Knowledge (XXG)

Claw-free graph

Source đź“ť

20: 559:. That is, there exists a set of edges in the graph such that each vertex is an endpoint of exactly one of the matched edges. The special case of this result for line graphs implies that, in any graph with an even number of edges, one can partition the edges into paths of length two. Perfect matchings may be used to provide another characterization of the claw-free graphs: they are exactly the graphs in which every connected induced subgraph of even order has a perfect matching. 727: 525: 848:). However, for many years this remained an unsolved conjecture, only proven for special subclasses of graphs. One of these subclasses was the family of claw-free graphs: it was discovered by several authors that claw-free graphs without odd cycles and odd holes are perfect. Perfect claw-free graphs may be recognized in polynomial time. In a perfect claw-free graph, the neighborhood of any vertex forms the complement of a 116: 998:
for minor-closed graph families proven by Robertson and Seymour, and to the structure theory for perfect graphs that Chudnovsky, Seymour and their co-authors used to prove the strong perfect graph theorem. The theory is too complex to describe in detail here, but to give a flavor of it, it suffices
914:
contains a large clique, of size roughly proportional to the square root of the degree. For connected claw-free graphs that include at least one three-vertex independent set, a stronger relation between chromatic number and clique size is possible: in these graphs, there exists a clique of size at
978:
Despite this domination perfectness property, it is NP-hard to determine the size of the minimum dominating set in a claw-free graph. However, in contrast to the situation for more general classes of graphs, finding the minimum dominating set or the minimum connected dominating set in a claw-free
399:
the neighbors of the vertex would not have enough remaining edges to form the complement of a triangle-free graph. This observation allows the check of each neighborhood in the fast matrix multiplication based algorithm outlined above to be performed in the same asymptotic time bound as
1018:. This generalizes the construction of a line graph, in which every edge of the multigraph is replaced by a vertex. Fuzzy linear interval graphs are constructed in the same way as fuzzy circular interval graphs, but on a line rather than on a circle. 812:, Minty's result may also be used to solve in polynomial time the more general problem of finding in claw-free graphs an independent set of maximum weight. Generalizations of these results to wider classes of graphs are also known. By showing a novel 228:
must share one of those endpoints with each other. Line graphs may be characterized in terms of nine forbidden subgraphs; the claw is the simplest of these nine graphs. This characterization provided the initial motivation for studying claw-free
875:
In general, it is NP-hard to find the largest clique in a claw-free graph. It is also NP-hard to find an optimal coloring of the graph, because (via line graphs) this problem generalizes the NP-hard problem of computing the
349:), by testing each 4-tuple of vertices to determine whether they induce a claw. With more efficiency, and greater complication, one can test whether a graph is claw-free by checking, for each vertex of the graph, that the 562:
Sumner's proof shows, more strongly, that in any connected claw-free graph one can find a pair of adjacent vertices the removal of which leaves the remaining graph connected. To show this, Sumner finds a pair of vertices
258:
of families of intervals in which no interval contains another interval, are claw-free, because four properly intersecting intervals cannot intersect in the pattern of a claw. The same is true more generally for proper
966:
can be replaced by one of the undominated vertices in its clique producing a dominating set with fewer adjacencies. By repeating this replacement process one eventually reaches a dominating set no larger than
797:
with any augmenting path gives a larger independent set, the task thus reduces to searching for augmenting paths until no more can be found, analogously as in algorithms for finding maximum matchings.
1026:
Six specific subclasses of claw-free graphs. Three of these are line graphs, proper circular arc graphs, and the induced subgraphs of an icosahedron; the other three involve additional definitions.
808:
step. Minty's approach is to transform the problem instance into an auxiliary line graph and use Edmonds' algorithm directly to find the augmenting paths. After a correction by
1665:
Faenza, Yuri; Oriolo, Gianpaolo; Stauffer, Gautier (2011), "An Algorithmic Decomposition of Claw-free Graphs Leading to an O(n)-algorithm for the Weighted Stable Set Problem",
1574:
Cygan, Marek; Philip, Geevarghese; Pilipczuk, Marcin; Pilipczuk, Michał; Wojtaszczyk, Jakub Onufry (2011), "Dominating set is fixed parameter tractable in claw-free graphs",
64:
is a claw; i.e., any subset of four vertices has other than only three edges connecting them in this pattern. Equivalently, a claw-free graph is a graph in which the
1342:
Chrobak, Marek; Naor, Joseph; Novick, Mark B. (1989), "Using bounded degree spanning trees in the design of efficient algorithms on claw-free graphs", in Dehne, F.;
1860: 844:) that perfect graphs may be characterized as the graphs that do not have as induced subgraphs either an odd cycle or the complement of an odd cycle (a so-called 1055:
and new bounds on the chromatic number of claw-free graphs, as well as to new fixed-parameter-tractable algorithms for dominating sets in claw-free graphs.
603:
leaves the remaining graph connected. Repeatedly removing matched pairs of vertices in this way forms a perfect matching in the given claw-free graph.
