Knowledge (XXG)

Hadwiger–Nelson problem

Source 📝

178:, preserving all distances. Finite colorings of these spaces can be used to construct mappings from them to higher-dimensional spaces that preserve distances but are not isometries. For instance, the Euclidean plane can be mapped to a six-dimensional space by coloring it with seven colors so that no two points at distance one have the same color, and then mapping the points by their colors to the seven vertices of a six-dimensional 48: 36: 440:
One can also consider colorings of the plane in which the sets of points of each color are restricted to sets of some particular type. Such restrictions may cause the required number of colors to increase, as they prevent certain colorings from being considered acceptable. For instance, if a coloring
235:
are at unit distance from each other, we would not have a proper coloring of the unit distance graph of the plane. Therefore, at least four colors are needed to color this graph and the plane containing it. An alternative lower bound in the form of a ten-vertex four-chromatic unit distance graph, the
182:
with unit-length edges. This maps any two points at unit distance to distinct colors, and from there to distinct vertices of the simplex, at unit distance apart from each other. However, it maps all other distances to zero or one, so it is not an isometry. If the number of colors needed to color the
436:
is available using a generalization of the Moser spindle: a pair of the objects (each two simplexes glued together on a facet) which are joined on one side by a point and the other side by a line. An exponential lower bound was proved by Frankl and Wilson in 1981.
303:
The problem can easily be extended to higher dimensions. Finding the chromatic number of 3-space is a particularly interesting problem. As with the version on the plane, the answer is not known, but has been shown to be at least 6 and at most 15.
275:
to find non-4-colorable unit distance graphs with fewer vertices than the one in de Grey's construction. As of 2021, the smallest known unit distance graph with chromatic number 5 has 509 vertices. The page of the Polymath project,
1140:
Functional-Analytic and Complex Methods, their Interactions, and Applications to Partial Differential Equations: Proceedings of the International Workshop held at Graz University Of Technology, Graz, February 12–16,
158:
had earlier published a related result, showing that any cover of the plane by five congruent closed sets contains a unit distance in one of the sets, and he also mentioned the problem in a later paper
686: 356: 90:
at distance 1 from each other have the same color. The answer is unknown, but has been narrowed down to one of the numbers 5, 6 or 7. The correct value may depend on the choice of axioms for
1138:
Rassias, Themistocles M. (2001), "Isometric mappings and the problem of A. D. Aleksandrov for conservative distances", in Florian, H.; Ortner, N.; Schnitzer, F. J.; Tutschke, W. (eds.),
287:
of the plane by regular hexagons, with diameter slightly less than one, that can be assigned seven colors in a repeating pattern to form a 7-coloring of the plane. According to
191:
The fact that the chromatic number of the plane must be at least four follows from the existence of a seven-vertex unit distance graph with chromatic number four, named the
640: 408: 922: 434: 382: 127: 1327: 1099:
Radoičić, Radoš; Tóth, Géza (2003), "Note on the chromatic number of the space", in Aronov, Boris; Basu, Saugata; Pach, Janos; Sharir, Micha (eds.),
29: 215:
of these joined triangles are at unit distance from each other. If the plane could be three-colored, the coloring within the triangles would force
1085: 183:
plane could be reduced from seven to a lower number, the same reduction would apply to the dimension of the target space in this construction.
1292: 1211: 1156: 1121: 1042: 846: 174:, according to which any mapping of the Euclidean plane (or any higher dimensional space) to itself that preserves unit distances must be an 1055: 118:
and with an edge between two vertices if and only if the distance between the two points is 1. The Hadwiger–Nelson problem is to find the
926: 1065: 830: 1332: 1222: 1347: 1201: 1260: 318: 171: 259:
posted discussion of de Grey's finding, with Aaronson reporting independent verifications of de Grey's result using
678: 1342: 738: 1091: 1337: 311:-dimensional case of the problem, an easy upper bound on the number of required colorings found from tiling 698: 67: 251:
found a 1581-vertex, non-4-colourable unit-distance graph. The proof is computer assisted. Mathematician
115: 26:
How many colors are needed to color the plane so that no two points at unit distance are the same color?
