:PMID 2856:PMID 2795:2020 2784:PMID 2749:2020 2738:PMID 2690:2020 2658:ISBN 2633:OCLC 2623:ISBN 2590:PMID 2582:ISSN 2527:ISBN 2500:ISBN 2403:ISBN 2355:2020 2256:CERN 2139:mass 2119:and 2103:and 2084:and 2066:HAWC 2050:IACT 2041:pair 1955:beta 1949:and 1903:Uses 1881:cone 1870:and 1643:and 1386:The 756:1.33 727:< 714:< 708:0.75 634:< 621:< 460:> 415:< 233:and 193:and 3860:on 3849:on 3826:doi 3724:doi 3689:109 3631:doi 3585:doi 3533:PMC 3515:doi 3478:PMC 3470:doi 3458:369 3394:PMC 3384:doi 3335:PMC 3327:doi 3280:doi 3243:doi 3196:PMC 3180:doi 3176:106 3133:doi 3055:doi 3012:doi 2990:122 2920:doi 2848:doi 2826:299 2776:doi 2772:116 2728:PMC 2720:doi 2716:106 2572:doi 2556:376 2449:ref 2028:or 2022:TeV 1961:or 1953:or 1930:MeV 1876:). 1778:cos 1751:or 1296:is 1181:= 0 1091:cos 1002:cos 868:= 0 672:is 267:in 237:'s 185:'s 90:or 38:at 4387:: 4365:, 4361:, 3878:. 3874:. 3824:. 3814:92 3812:. 3776:. 3730:. 3722:. 3712:12 3706:. 3687:. 3683:. 3666:46 3664:. 3660:. 3637:. 3627:89 3625:. 3601:. 3593:. 3583:. 3573:18 3571:. 3567:. 3541:. 3531:. 3521:. 3509:. 3486:. 3476:. 3468:. 3456:. 3452:. 3427:79 3425:. 3402:. 3392:. 3378:. 3374:. 3366:In 3343:. 3333:. 3325:. 3315:15 3313:. 3309:. 3286:. 3274:. 3249:. 3241:. 3231:52 3229:. 3204:. 3194:. 3186:. 3174:. 3170:. 3139:. 3131:. 3119:18 3117:. 3113:. 3086:. 3061:. 3051:48 3049:. 3026:. 3018:. 3010:. 3002:. 2988:. 2957:. 2934:. 2926:. 2918:. 2908:10 2906:. 2887:14 2885:, 2862:. 2854:. 2846:. 2836:. 2824:. 2818:. 2803:^ 2782:. 2770:. 2766:. 2736:. 2726:. 2714:. 2710:. 2698:^ 2680:. 2631:. 2596:. 2588:. 2580:. 2570:. 2554:. 2550:. 2471:. 2431:. 2375:. 2371:. 2343:. 2258:. 2107:. 2096:. 2060:, 2056:, 2024:) 2000:, 1899:. 1610:. 1394:: 1378:. 1357:= 956:em 943:em 831:em 535:no 331:EM 294:. 142:. 55:tʃ 3924:e 3917:t 3910:v 3896:. 3880:4 3832:. 3828:: 3820:: 3801:. 3786:. 3738:. 3726:: 3718:: 3645:. 3633:: 3609:. 3587:: 3579:: 3549:. 3517:: 3494:. 3472:: 3464:: 3437:. 3410:. 3386:: 3351:. 3329:: 3321:: 3294:. 3282:: 3276:6 3257:. 3245:: 3237:: 3212:. 3182:: 3154:. 3135:: 3125:: 3098:. 3094:: 3088:9 3069:. 3057:: 3034:. 3014:: 3006:: 2996:: 2973:. 2942:. 2922:: 2914:: 2870:. 2850:: 2832:: 2797:. 2778:: 2751:. 2722:: 2692:. 2666:. 2639:. 2604:. 2574:: 2566:: 2535:. 2508:. 2481:. 2458:) 2433:2 2411:. 2386:. 2357:. 2222:n 2198:c 2178:n 2174:/ 2170:c 2167:= 2162:0 2158:v 2149:( 2048:( 1992:. 1967:I 1963:Y 1959:P 1951:N 1947:F 1858:c 1849:c 1846:/ 1844:v 1830:n 1807:) 1801:n 1798:( 1794:/ 1790:1 1787:= 1728:c 1708:v 1684:q 1660:) 1654:( 1651:n 1627:) 1621:( 1578:x 1558:E 1534:) 1527:) 1521:( 1516:2 1512:n 1506:2 1502:v 1495:2 1491:c 1482:1 1478:( 1470:) 1464:( 1452:4 1446:2 1442:q 1436:= 1427:d 1423:x 1420:d 1415:E 1410:2 1406:d 1375:0 1372:t 1368:t 1362:0 1359:t 1355:t 1320:k 1314:= 1311:p 1276:( 1258:= 1255:p 1231:c 1185:t 1179:t 1155:x 1152:d 1144:d 1131:0 1127:k 1123:n 1118:+ 1109:n 1105:1 1100:= 1071:x 1068:d 1064:/ 1057:d 1020:n 1016:1 1011:= 980:. 977:t 972:n 969:c 964:= 961:t 952:v 948:= 939:x 918:t 915:c 908:= 905:t 900:p 896:v 892:= 887:p 883:x 872:t 866:t 849:. 844:n 841:c 836:= 827:v 802:. 797:c 792:p 788:v 782:= 750:n 730:c 722:p 718:v 711:c 684:n 660:c 640:, 637:c 629:p 625:v 616:n 613:c 589:p 585:v 471:n 467:/ 463:c 455:p 451:v 426:n 422:/ 418:c 410:p 406:v 377:n 357:n 353:/ 349:c 300:c 292:c 279:c 276:( 82:/ 79:f 76:ɒ 73:k 70:ŋ 67:ɛ 64:r 61:ˈ 58:ə 52:/ 48:( 20:)

Index

Cherenkov Radiation

Advanced Test Reactor
Idaho National Laboratory
/əˈrɛŋkɒf/
electromagnetic radiation
charged particle
electron
dielectric
distilled water
phase velocity
propagation
wavefront
light
nuclear reactor
sonic boom
Pavel Cherenkov
Soviet
Nobel Prize
Sergey Vavilov
Lebedev Institute
gamma rays
anisotropy
Einstein
special relativity
Igor Tamm
Ilya Frank
English
polymath
Oliver Heaviside

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.