497: 479: 1348: 869: 1576: 983:: it can be solved in time bounded by a polynomial in the size of the graph multiplied by an exponential function of the dominating set size. 698: â‰Ą 2; claw-free graphs of odd order with at most one degree-one vertex may be partitioned into an odd cycle and a matching; for any 1837: 1687: 1375: 2063: 926:
that is independent, and if the same property holds in all of its induced subgraphs. Claw-free graphs have this property. To see this, let
765:
Both approaches use the observation that in claw-free graphs, no vertex can have more than two neighbors in an independent set, and so the
1812:
Automata, Languages and Programming: 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I
1051:
with parameters srg(27,16,10,8), plays an important role in this part of the analysis. This structure theory has led to new advances in
373: 769:
of two independent sets must induce a subgraph of degree at most two; that is, it is a union of paths and cycles. In particular, if
918:
Although not every claw-free graph is perfect, claw-free graphs satisfy another property, related to perfection. A graph is called
2231: 1495: 888:
algorithm, because the chromatic number of a claw-free graph is greater than half its maximum degree. A generalization of the
1777: 1710: 1389: 735: 738:
in a line graph corresponds to a matching in its underlying graph, a set of edges no two of which share an endpoint. The
1530: 1483: 1452: 1397: 1393: 841: 528:
Sumner's proof that claw-free connected graphs of even order have perfect matchings: removing the two adjacent vertices
906:, meaning that every claw-free graph of large chromatic number contains a large clique. More strongly, it follows from 418:
matrix multiplication, or faster for vertices with even lower degrees. The worst case for this algorithm occurs when Ω(
271: 1011:, a class of graphs represented geometrically by points and arcs on a circle, generalizing proper circular arc graphs. 65: 954:
would be the center of a claw). If every vertex in this clique is already dominated by at least one other member of
1901: 1871: 361:
contains a nonzero diagonal element, so finding a triangle may be performed in the same asymptotic time bound as
73: 2113:
Sbihi, Najiba (1980), "Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile",
1943:
Kloks, Ton; Kratsch, Dieter; MĂĽller, Haiko (2000), "Finding and counting small induced subgraphs efficiently",
1052: 980: 919: 47: 2226: 1343: 1233: 995: 751: 100: 773:
is a non-maximum independent set, it differs from any maximum independent set by even cycles and so called
1542: 1466:, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge: Cambridge Univ. Press, pp. 153–171, 1232:
observe on p. 132 that the NP-hardness of cliques in claw-free graphs follows from the NP-hardness of the
1048: 994:
overview a series of papers in which they prove a structure theory for claw-free graphs, analogous to the
325: 456:
vertices grows at least as quickly as the number of triangle-free graphs, exponentially in the square of
87:, and gained additional motivation through three key discoveries about them: the fact that all claw-free 1409: 911: 452:
Because claw-free graphs include complements of triangle-free graphs, the number of claw-free graphs on
369: 247: 69: 1039:
defined as the claw-free graphs in which every four vertices induce a subgraph with at least two edges.
396: 1332:
Beineke, L. W. (1968), "Derived graphs of digraphs", in Sachs, H.; Voss, H.-J.; Walter, H.-J. (eds.),
60:
comprising three edges, three leaves, and a central vertex). A claw-free graph is a graph in which no
1807: 766: 655: 306: 204: 1547: 1043:
Much of the work in their structure theory involves a further analysis of antiprismatic graphs. The
1003:(equivalently, locally co-bipartite graphs), they state that every such graph has one of two forms: 1237: 999:
to outline two of their results. First, for a special subclass of claw-free graphs which they call
907: 881: 651: 237: 77: 36: 2164: 1972: 1931: 1913: 1843: 1815: 1763: 1741: 1693: 1653: 1611: 1585: 1436: 1418: 754:
in line graphs. This has been independently extended to an algorithm for all claw-free graphs by
671: 667: 260: 255: 2029:"A revision of Minty's algorithm for finding a maximum weighted stable set of a claw-free graph" 1775:
Gravier, Sylvain; Maffray, Frédéric (2004), "On the choice number of claw-free perfect graphs",
1022:
Chudnovsky and Seymour classify arbitrary connected claw-free graphs into one of the following:
19: 2028: 840:
are equal, and in which this equality persists in every induced subgraph. It is now known (the
2199: 1854: 1833: 1683: 1371: 1044: 889: 801: 739: 513: 486:
If the graphs are allowed to be disconnected, the numbers of graphs are even larger: they are
321: 302: 1666: 353:
of its neighbors does not contain a triangle. A graph contains a triangle if and only if the
2156: 2122: 2072: 2040: 2005: 1952: 1923: 1880: 1825: 1814:, Lecture Notes in Computer Science, vol. 6755, Zurich, Switzerland, pp. 462–473, 1786: 1755: 1719: 1675: 1635: 1595: 1552: 1526: 1504: 1479: 1448: 1428: 1385: 1361: 1353: 975:
is a minimum dominating set this process forms an equally small independent dominating set.