1022: 953: 207:. Each of these triangles is joined along another edge to another equilateral triangle; the vertices 200: 1279: 719:
Chilakamarri, K. B. (1993), "The unit-distance graph problem: a brief survey and some new results",
703: 126:. As a consequence, the problem is often called "finding the chromatic number of the plane". By the 888: 111: 83: 60: 1310: 1012: 943: 905: 872: 763: 659: 454: 1207: 1152: 1117: 1081: 1038: 916: 842: 797: 241: 56: 1203:
The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators
1231: 1189: 1177: 1144: 1109: 897: 864: 818: 787: 747: 708: 649: 387: 272: 264: 138:) to that of finding the largest possible chromatic number of a finite unit distance graph. 119: 87: 1245: 1166: 1131: 965: 759: 671: 1241: 1162: 1127: 961: 755: 733: 667: 179: 135: 39:
A seven-coloring of the plane, and a four-chromatic unit distance graph in the plane (the
413: 361: 1302: 1037:, Wiley-Interscience Series in Discrete Mathematics and Optimization, pp. 150–152, 1026: 957: 736:(1996), "Unit-distance graphs, graphs on the integer lattice and a Ramsey type result", 1173: 901: 883: 834: 625: 292: 256: 248: 1193: 855:
Frankl, P.; Wilson, R.M. (1981), "Intersection theorems with geometric consequences",
822: 712: 247:
The lower bound was raised to five in 2018, when computer scientist and gerontologist
47: 1321: 1236: 988: 972: 767: 682: 192: 79: 75: 40: 43:), proving that the chromatic number of a plane is bounded above by 7 and below by 4 1143:, River Edge, New Jersey: World Scientific Publishing Co., Inc., pp. 118–125, 1004: 876: 442: 284: 237: 103: 52: 1108:, Algorithms and Combinatorics, vol. 25, Berlin: Springer, pp. 695–698, 934:
de Grey, Aubrey D.N.J. (2018), "The Chromatic Number of the Plane Is at least 5",
1113: 283:
The upper bound of seven on the chromatic number follows from the existence of a
1275: 638:
Beckman, F. S.; Quarles, D. A. Jr. (1953), "On isometries of Euclidean spaces",
268: 687:"A colour problem for infinite graphs and a problem in the theory of relations" 792: 775: 260: 91: 35: 801: 629: 150:, the problem was first formulated by Nelson in 1950, and first published by 1288: 1100: 1051: 252: 196: 886:(October 1960), "A new collection of 'brain-teasers'", Mathematical Games, 175: 1220:
Woodall, D. R. (1973), "Distances realized by sets covering the plane",
909: 975:(1945), "Überdeckung des euklidischen Raumes durch kongruente Mengen", 868: 809:
Coulson, D. (2002), "A 15-colouring of 3-space omitting distance one",
751: 663: 18: 1102:
Discrete and Computational Geometry: The Goodman–Pollack Festschrift
654: 280:, contains further research, media citations and verification data. 1264: 1017: 948: 46: 1294:
Coloring Problems for Arrangements of Circles (and Pseudocircles)
1148: 114:
of the plane: an infinite graph with all points of the plane as
1057:
Aubrey de Grey: The chromatic number of the plane is at least 5
82:, asks for the minimum number of colors required to color the 1180:(2003), "Axiom of choice and chromatic number of the plane", 1009:
Computing Small Unit-Distance Graphs with Chromatic Number 5
134:, the problem is equivalent (under the assumption of the 195:
after its discovery in 1961 by the brothers William and