833: 747: 556: 358: 350: 233: 92: 61: 40: 2176: 2136: 2105: 2084: 2019: 1988: 1964: 1892: 1798: 1733: 1649: 1607: 1566: 1518: 1471: 1456: 1349:
Algorithms and Data Structures: Workshop WADS '89, Ottawa, Canada, August 1989, Proceedings
726: 524: 2172: 2132: 2101: 2080: 2015: 1984: 1960: 1888: 1794: 1729: 1645: 1603: 1562: 1514: 1467: 896:
equals the chromatic number; these two numbers can be far apart in other kinds of graphs.
885: 877: 849: 552: 96: 88: 1996:
Minty, George J. (1980), "On maximal independent sets of vertices in claw-free graphs",
436:) neighbors each, and the remaining vertices have few neighbors, so its total time is O( 107:. They are the subject of hundreds of mathematical research papers and several surveys. 1904:(2015), "Claw-free graphs, skeletal graphs, and a stronger conjecture on ω, Δ, and χ", 923: 853: 837: 354: 309:
formed by removing a perfect matching from a complete graph), the graph of the regular
298: 251: 241: 1956: 1790: 1724: 866:
Do claw-free graphs always have list chromatic number equal to their chromatic number?
119:
The regular icosahedron, a polyhedron whose vertices and edges form a claw-free graph.
2220: 2127: 2010: 1746: 1705: 1440: 1401: 893: 829: 267: 104: 2203: 1767: 1697: 1657: 1615: 1352:, Lecture Notes in Comput. Sci., vol. 382, Berlin: Springer, pp. 147–162, 2144: 2055: 1935: 1847: 1623: 880:
of a graph. For the same reason, it is NP-hard to find a coloring that achieves an
778: 540:
leaves a connected subgraph, within which the same removal process may be repeated.
28: 900: 856:
perfect claw-free graphs, or to find maximum cliques in them, in polynomial time.
1829: 1668:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
1036: 509: 310: 286: 1679: 1557: 1509: 1432: 2076: 1599: 294: 278: 125: 84: 57: 2190: 1487: 1357: 962:
can be removed producing a smaller independent dominating set, and otherwise
884:
better than 4/3. However, an approximation ratio of two can be achieved by a
702:
that is at most half the minimum degree of a claw-free graph in which either
642:. Therefore, the process of forming a matching by finding and removing pairs 2208: 1708:; Flandrin, Evelyne; Ryjáček, Zdeněk (1997), "Claw-free graphs — A survey", 2092:
Poljak, Svatopluk (1974), "A note on stable sets and colorings of graphs",
1869:
Itai, Alon; Rodeh, Michael (1978), "Finding a minimum circuit in a graph",
1744:; Karzanov, Alexander V. (1996), "Path problems in skew-symmetric graphs", 1640: 730:
A non-maximum independent set (the two violet nodes) and an augmenting path
2045: 282: 115: 2168: 1759: 858: 820:
gave a cubic time algorithm, which also works in the weighted setting.
314: 290: 1927: 1423: 1366: 804:
step of Edmonds' algorithm and adds a similar, but more complicated,
376:, the total time for this claw-free recognition algorithm would be O( 2160: 1884: 750:
in any graph in polynomial time, which is equivalent to computing a
1918: 1820: 1590: 1014:
A graph constructed from a multigraph by replacing each edge by a
1316: 1292: 472:
1, 1, 2, 5, 14, 50, 191, 881, 4494, 26389, 184749, ... (sequence
1205: 1029:
Graphs formed in four simple ways from smaller claw-free graphs.
2054:
Palmer, Edgar M.; Read, Ronald C.; Robinson, Robert W. (2002),
1674:, SODA '11, San Francisco, California: SIAM, pp. 630–646, 638:
from the graph does not change any of the other distances from
83:
Claw-free graphs were initially studied as a generalization of
386:
observe that in any claw-free graph, each vertex has at most 2
1288: 270:, a seven-vertex graph used to provide a lower bound for the 571:
that are as far apart as possible in the graph, and chooses
930:
be a dominating set in a claw-free graph, and suppose that
492: 474: 103:
in claw-free graphs, and the characterization of claw-free
694:-free graphs of even order have perfect matchings for any 1806:
Hermelin, Danny; Mnich, Matthias; van Leeuwen, Erik Jan;