416: 390: 364: 321: 271:, with Elkies and (separately) de Grey proposing a 167:discusses the problem and its history extensively. 428: 402: 376: 350: 170:One application of the problem connects it to the 1067:Polymath16, seventeenth thread: Declaring victory 351:{\displaystyle \lfloor 2+{\sqrt {n}}\rfloor ^{n}} 786:(2). Cambridge University Press (CUP): 191–196. 641:Proceedings of the American Mathematical Society 592: 1281:The chromatic number of the Unit Distance Graph 1087:Hadwiger-Nelson problem (Polymath project page) 780:Journal of the Australian Mathematical Society 631:Amazing progress on longstanding open problems 488: 131: 8: 579: 567: 476: 441:of the plane consists of regions bounded by 339: 322: 240:, was discovered at around the same time by 1265:"Problem 57: Chromatic Number of the Plane" 921:: CS1 maint: DOI inactive as of May 2024 ( 776:"On the chromatic number of plane tilings" 611:for a different proof of a similar result. 147: 1235: 1182:Journal of Combinatorial Theory, Series A 1016: 947: 791: 702: 653: 445:, then at least six colors are required. 415: 389: 363: 342: 331: 320: 291:, this upper bound was first observed by 540: 277: 160: 155: 34: 1033:Jensen, Tommy R.; Toft, Bjarne (1995), 608: 604: 563: 524: 500: 465: 151: 30:(more unsolved problems in mathematics) 914: 512: 472: 288: 164: 991:(1961), "Ungelöste Probleme No. 40", 551: 536: 7: 691:Nederl. Akad. Wetensch. Proc. Ser. A 263:. Kalai linked additional posts by 1301:Grime, James (February 27, 2019), 1064:Mixon, Dustin (February 1, 2021), 902:10.1038/scientificamerican1060-218 358:. A lower bound from simplexes is 199:. This graph consists of two unit 14: 1328:Unsolved problems in graph theory 841:, Springer-Verlag, Problem G10, 593:Croft, Falconer & Guy (1991) 1313:from the original on 2021-12-21 1223:Journal of Combinatorial Theory 223:to both have the same color as 102:The question can be phrased in 21:Unsolved problem in mathematics 1: 1303:"A Colorful Unsolved Problem" 1194:10.1016/S0097-3165(03)00102-X 839:Unsolved Problems in Geometry 823:10.1016/S0012-365X(01)00183-2 713:10.1016/S1385-7258(51)50053-7 59:'s ten-vertex four-chromatic 1237:10.1016/0097-3165(73)90020-4 1114:10.1007/978-3-642-55566-4_32 925:) CS1 maint: date and year ( 489:Beckman & Quarles (1953) 132:de Bruijn & Erdős (1951) 203:joined at a common vertex, 1364: 1200:Soifer, Alexander (2008), 580:Frankl & Wilson (1981) 568:Radoičić & Tóth (2003) 477:Shelah & Soifer (2003) 1269:The Open Problems Project 793:10.1017/s1446788700013574 98:Relation to finite graphs 739:Aequationes Mathematicae 732:Chilakamarri, Kiran B.; 721:Bull Inst. Combin. Appl. 148:Jensen & Toft (1995) 1035:Graph Coloring Problems 904:(inactive 2024-05-06), 255:and computer scientist 172:Beckman–Quarles theorem 128:de Bruijn–Erdős theorem 72:Hadwiger–Nelson problem 1333:Geometric graph theory 1206:, New York: Springer, 430: 404: 403:{\displaystyle n>1} 378: 352: 315:-dimensional cubes is 187:Lower and upper bounds 106:terms as follows. Let 68:geometric graph theory 63: 44: 1348:Mathematical problems 431: 405: 379: 353: 201:equilateral triangles 50: 38: 831:Falconer, Kenneth J. 774:Coulson, D. (2004). 414: 388: 362: 319: 16:Mathematical problem 1027:2018arXiv180512181H 958:2016arXiv160407134W 889:Scientific American 829:Croft, Hallard T.; 734:Mahoney, Carolyn R. 429:{\displaystyle n+2} 410:, a lower bound of 377:{\displaystyle n+1} 112:unit distance graph 61:unit distance graph 1082:Polymath, D. H. J. 1054:(April 10, 2018), 1005:Heule, Marijn J.H. 869:10.1007/BF02579457 752:10.1007/BF01831139 628:(April 11, 2018), 455:Four color theorem 426: 400: 374: 348: 227:, but then, since 64: 45: 1213:978-0-387-74640-1 1178:Soifer, Alexander 1158:978-981-02-4764-5 1123:978-3-540-00371-7 1044:978-0-471-02865-9 848:978-0-387-97506-1 336: 242:Solomon W. Golomb 86:such that no two 57:Solomon W. Golomb 1355: 1314: 1297: 1284: 1271: 1261:O'Rourke, Joseph 1248: 1239: 1216: 1196: 1169: 1134: 1107: 1095: 1090:, archived from 1077: 1076: 1074: 1060: 1047: 1029: 1020: 1000: 984: 968: 951: 930: 920: 912: 879: 851: 825: 805: 795: 770: 728: 715: 706: 679:de Bruijn, N. G. 674: 657: 634: 612: 602: 596: 589: 583: 577: 571: 561: 555: 549: 543: 534: 528: 522: 516: 510: 504: 498: 492: 486: 480: 470: 435: 433: 432: 427: 409: 407: 406: 401: 383: 381: 380: 375: 357: 355: 354: 349: 347: 346: 337: 332: 273:Polymath project 265:Jordan Ellenberg 120:chromatic number 22: 1363: 1362: 1358: 1357: 1356: 1354: 1353: 1352: 1343:Infinite graphs 1318: 1317: 1300: 1287: 1274: 1259: 1256: 1251: 1219: 1214: 1199: 1174:Shelah, Saharon 1172: 1159: 1137: 1124: 1105: 1098: 1080: 1072: 1070: 1063: 1050: 1045: 1032: 1003: 987: 977:Portugal. Math. 971: 933: 913: 884:Gardner, Martin 882: 854: 849: 835:Guy, Richard K. 828: 808: 773: 731: 718: 704:10.1.1.210.6623 677: 655:10.2307/2032415 637: 626:Aaronson, Scott 624: 620: 615: 603: 599: 590: 586: 578: 574: 562: 558: 550: 546: 541:Aaronson (2018) 535: 531: 523: 519: 511: 507: 499: 495: 487: 483: 475:, pp. 557–563; 471: 467: 463: 451: 412: 411: 386: 385: 360: 359: 338: 317: 316: 301: 278:Polymath (2018) 189: 180:regular simplex 156:Hadwiger (1945) 144: 136:axiom of choice 104:graph theoretic 100: 33: 32: 27: 24: 20: 17: 12: 11: 5: 1361: 1359: 1351: 1350: 1345: 1340: 1338:Graph coloring 1335: 1330: 1320: 1319: 1316: 1315: 1298: 1285: 1272: 1255: 1254:External links 1252: 1250: 1249: 1230:(2): 187–200, 1217: 1212: 1197: 1188:(2): 387–391, 1170: 1157: 1135: 1122: 1096: 1084:(April 2018), 1078: 1061: 1048: 1043: 1030: 1001: 989:Hadwiger, Hugo 985: 973:Hadwiger, Hugo 969: 936:Geombinatorics 931: 880: 863:(4): 357–368, 852: 847: 826: 817:(1–2): 83–90, 811:Discrete Math. 806: 771: 746:(1–2): 48–67, 729: 716: 675: 648:(5): 810–815, 635: 621: 619: 616: 614: 613: 609:Coulson (2004) 605:Woodall (1973) 597: 584: 572: 564:Coulson (2002) 556: 544: 529: 525:de Grey (2018) 517: 505: 501:Rassias (2001) 493: 481: 464: 462: 459: 458: 457: 450: 447: 425: 422: 419: 399: 396: 393: 373: 370: 367: 345: 341: 335: 330: 327: 324: 300: 297: 293:John R. Isbell 257:Scott Aaronson 249:Aubrey de Grey 188: 185: 152:Gardner (1960) 143: 140: 130:, a result of 99: 96: 74:, named after 28: 25: 19: 15: 13: 10: 9: 6: 4: 3: 2: 1360: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1325: 1323: 1312: 1308: 1304: 1299: 1296: 1295: 1290: 1286: 1283: 1282: 1277: 1273: 1270: 1266: 1262: 1258: 1257: 1253: 1247: 1243: 1238: 1233: 1229: 1225: 1224: 1218: 1215: 1209: 1205: 1204: 1198: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1168: 1164: 1160: 1154: 1150: 1146: 1142: 1136: 1133: 1129: 1125: 1119: 1115: 1111: 1104: 1103: 1097: 1094:on 2022-02-16 1093: 1089: 1088: 1083: 1079: 1069: 1068: 1062: 1059: 1058: 1053: 1049: 1046: 1040: 1036: 1031: 1028: 1024: 1019: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 974: 970: 967: 963: 959: 955: 950: 945: 941: 937: 932: 928: 924: 918: 911: 907: 903: 899: 895: 891: 890: 885: 881: 878: 874: 870: 866: 862: 858: 857:Combinatorica 853: 850: 844: 840: 836: 832: 827: 824: 820: 816: 812: 807: 803: 799: 794: 789: 785: 781: 777: 772: 769: 765: 761: 757: 753: 749: 745: 741: 740: 735: 730: 726: 722: 717: 714: 710: 705: 700: 696: 692: 688: 684: 680: 676: 673: 669: 665: 661: 656: 651: 647: 643: 642: 636: 633: 632: 627: 623: 622: 617: 610: 606: 601: 598: 594: 588: 585: 581: 576: 573: 569: 565: 560: 557: 553: 548: 545: 542: 538: 533: 530: 526: 521: 518: 515:, p. 19. 