789:, and for which both endpoints have only one neighbor in 240:
is claw-free. These graphs include as a special case any
680:
list several related results, including the following: (
337:
It is straightforward to verify that a given graph with
159:) whenever the corresponding edges share an endpoint in 1977:
Cahiers du Centre d'Études de Recherche Opérationnelle
1276: 1229: 1217: 1190: 1175: 1148: 1102: 1075: 718:-edge matching can be extended to a perfect matching. 677: 666:
provide an alternative linear-time algorithm based on
817: 591:
can lie on any shortest path from any other node to
490:
1, 2, 4, 10, 26, 85, 302, 1285, 6170, ... (sequence
2094:
Commentationes Mathematicae Universitatis Carolinae
2033:
Journal of the Operations Research Society of Japan
706:or the number of vertices is even, the graph has a 505: 383: 1488:"Claw-free graphs. III. Circular interval graphs" 1264: 1131: 1114: 991: 663: 2149:Proceedings of the American Mathematical Society 171:) cannot contain a claw, because if three edges 460:. The numbers of connected claw-free graphs on 2193:, Information System on Graph Class Inclusions 1252: 809: 512:to be counted very efficiently, unusually for 1810:(2011), "Domination when the stars are out", 8: 606:The same proof idea holds more generally if 2027:Nakamura, Daishin; Tamura, Akihisa (2001), 548: 2155:(1), American Mathematical Society: 8–12, 1859:: CS1 maint: location missing publisher ( 1533:(2010), "Claw-free graphs VI. Colouring", 1201: 1199: 285:are claw-free, including the graph of the 2126: 2044: 2009: 1998:Journal of Combinatorial Theory, Series B 1975:(1975), "A note on matchings in graphs", 1917: 1819: 1723: 1639: 1589: 1556: 1546: 1508: 1422: 1365: 1160: 971:, so in particular when the starting set 614:is any vertex that is maximally far from 1304: 1144: 1142: 1140: 942:; then the set of vertices dominated by 781:which alternate between vertices not in 725: 710:-factor; and, if a claw-free graph is (2 523: 114: 18: 16:Graph without four-vertex star subgraphs 1171: 1169: 1098: 1096: 1087: 1071: 1069: 1067: 1063: 892:states that, for claw-free graphs, the 870:(more unsolved problems in mathematics) 743: 1852: 1277:Faudree, Flandrin & Ryjáček (1997) 1241: 1230:Faudree, Flandrin & Ryjáček (1997) 1218:Faudree, Flandrin & Ryjáček (1997) 1191:Faudree, Flandrin & Ryjáček (1997) 1186: 1184: 1176:Faudree, Flandrin & Ryjáček (1997) 1149:Faudree, Flandrin & Ryjáček (1997) 1127: 1125: 1123: 1103:Faudree, Flandrin & Ryjáček (1997) 1076:Faudree, Flandrin & Ryjáček (1997) 678:Faudree, Flandrin & Ryjáček (1997) 555:with an even number of vertices has a 544: 196:all share endpoints with another edge 759: 755: 468: = 1, 2, ... are 293:(a complete graph), the graph of the 7: 2064:SIAM Journal on Discrete Mathematics 1626:(1965), "Paths, Trees and Flowers", 910:that every claw-free graph of large 818:Faenza, Oriolo & Stauffer (2011) 714: + 1)-connected, then any 1457:"The structure of claw-free graphs" 1402:"The strong perfect graph theorem" 1336:, Leipzig: Teubner, pp. 17–33 583:as possible; as he shows, neither 506:Palmer, Read & Robinson (2002) 384:Kloks, Kratsch & MĂĽller (2000) 14: 2147:(1974), "Graphs with 1-factors", 2056:"Counting claw-free cubic graphs" 915:least half the chromatic number. 824:Coloring, cliques, and domination 793:. As the symmetric difference of 664:Chrobak, Naor & Novick (1989) 147:) has a vertex for every edge of 800:Sbihi's algorithm recreates the 684: − 1)-connected 35:is a graph that does not have a 1628:Canadian Journal of Mathematics 1535:Journal of Combinatorial Theory 1496:Journal of Combinatorial Theory 1265:Chudnovsky & Seymour (2010) 1132:Chudnovsky & Seymour (2005) 1115:Chudnovsky & Seymour (2008) 992:Chudnovsky & Seymour (2005) 861:Unsolved problem in mathematics 508:allows the number of claw-free 328:with 27 vertices, is claw-free. 151:, and vertices are adjacent in 46:A claw is another name for the 1945:Information Processing Letters 813: 374:Coppersmith–Winograd algorithm 1: 1957:10.1016/S0020-0190(00)00047-8 1791:10.1016/S0012-365X(03)00292-9 1725:10.1016/S0012-365X(96)00045-3 1464:Surveys in combinatorics 2005 1009:fuzzy circular interval graph 938:are two adjacent vertices in 890:edge list coloring conjecture 658:tree of the graph, rooted at 650:may be performed by a single 345:edges is claw-free in time O( 272:chromatic number of the plane 2128:10.1016/0012-365X(90)90287-R 2011:10.1016/0095-8956(80)90074-X 1830:10.1007/978-3-642-22006-7_39 1577:Theoretical Computer Science 1253:Gravier & Maffray (2004) 842:strong perfect graph theorem 646:that are maximally far from 551:proved that every claw-free 395:neighbors; for otherwise by 31:, an area of mathematics, a 1334:Beiträge zur Graphentheorie 1016:fuzzy linear interval graph 626:that is maximally far from 2248: 1680:10.1137/1.9781611973082.49 1558:10.1016/j.jctb.2010.04.005 1510:10.1016/j.jctb.2008.03.001 1433:10.4007/annals.2006.164.51 810:Nakamura & Tamura 2001 630:. Further, the removal of 297:and more generally of any 289:and more generally of any 2198:Mugan, Jonathan William; 2077:10.1137/S0895480194274777 1872:SIAM Journal on Computing 1600:10.1016/j.tcs.2011.09.010 981:fixed-parameter tractable 899:The claw-free graphs are 1358:10.1007/3-540-51542-9_13 1206:Chudnovsky et al. (2006) 1053:polyhedral combinatorics 832:is a graph in which the 101:maximum independent sets 48:complete bipartite graph 2232:Matching (graph theory) 1906:Journal of Graph Theory 1234:independent set problem 1161:Itai & Rodeh (1978) 996:graph structure theorem 950:must be a clique (else 752:maximum independent set 670:, as well as efficient 536:that are farthest from 372:. Therefore, using the 313:, and the graph of the 99:algorithms for finding 1641:10.4153/CJM-1965-045-4 1346:; Santoro, N. (eds.), 1317:Hermelin et al. (2011) 1305:King & Reed (2015) 1293:Hermelin et al. (2011) 1049:strongly regular graph 731: 674:for the same problem. 541: 326:strongly regular graph 277:The graphs of several 248:Proper interval graphs 120: 24: 2046:10.15807/jorsj.44.194 1410:Annals of Mathematics 894:list chromatic number 729: 527: 370:matrix multiplication 118: 22: 2115:Discrete Mathematics 1778:Discrete Mathematics 1711:Discrete Mathematics 1240:, proven NP-hard by 1238:triangle-free graphs 1033:Antiprismatic graphs 922:if it has a minimum 852:. It is possible to 836:and the size of the 767:symmetric difference 656:breadth first search 595:, so the removal of 579:that is as far from 575:to be a neighbor of 547:and, independently, 307:cocktail party graph 205:pigeonhole principle 1742:Goldberg, Andrew V. 1289:Cygan et al. (2011) 882:approximation ratio 802:blossom contraction 672:parallel algorithms 652:postorder traversal 622:is any neighbor of 261:circular-arc graphs 256:intersection graphs 238:triangle-free graph 95:, the discovery of 91:of even order have 78:triangle-free graph 2200:Weisstein, Eric W. 1983:(2–3–4): 257–260, 1808:Woeginger, Gerhard 1760:10.1007/BF01261321 920:domination perfect 806:clique contraction 732: 668:depth-first search 662:, in linear time. 549:Las Vergnas (1975) 542: 427:) vertices have Ω( 121: 25: 2204:"Claw-Free Graph" 1928:10.1002/jgt.21797 1900:King, Andrew D.; 1839:978-3-642-22005-0 1689:978-0-89871-993-2 1584:(50): 6982–7000, 1527:Chudnovsky, Maria 1480:Chudnovsky, Maria 1449:Chudnovsky, Maria 1386:Chudnovsky, Maria 1377:978-3-540-51542-5 1001:quasi-line graphs 814:structure theorem 740:blossom algorithm 514:graph enumeration 93:perfect matchings 2239: 2213: 2212: 2191:Claw-free graphs 2179: 2145:Sumner, David P. 2139: 2130: 2108: 2087: 2060: 2049: 2048: 2022: 2013: 1991: 1967: 1951:(3–4): 115–121, 1938: 1921: 1895: 1864: 1858: 1850: 1823: 1801: 1785:(1–3): 211–218, 1770: 1736: 1727: 1700: 1673: 1660: 1643: 1618: 