514: 513:Soifer (2008) 509: 506: 502: 497: 494: 490: 485: 482: 478: 474: 473:Soifer (2008) 469: 466: 460: 456: 453: 452: 448: 446: 444: 443:Jordan curves 438: 423: 420: 417: 397: 394: 391: 371: 368: 365: 343: 333: 328: 325: 314: 310: 305: 298: 296: 294: 290: 289:Soifer (2008) 286: 281: 279: 274: 270: 266: 262: 258: 254: 250: 245: 243: 239: 234: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 193:Moser spindle 186: 184: 181: 177: 173: 168: 166: 165:Soifer (2008) 162: 161:Hadwiger 1961 157: 153: 149: 146:According to 141: 139: 137: 133: 129: 125: 121: 117: 113: 109: 105: 97: 95: 93: 89: 85: 81: 80:Edward Nelson 77: 76:Hugo Hadwiger 73: 69: 62: 58: 54: 49: 42: 41:Moser spindle 37: 31: 1306: 1293: 1280: 1276:Mohar, Bojan 1268: 1227: 1226:, Series A, 1221: 1202: 1185: 1181: 1149:10.1142/4822 1139: 1101: 1092:the original 1086: 1071:, retrieved 1066: 1056: 1034: 1008: 996: 992: 980: 976: 939: 935: 893: 887: 860: 856: 838: 814: 810: 783: 779: 743: 737: 724: 720: 694: 690: 645: 639: 630: 600: 587: 575: 559: 552:Mixon (2021) 547: 537:Kalai (2018) 532: 520: 508: 496: 484: 468: 439: 312: 308: 306: 302: 285:tessellation 282: 246: 238:Golomb graph 232: 228: 224: 220: 216: 212: 208: 204: 190: 169: 145: 123: 107: 101: 71: 65: 53:Golomb graph 1307:Numberphile 993:Elem. Math. 697:: 371–373, 607:; see also 591:See, e.g., 269:Noam Elkies 261:SAT solvers 1322:Categories 1289:Kalai, Gil 1052:Kalai, Gil 1018:1805.12181 949:1804.02385 896:(4): 180, 618:References 299:Variations 92:set theory 1073:16 August 999:: 103–104 983:: 238–242 802:1446-7887 768:189831504 699:CiteSeerX 683:Erdős, P. 340:⌋ 323:⌊ 253:Gil Kalai 197:Leo Moser 1311:archived 1291:(2018), 1278:(2001), 1007:(2018), 942:: 5–18, 917:citation 910:24940666 837:(1991), 685:(1951), 449:See also 176:isometry 116:vertices 1246:0310770 1167:1893253 1132:2038498 1023:Bibcode 966:3820926 954:Bibcode 877:6768348 760:1372782 727:: 39–60 672:0058193 664:2032415 307:In the 142:History 110:be the 1244:  1210:  1165:  1155:  1130:  1120:  1041:  964:  908:  875:  845:  800:  766:  758:  701:  670:  662:  384:. For 88:points 70:, the 1106:(PDF) 1013:arXiv 944:arXiv 906:JSTOR 873:S2CID 764:S2CID 660:JSTOR 461:Notes 84:plane 1208:ISBN 1153:ISBN 1141:2001 1118:ISBN 1075:2021 1039:ISBN 927:link 923:link 843:ISBN 798:ISSN 395:> 267:and 231:and 219:and 211:and 78:and 51:The 1232:doi 1190:doi 1186:103 1145:doi 1110:doi 898:doi 894:203 865:doi 819:doi 815:256 788:doi 748:doi 709:doi 650:doi 163:). 122:of 66:In 1324:: 1309:, 1305:, 1267:, 1263:, 1242:MR 1240:, 1228:14 1184:, 1176:; 1163:MR 1161:, 1151:, 1128:MR 1126:, 1116:, 1021:, 1011:, 997:16 995:, 979:, 962:MR 960:, 952:, 940:28 938:, 919:}} 915:{{ 892:, 871:, 859:, 833:; 813:, 796:. 784:77 782:. 778:. 762:, 756:MR 754:, 744:51 742:, 723:, 707:, 695:54 693:, 689:, 681:; 668:MR 666:, 658:, 644:, 566:; 539:; 295:. 244:. 154:. 94:. 55:, 1234:: 1192:: 1147:: 1112:: 1025:: 1015:: 981:4 956:: 946:: 929:) 900:: 867:: 861:1 821:: 804:. 790:: 750:: 725:8 711:: 652:: 646:4 595:. 582:. 570:. 554:. 527:. 503:. 491:. 479:. 424:2 421:+ 418:n 398:1 392:n 372:1 369:+ 366:n 344:n 334:n 329:+ 326:2 313:n 309:n 233:z 229:y 225:x 221:z 217:y 213:z 209:y 205:x 159:( 124:G 108:G 23::

Index

(more unsolved problems in mathematics)

Moser spindle

Golomb graph
Solomon W. Golomb
unit distance graph
geometric graph theory
Hugo Hadwiger
Edward Nelson
plane
points
set theory
graph theoretic
unit distance graph
vertices
chromatic number
de Bruijn–Erdős theorem
de Bruijn & Erdős (1951)
axiom of choice
Jensen & Toft (1995)
Gardner (1960)
Hadwiger (1945)
Hadwiger 1961
Soifer (2008)
Beckman–Quarles theorem
isometry
regular simplex
Moser spindle
Leo Moser

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.