1593: 1569: 1560: 1550: 1521: 1512: 1492: 1474: 1461: 1443: 1426: 1406: 1380: 1369: 1337: 1320: 1314: 1308: 1302: 1296: 1286: 1280: 1274: 1268: 1262: 1256: 1250: 1244: 1227: 1221: 1215: 1209: 1203: 1194: 1188: 1179: 1173: 1164: 1158: 1152: 1146: 1135: 1129: 1118: 1112: 1106: 1100: 1091: 1085: 1079: 1073: 908:Ramsey's theorem 862: 834:chromatic number 785:and vertices in 775:augmenting paths 748:maximum matching 722:Independent sets 557:perfect matching 495: 477: 440:) = O( 435: 434: 426: 425: 417: 416: 408: 407: 394: 393: 359:adjacency matrix 351:complement graph 207:at least two of 89:connected graphs 62:induced subgraph 41:induced subgraph 2247: 2246: 2242: 2241: 2240: 2238: 2237: 2236: 2217: 2216: 2197: 2196: 2187: 2161:10.2307/2039666 2143: 2112: 2091: 2058: 2053: 2026: 1995: 1973:Las Vergnas, M. 1971: 1942: 1899: 1885:10.1137/0207033 1868: 1851: 1840: 1805: 1774: 1740: 1718:(1–3): 87–147, 1704: 1690: 1671: 1664: 1622: 1573: 1548:10.1.1.220.7715 1525: 1490: 1478: 1459: 1447: 1404: 1390:Robertson, Neil 1384: 1378: 1341: 1331: 1328: 1323: 1315: 1311: 1303: 1299: 1287: 1283: 1275: 1271: 1263: 1259: 1251: 1247: 1228: 1224: 1216: 1212: 1204: 1197: 1189: 1182: 1174: 1167: 1159: 1155: 1147: 1138: 1130: 1121: 1113: 1109: 1101: 1094: 1086: 1082: 1074: 1065: 1061: 989: 886:greedy coloring 878:chromatic index 873: 872: 867: 864: 860: 850:bipartite graph 826: 736:independent set 724: 693: 610:is any vertex, 553:connected graph 522: 504:A technique of 491: 473: 450: 430: 428: 421: 419: 412: 410: 403: 401: 397:Turán's theorem 389: 387: 335: 274:, is claw-free. 252:interval graphs 227: 220: 213: 202: 191: 184: 177: 163:. A line graph 135:) of any graph 113: 97:polynomial time 55: 33:claw-free graph 17: 12: 11: 5: 2245: 2243: 2235: 2234: 2229: 2227:Graph families 2219: 2218: 2215: 2214: 2194: 2186: 2185:External links 2183: 2182: 2181: 2141: 2110: 2089: 2051: 2039:(2): 194–204, 2024: 2004:(3): 284–304, 1993: 1969: 1940: 1912:(3): 157–194, 1902:Reed, Bruce A. 1897: 1879:(4): 413–423, 1866: 1838: 1803: 1772: 1754:(3): 353–382, 1738: 1706:Faudree, Ralph 1702: 1688: 1662: 1620: 1571: 1541:(6): 560–572, 1523: 1503:(4): 812–834, 1476: 1445: 1382: 1376: 1339: 1327: 1324: 1322: 1321: 1309: 1297: 1281: 1279:, pp. 124–125. 1269: 1257: 1245: 1222: 1220:, pp. 135–136. 1210: 1195: 1193:, pp. 133–134. 1180: 1178:, pp. 120–124. 1165: 1153: 1136: 1119: 1107: 1092: 1088:Beineke (1968) 1080: 1062: 1060: 1057: 1047:, a claw-free 1045:Schläfli graph 1041: 1040: 1030: 1027: 1020: 1019: 1012: 988: 985: 924:dominating set 912:maximum degree 868: 865: 859: 838:maximum clique 825: 822: 744:Edmonds (1965) 723: 720: 688: 521: 518: 502: 501: 484: 483: 449: 446: 409: Ă— 2 334: 331: 330: 329: 322:Schläfli graph 318: 299:cross polytope 275: 264: 245: 242:complete graph 230: 225: 218: 211: 200: 189: 182: 175: 139:is claw-free; 112: 109: 105:perfect graphs 53: 15: 13: 10: 9: 6: 4: 3: 2: 2244: 2233: 2230: 2228: 2225: 2224: 2222: 2211: 2210: 2205: 2201: 2195: 2192: 2189: 2188: 2184: 2178: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2129: 2124: 2120: 2116: 2111: 2107: 2103: 2099: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2065: 2057: 2052: 2047: 2042: 2038: 2034: 2030: 2025: 2021: 2017: 2012: 2007: 2003: 1999: 1994: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1941: 1937: 1933: 1929: 1925: 1920: 1915: 1911: 1907: 1903: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1873: 1867: 1862: 1856: 1849: 1845: 1841: 1835: 1831: 1827: 1822: 1817: 1813: 1809: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1779: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1748: 1747:Combinatorica 1743: 1739: 1735: 1731: 1726: 1721: 1717: 1713: 1712: 1707: 1703: 1699: 1695: 1691: 1685: 1681: 1677: 1670: 1669: 1663: 1659: 1655: 1651: 1647: 1642: 1637: 1633: 1629: 1625: 1624:Edmonds, Jack 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1592: 1587: 1583: 1579: 1578: 1572: 1568: 1564: 1559: 1554: 1549: 1544: 1540: 1536: 1532: 1531:Seymour, Paul 1528: 1524: 1520: 1516: 1511: 1506: 1502: 1498: 1497: 1489: 1485: 1484:Seymour, Paul 1481: 1477: 1473: 1469: 1465: 1458: 1454: 1453:Seymour, Paul 1450: 1446: 1442: 1438: 1434: 1430: 1425: 1420: 1417:(1): 51–229, 1416: 1412: 1411: 1403: 1399: 1398:Thomas, Robin 1395: 1394:Seymour, Paul 1391: 1387: 1383: 1379: 1373: 1368: 1363: 1359: 1355: 1351: 1350: 1345: 1340: 1335: 1330: 1329: 1325: 1318: 1313: 1310: 1306: 1301: 1298: 1294: 1290: 1285: 1282: 1278: 1273: 1270: 1266: 1261: 1258: 1254: 1249: 1246: 1243: 1242:Poljak (1974) 1239: 1235: 1231: 1226: 1223: 1219: 1214: 1211: 1207: 1202: 1200: 1196: 1192: 1187: 1185: 1181: 1177: 1172: 1170: 1166: 1162: 1157: 1154: 1150: 1145: 1143: 1141: 1137: 1133: 1128: 1126: 1124: 1120: 1116: 1111: 1108: 1104: 1099: 1097: 1093: 1089: 1084: 1081: 1077: 1072: 1070: 1068: 1064: 1058: 1056: 1054: 1050: 1046: 1038: 1035:, a class of 1034: 1031: 1028: 1025: 1024: 1023: 1017: 1013: 1010: 1006: 1005: 1004: 1002: 997: 993: 986: 984: 982: 976: 974: 970: 965: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 921: 916: 913: 909: 905: 903: 897: 895: 891: 887: 883: 879: 871: 857: 855: 851: 847: 843: 839: 835: 831: 830:perfect graph 823: 821: 819: 815: 811: 807: 803: 798: 796: 792: 788: 784: 780: 779:induced paths 776: 772: 768: 763: 761: 757: 753: 749: 745: 741: 737: 728: 721: 719: 717: 713: 709: 705: 701: 697: 692: 687: 683: 679: 675: 673: 669: 665: 661: 657: 653: 649: 645: 641: 637: 633: 629: 625: 621: 617: 613: 609: 604: 602: 598: 594: 590: 586: 582: 578: 574: 570: 566: 560: 558: 554: 550: 546: 545:Sumner (1974) 539: 535: 531: 526: 519: 517: 515: 511: 507: 499: 494: 489: 488: 487: 481: 476: 471: 470: 469: 467: 463: 459: 455: 447: 445: 443: 439: 433: 424: 415: 406: 398: 392: 385: 381: 379: 375: 371: 368: 365: Ă—  364: 360: 356: 352: 348: 344: 341:vertices and 340: 332: 327: 323: 319: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 273: 269: 268:Moser spindle 265: 262: 257: 253: 249: 246: 243: 239: 235: 231: 224: 217: 210: 206: 199: 195: 188: 181: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 127: 123: 122: 117: 110: 108: 106: 102: 98: 94: 90: 86: 81: 79: 75: 71: 67: 63: 59: 52: 49: 44: 42: 38: 34: 30: 21: 2207: 2152: 2148: 2121:(1): 53–76, 2118: 2114: 2097: 2093: 2071:(1): 65–73, 2068: 2062: 2036: 2032: 2001: 1997: 1980: 1976: 1948: 1944: 1909: 1905: 1876: 1870: 1811: 1782: 1776: 1751: 1745: 1715: 1709: 1667: 1631: 1627: 1581: 1575: 1538: 1537:, Series B, 1534: 1500: 1499:, Series B, 1494: 1463: 1424:math/0212070 1414: 1408: 1347: 1333: 1312: 1300: 1284: 1272: 1260: 1248: 1225: 1213: 1156: 1110: 1083: 1042: 1037:dense graphs 1032: 1021: 1015: 1008: 1000: 990: 977: 972: 968: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 917: 901: 898: 874: 845: 827: 805: 799: 794: 790: 786: 782: 774: 770: 764: 760:Minty (1980) 756:Sbihi (1980) 733: 715: 711: 707: 703: 699: 695: 690: 685: 681: 676: 659: 647: 643: 639: 635: 631: 627: 623: 619: 615: 611: 607: 605: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 561: 543: 537: 533: 529: 510:cubic graphs 503: 485: 465: 461: 457: 453: 451: 441: 437: 431: 422: 413: 404: 390: 382: 377: 366: 362: 346: 342: 338: 336: 222: 215: 208: 203:then by the 197: 193: 186: 179: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 128: 82: 66:neighborhood 56:(that is, a 50: 45: 32: 29:graph theory 26: 2100:: 307–309, 1634:: 449–467, 1344:Sack, J.-R. 946:but not by 464:nodes, for 448:Enumeration 333:Recognition 311:icosahedron 287:tetrahedron 85:line graphs 2221:Categories 1326:References 516:problems. 303:isomorphic 295:octahedron 254:formed as 234:complement 126:line graph 74:complement 58:star graph 2209:MathWorld 1919:1212.3036 1821:1012.0012 1591:1011.6239 1543:CiteSeerX 1441:119151552 1367:1813/6891 1151:, p. 132. 987:Structure 979:graph is 520:Matchings 283:polytopes 279:polyhedra 1855:citation 1768:16308467 1698:13353335 1658:18909734 1616:16339210 1486:(2008), 1455:(2005), 1400:(2006), 1105:, p. 89. 1078:, p. 88. 904:-bounded 846:odd hole 746:finds a 111:Examples 2177:0323648 2169:2039666 2137:0553650 2106:0351881 2085:1972075 2020:0579076 1989:0412042 1965:1761552 1936:7385598 1893:0508603 1848:3080073 1799:2046636 1734:1432221 1650:0177907 1608:2894366 1567:2718677 1519:2418774 1472:2187738 958:, then 496:in the 493:A086991 478:in the 475:A022562 429:√ 420:√ 411:√ 402:√ 388:√ 357:of its 315:16-cell 305:to the 291:simplex 236:of any 229:graphs. 72:is the 68:of any 2175:  2167:  2135:  2104:  2083:  2018:  1987:  1963:  1934:  1891:  1846:  1836:  1797:  1766:  1732:  1696:  1686:  1656:  1648:  1614:  1606:  1565:  1545:  1517:  1470:  1439:  1374:  618:, and 250:, the 221:, and 185:, and 70:vertex 39:as an 23:A claw 2165:JSTOR 2059:(PDF) 1932:S2CID 1914:arXiv 1844:S2CID 1816:arXiv 1764:S2CID 1694:S2CID 1672:(PDF) 1654:S2CID 1612:S2CID 1586:arXiv 1491:(PDF) 1460:(PDF) 1437:S2CID 1419:arXiv 1405:(PDF) 1059:Notes 854:color 654:of a 76:of a 1861:link 1834:ISBN 1684:ISBN 1372:ISBN 934:and 758:and 634:and 599:and 587:nor 567:and 532:and 498:OEIS 480:OEIS 355:cube 324:, a 320:The 281:and 266:The 232:The 124:The 37:claw 2157:doi 2123:doi 2073:doi 2041:doi 2006:doi 1953:doi 1924:doi 1881:doi 1826:doi 1787:doi 1783:276 1756:doi 1720:doi 1716:164 1676:doi 1636:doi 1596:doi 1582:412 1553:doi 1539:100 1505:doi 1429:doi 1415:164 1362:hdl 1354:doi 1236:in 742:of 734:An 444:). 380:). 192:in 54:1,3 27:In 2223:: 2206:, 2202:, 2173:MR 2171:, 2163:, 2153:42 2151:, 2133:MR 2131:, 2119:29 2117:, 2102:MR 2098:15 2096:, 2081:MR 2079:, 2069:16 2067:, 2061:, 2037:44 2035:, 2031:, 2016:MR 2014:, 2002:28 2000:, 1985:MR 1981:17 1979:, 1961:MR 1959:, 1949:74 1947:, 1930:, 1922:, 1910:78 1908:, 1889:MR 1887:, 1875:, 1857:}} 1853:{{ 1842:, 1832:, 1824:, 1795:MR 1793:, 1781:, 1762:, 1752:16 1750:, 1730:MR 1728:, 1714:, 1692:, 1682:, 1652:, 1646:MR 1644:, 1632:17 1630:, 1610:, 1604:MR 1602:, 1594:, 1580:, 1563:MR 1561:, 1551:, 1529:; 1515:MR 1513:, 1501:98 1493:, 1482:; 1468:MR 1462:, 1451:; 1435:, 1427:, 1413:, 1407:, 1396:; 1392:; 1388:; 1370:, 1360:, 1291:; 1198:^ 1183:^ 1168:^ 1139:^ 1122:^ 1095:^ 1066:^ 1007:A 828:A 816:, 777:: 762:. 689:1, 644:vw 500:). 482:). 214:, 178:, 80:. 43:. 2180:. 2159:: 2140:. 2125:: 2109:. 2088:. 2075:: 2050:. 2043:: 2023:. 2008:: 1992:. 1968:. 1955:: 1939:. 1926:: 1916:: 1896:. 1883:: 1877:7 1865:. 1863:) 1828:: 1818:: 1802:. 1789:: 1771:. 1758:: 1737:. 1722:: 1701:. 1678:: 1661:. 1638:: 1619:. 1598:: 1588:: 1570:. 1555:: 1522:. 1507:: 1475:. 1444:. 1431:: 1421:: 1381:. 1364:: 1356:: 1338:. 1319:. 1307:. 1295:. 1267:. 1255:. 1208:. 1163:. 1134:. 1117:. 1090:. 973:D 969:D 964:v 960:v 956:D 952:v 948:w 944:v 940:D 936:w 932:v 928:D 902:χ 863:: 795:I 791:I 787:I 783:I 771:I 716:k 712:k 708:k 704:k 700:k 696:r 691:r 686:K 682:r 660:u 648:u 640:u 636:w 632:v 628:u 624:v 620:w 616:u 612:v 608:u 601:w 597:v 593:u 589:w 585:v 581:u 577:v 573:w 569:v 565:u 538:u 534:w 530:v 466:n 462:n 458:n 454:n 442:m 438:m 432:m 423:m 414:m 405:m 400:2 391:m 378:n 367:n 363:n 347:n 343:m 339:n 317:. 301:( 263:. 244:. 226:3 223:e 219:2 216:e 212:1 209:e 201:4 198:e 194:G 190:3 187:e 183:2 180:e 176:1 173:e 169:G 167:( 165:L 161:G 157:G 155:( 153:L 149:G 145:G 143:( 141:L 137:G 133:G 131:( 129:L 51:K

Index


graph theory
claw
induced subgraph
complete bipartite graph
star graph
induced subgraph
neighborhood
vertex
complement
triangle-free graph
line graphs
connected graphs
perfect matchings
polynomial time
maximum independent sets
perfect graphs

line graph
pigeonhole principle
complement
triangle-free graph
complete graph
Proper interval graphs
interval graphs
intersection graphs
circular-arc graphs
Moser spindle
chromatic number of the plane
polyhedra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